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A CHARACTERIZATION OF LOCALLY
MACAULAY COMPLETIONS

CRAIG HUNEKE

The purpose of this note is to prove the following theo-
rem.
Tueorem 1.1. Let (R, m) be a Noetherian local ring of

dimension d =1 and depth d — 1. By R denote the comple-
tion of R in the m-adic topology. Then the following are

equivalent:

(1) R is equidimensional and satisfies Serre’s property
Sd—l

(2) HZYR) has finite length

(3) There exists an N > 0 such that if 2, ---, 2z, is a
sequence of elements R with ht(x;, ---,;)=j for all j-
elements subsets of {1,---,n}, 1=j5=n, and if m;= N,
1=+¢=d, then z}1, ---, 27< is an unconditioned d-sequence.

Recall the local ring (S, N) is equidimensional if for every mini-
mal prime divisor p of zero, dim S/p = dim S.
Serre’s property S, is that

depth R, = min [ht p, k]

for all primes p.
We will always denote the local cohomology functor by Hi(_ )

([1D.

We recall the definition of a d-sequence due to this author [3].

DEFINITION 0.1. A system of elements x,, ---, 2, in a commuta-
tive ring R is said to be a d-sequence if

(1) @@, ---, &y -- vy %)

(2) (s, -+, 2): Ttty) = (@4, -+, x): ) fork =17+ 1land7 = 0.
A d-sequence is said to be unconditioned if any permutation of it
remains a d-sequence.

These have been studied extensively by this author and have
been useful to determine the “analytic” properties of ideals generated
by them. In [3] the following was skown:

PRrROPOSITION. Let (R, m) be a local Noetherian ring. Then R is
Buchsbaum (see [10] for a definition and discussion) if and only if
every system of parameters forms a d-sequence.

Thus Theorem 1.1 may be seen as a related result, characterizing
rings in which “almost all” s.o.p.’s form a d-sequence. Independent
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of this characterization of rings with “lots” of d-sequences, Theorem
1.1 is the generalization of a result due to Steven McAdam [7] which
in turn is related to a characterization of unmixed 2-dimensional local
rings proved by Ratliff [8].

Let (R, m) be a 2-dimensional local domain and let b, ¢ be a
system of parameters. By S(b, ¢, n) denote the least & such that

& ) = (" ) .

Recall a local ring R is said to be unmixed if for each prime
divisor p of (0) in R, dim RB/p = dim R.
Ratliff showed, [8],

PROPOSITION. The following are equivalent for a 2-dimensional
local domain

(1) R s unmixed.

(2) S8, ¢, ) is bounded.

(3) R™ = N1 B, 18 a finite R-module.

McAdam discussed this and obtained the following improvement:

PrOPOSITION [5]. Let (R, m) be as above. Then the following
are equivalent:

(1) R is unmized, i.e., for all prime divisors p of (0) in R,
dim R/p = dim B = 2.

(2) RY 4s a finite R-module.

(8) There exists an N such that for every s.o.p. x, ¥

S, y, )= N.

In particular, (3) is equivalent to saying for all » = N that
(x*: y™) = (x™ y*™) and this is equivalent (in this case) to saying z*, y"
form a d-sequence.

To see our statement (1) is equivalent to (1) of the above prop-
osition, note that if dim R = 2 and R is a domain, then to say R is
unmixed is precisely to say R satisfies S, and is equidimensional.

Finally, we will show that R"/R is isomorphic to HL(R) in this
case, and show that R“/R has finite length if and only if R™ is a
finitely generated R-module. Henece our Theorem 1.1 is the exact
generalization of the above proposition of McAdam.

1. Proof of Theorem 1.1. For details on local cohomology we
refer the reader to [1]. We note the following facts.

(1) Since depthR=d — 1, Hi(R)=0if 1 <d — 1.

(2) There is a canonical isomorphism, HZY(R) =~ HL'(R).
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(3) If S is a complete regular local ring mapping onto R (see
[6]) and M is the maximal ideal of S, then H:(R) = Hi(R) where
R is regarded as an S-module.

