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HYPERGEOMETRIC SERIES WITH A
/>-ADIC VARIABLE

JACK DIAMOND

Hypergeometric series with a p-adic variable and ratios
of such series, as originally considered by B. Dwork, are
evaluated at x=l. Koblitz's conjecture on the limit of
ratios of partial sums of hypergeometric series in the super-
singular case is examined and a sufficient condition for the
validity of this conjecture is given.

Introduction* In studying the zeta function of a hypersurface,
B. Dwork was led to a study of ratios of p-adic hypergeometric
series. In [4] and [5] he showed that under certain conditions these
ratios had an analytic continuation beyond their disc of convergence.
N. Koblitz has recently shown, [6], that the value of the continua-
tion of F(a, 6; 1; x)/F(a', b' l x*) a t x = 1 is Γp(a)Γpφ)/Γp(a + 6),

where Γp is Morita's p-adic gamma function. Koblitz then con-
jectured that the ratio of the partial sums

F8+1(a, b; 1; Ϊ)/F.(a', b'\ 1; 1) ,

where

Fs(a,b;c;x) Σ # % ^

has a limit as s approaches infinity for all a and b except for a
special case in which the ratio is 0/0. In addition, he gave an
expected formula in terms of Γp.

In § 1 we will calculate the value of the continuation of
F(a, b; c; x)/F(a', 6'; c'; xp) at x — 1 for any appropriate α, b and c.
In § 2 we will consider the value at x = 1 of hypergeometric series
in which ceΩp — Zp and of certain cases of generalized hypergeo-
metric series. It will be seen, in particular, that Dixon's theorem
and Saalschϋtz's formula hold for p-adic variables. In the last
section we consider Koblitz's conjecture, generalized to allow for
other c and x. While we give some examples where the conjecture
is not quite true, the basic result is a condition on the size of
Fs(a\ &'; c'; 1) which is sufficient to prove Koblitz's conjecture and
its generalization to c Φ 1. The proof this theorem connects some
of the results of § 2, where c was not in Zp, with Dwork's work,
in which c e Zp.

1. Ratios of hypergeometric functions. If α, b and c are in
Zpf then the hypergeometric series
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F(a,b;c;x) =

does not converge at x = 1 unless the series terminates. While the
series does not usually have an analytic continuation to x = 1,
Dwork, in [4] and [5], has shown that the ratio

has an analytic continuation to x = 1 if certain conditions on α, 6
and c are satisfied, u' is defined as (u + iZ)/j>, where ?Z is the least
nonnegative integer =— u(modp). When c = 1 and the conditions
on a and b for Dwork?s theory are met, Koblitz, in [6], has shown
that

jr^ 6; i; i) = ΓψEM
p(a + 6)

Koblitz's result can be generalized to allow for c in Zp other
than 1. The result being the classical formula of Gauss, but with
the p-adic gamma function.

u{ί) is defined as (^( ί-1})', with uw = u. ΰ{i) is Ίϊ™ .

THEOREM 1.1. // a,b,ceZp and the following conditions are
satisfied for i = 0, 1,

( i ) | e ( Ί = l

( i i ) if c Φ l , t h e n α ( ί ) , b { i ) < c{ί)

(iii) I^Cα^δ^ c^; 1)| = 1

then

b ; c ; χS)

c or)

has an analytic continuation to x — 1 with the value

( 1 )
Γp(c - α ) ^ ^ - 6)

Conditions (i), (ii) and (iii) are the assumptions Dwork showed
to be sufficient for the analytic continuation to x = 1. In order to
evaluate ^^(α, b; c; 1), we need to replace (ii) and (iii) by a nearly
equivalent set of conditions.

THEOREM 1.2. Given that α, b,ceZp and \c{ί)\ = 1, £/&e assump-
tions a{ί\ b{i) ^ c ( ί ) and IF^, δ ( ί );c ( ί ); 1)| = 1 are equivalent to
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di + hi ^ ct

where ai9 bt and ct are the ίth digits in the p-adic expansions of
— a, — b and —c.

Proof. It is an immediate consequence of the definitions that
α(ί) = α*. Hence the conditions at + bt ^ ct are the same as α(ί) +

Suppose that ff(<), 6(i) ^ c( i ) and I J W ' , 6(i);c(ί); 1)| = 1 for all i.
To prove Theorem 1.2 it is sufficient to work with i — 0. The
given condition that |e' | = 1 implies that c + c ^ 0(modp2). Suppose
that 6 ^ ά. Then,

^(α, 6; c; 1) = Σ ^ ^ M f r (mod p) .

If a = c, t h e n 6 ^ 0 leads to t h e contradiction Fx{a9 b c l) = 0

(mod p). If α < c, let Λf = c - α. If α + 5" > c, t h e n 1 ^ ikf < 6.

This leads to a contradiction as follows.

F&, b; e; 1) = -L-D?(?f+M-\1 - xf)\x^ = 0 (mod̂ >) .

Hence, a + b ^ c.
Conversely, suppose α* + 6€ ^ ct. Again, it sufficient to work

with i = 0. Obviously, a, b ^ c. Let Jfef = c — α. Then 6 ^ M<^c
and α = c + M (mod j>). As before,

Fx(a, b; c; 1) = -±rDa»(x'+*-\l - xf)\z=1 (modp) .

Application of Leibnitz's formula for the Afth derivative shows that
jp\(α, b c l) & 0(modp).

Proof of Theorem 1.1. Suppose a,ceZp and c satisfies (i) of
Theorem 1.1. Let

S(α, c) = {b:beZp and α, 6, c satisfy (ii) and (iii)}

and suppose S(α, c) is not empty.
The right side of (1) is continuous in 6 on S(a9 c) and the nega-

tive integers in S(a, c) are dense in S(af c). Koblitz observed that
in Dwork's construction of ^~(a, b; 1; x) the mapping 6—>^"(α, b; 1; 1)
is the uniform limit of a sequence of continuous functions and
hence continuous. This is equally true for b —> ^"(α, 6; c; 1), so it
is sufficient to prove (1) for the negative integers in S(a9 c).

When b is a negative integer Gauss' classical formula for
F(a9 b c l) reduces to
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c (c - b — 1)

This is an identity for polynomials and is therefore valid for p-adic
hypergeometric series.

If one uses the functional equation of the p-adic gamma func-
tion and the result of Theorem 1.2 that a + b tί c, the expression

Γp(c)Γp(c - a - b )

Γp{c - a)Γp(c - b)

is seen to equal ^{a, b; c; 1).

2* Hypergeometric series at x — 1* In this section we will
look at hypergeometric series and certain generalized hypergeometric
series which have some of their parameters in Ωp — Zp. The follow-
ing elementary lemma will provide the convergence at x = 1 for
the series which will be considered.

LEMMA 2.1. Suppose u, veΩp.
( i ) // dist (u, Zp) < dist