(4) If Sischosenasin(3),e = dim S, and welet £ = H (S/M) =
an injective hull of S/M, then

Homg (Hi(R), E) = Exty 7 (R, S)

and Hi(R) = Homg (Ext;? (R, S), E). This is local duality.
(5) We may compute H, '(R) as follows: let a,, ---, 2, be an

8.0.p., and consider the complex,

g} Ry tpbgren, = @ Bapo e, — By, —— 0

i< S
where the subscripts denote localization at the elements subscripted.
Then H:'Y(R) is isomorphic to the middle homology of this complex.
If we denote by syz(x, ---, 2,) the module defined by K/L where
K < R* is the module of syzygies of x, ---, 2, and L is the sub-
module of syzygies which come from the trivial ones given by the
Koszul relations, then

H;(R) = lim syz (a1, - - -, x44)
—

where if m, = n,;, the map

syz (xt, - - -, €3¢) — syz (@, - - -, x34)
is defined by mapping a syzygy (ry, ---, r;) of (aft, ---, x%) to the
SyzZy gy (Tlx;"z—nz PR x;"d_"‘d, cee, 1~dx1’”1*”1 [P x;"jfr"’"d—l) Of (xi’"l, cee, x;’”d).

We now turn to the proof of Theorem 1.1.

The fact (1) if and only if (2) holds is well-known but we give
the details here for completeness.

We first observe that H/:'(R) has finite length if and only if
Homg (HiY(R), E) = Exti " (ﬁ, S) has finite length. (See [5].)

If pis a prime in S and R = S/I, then if p 21

(Exty @ (R, S)), = 0.

Hence, Extg -9 (I?, S) has finite length if and only if
(Exti = (R, S)), = Exty;"" (B, S,) =0 forall p=21, p=M.
If i <d — 1, then since depth R = depth R = d — 1, we see
HLR) = Hi(R) = 0

and so

Ext; (R, S) =0
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or, otherwise put,
Extt (R, S,) =0

for all k= e — (d — 1) if and only if H:'(R) has finite length. (Note
for &k > e, Extt (M, S) = 0 for all M.)
Since S, is regular,

Sup, {Ext, (R,, S,) # 0} + depth R, = dim S, . (See [9.])

From this we may conclude that HZ *(R) has finite length if and
only if depth (R), > dim S, — (¢ — (d — 1)) i.e., if and only if

depth (R), = dim S, — dim S + dim R .
We claim that
dim S, — dim S + dim R = dim (R),

in any case. For since S is regular, dim S = dim S, + dim S/p and
so the left side is just

—dim S/p + dim R .
Thus it is enough to show
dim R = dim S/p + dim (R),

but this clearly always holds since p contains I.
Thus we have shown HZ'(R) has finite length if and only if

(*) depth (R), = dim S, — dim S + dim R > dim (R), .

We claim these last two inequalities occur if and only if R satis-
fies S;_, and is equidimensional.

If (*) occurs then clearly (}?),, must be Cohen-Macaulay for all
» # M, and since depth R =d — 1, this shows R satisfies S;_:.. Since
we must have

dim (R), = dim S, — dim S + dim R
in this case, the work above shows that for all p 2 I,
dim R = dim S/p + dim (R), ,

and this shows R is equidimensional.
Conversely, since R is catenary, if R satisfies S,_, and is equi-
dimensional then

(a) depth (R), = dim (R),

for all primes p # #, and
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(b) dim R = dim S/p + dim (R),

for all primes p. Thus in this case (*) holds and so HZ'(R) has
finite length.

We now show (2) if and only if (8). Assume (2). Then there is
a N such that m"HI(R) = 0. It was shown in [2] that if R— S
faithfully flat and «,, - - -, 2, € R then these elements form a d-sequence
in R if and only if they form a d-sequence in S. Thus we may work
in B and assume R is complete for the remainder of this implication.
By (1), R is locally Cohen-Macaulay on the punctured spectrum, i.e.,
R satisfies Serre’s condition S,_,;.

Now let ,, ---, x; be in R such that ht (x;, ---, x;) = ¢ for each
5, 1=i1=d.

Then since R satisfies S, ;, @, -+, #,,_, form an R-sequence for
any d — 1 of {x, ---, x;}. Hence to show (3) it is enough to show
for m, = N that

(@, «oey By oo, wipd): 2F™) = ((@1 -y By -0 o, X74): XT) .

Since we may rearrange the x; we may assume ¢ = d. Suppose
(ry -+, ry is a syzygy of (x™, ..., x7dr a%™d), Since m"Hi ' (R) =0
we see that 27¢ must kill the image of this syzygy in H: '(R).

By the construction (5) above we see this means that

(r@ga(@y, -, )", <o, @TAT, -, Ty_y)")

becomes a trivial syzygy of
(@M gmakY | gEmatiry |
In particular,

PRy, vy Ty € (@Y, - e, APdr)

As x, ---, x,_, forms an R-sequence, this shows (see [4]) that
7 %34 € (a, -+ ., TPY)

which shows (3).

Now assume (3) and let us show (2). First, we show,

LEmmA 1.1. Let (R, m) be a local Noetherian ring of dimension.
d. Suppose for every x,, - --, &y in m such that height (x,, -+, x;) = 7,
there exist integers m,, +--, my; = 1 such that x™, .-, x74 form a d-
sequence. Then R, is Cohen-Macaulay for all p + m.

Proof. Let p be a minimal prime in R with R, not Cohen-
Macaulay. If height p = n, choose a,, ---, a, in p such that height
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(ay, +++, a;) = 1. Complete a, ---,a, to a system of parameters
@y, * vy Qpy Gpiyy -+, @g 0f R with ht(a, ---, a;) =i. Since p is the
minimal prime which is not Cohen-Macaulay, we may assume p is
associated to (a,, ---, @;) with ¢ <n. Let m, ---, my; be chosen so
that al, ---, a7¢ form a d-sequence. Then p is still associated to
am, ---, at. By [3],

(ar, -, ai) = ((a™, - -+, @) @) N (@l - -+, agd) .

Now since (a™, -- -, ar?d) is primary to m, this decomposition shows
that p is associated to ((a™™, ---, a?): al'if1). However alitep and
ai+t is not a zero divisor modulo ((af, ---, af): a%;1). This contra-
diction proves the lemma.

Now assume (3). By Lemma 1.1 R satisfies S;_,. (Note we may
not assume R satisfies SoiD)

Hence if w,, ---, @, are chosen so that height (x;, ---, ;) = 7 for
alll1 <1 £ d, to show HZ'(R) = 0 it is enough to show in this case
that if such an z,, ---, x;, are a d-sequence, then

SYZ (@, « -, %) —> SYZ (X, * -+, By, Ta)

is onto. For if we can show this, then it is clear that the map
syz (@, -+, af) — Hi'(R)

will be onto, where N is as in (3). This will show H:*(R) is finitely
generated; as HS'(R) satisfies the descending chain condition, this
will show (2).

So let (7, ---, ;) be a syzygy of «, ---, 2,_, 5. Then since

e €((®y, + ) Xan): ®7) = (@ =+, Tgo0): L)
we see

d—1
0 = r&s + D, 8, , and hence
J=1

(r;, — 8,2)% + =+ + (Pay — 841 X)Ly = 0.
Thus, (r, — 8,%4, =+, Ta_y — Sa_i%q, 0) is a syzygy of (x, ---, T4y, £3)-
Sinee x,, ---, 2;_; will form an R-sequence, this syzygy of (@, ---,
%4y, ¥3) will be trivial. Hence the image of (s, --+, 85, 7)) In
syz (x,, - -+, &) willmap onto (r,, -+, 7,) €syz (¥, ---, #3). This finishes

the proof of Theorem 1.1.

Finally, we wish to relate condition (2) of Theorem 1.1 to the
finiteness of R™. To this end, let (R, m) be a 2-dimensional Noetherian
local domain and let S = R™ = (M R, taken over all height one primes
p. If tisin S, then J = {r € R|rt € R} is not contained in any height
one prime and is thus primary to m. Hence if z, y is an s.o.p.,
z°¢cJ for some k. Then ¢t = re R and so t = »/x*. Thus J = (x*:7)
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is primary to m, and so y™e€J for some J which shows » e (2": y™)
for some m. Thus (see McAdam [7]), S = {»/a*|» € (x*: y™) some &, m}.
(The converse is easy to see; i.e., such 7/x* are indeed in R, for all
height one primes p.)

Now H:(R) in this case is the middle homology of

R— R, OR,— R,,— 0.
That is, if
{(v/af, sly®) | r/a" — s/y* = 0} = N
and M = {(v, v)|7 € R} then
H,(R) = N/M .

(Note r/x* + s/y* = 0 if and only if »y° + sa* = 0 since R is a domain.)

We map S onto H,(R) as follows: if te S, let g(t) = (¢, t) e N/M.
The discussion above shows te R, N R, and so the map g(_) makes
sense. This map is clearly onto since

S = {r/x*|r e (x": y™) for some k, m} .

The kernel is the set of £€ S such that (¢, ) € M; this is precisely if
te R.
We have therefore shown

H,(R)= S/|R .

Now if S is finitely generated over R, then H.(R) is also and
so it has finite length. Conversely, if H.(R) = S/R has finite length,
then S is obviously a finite R-module.
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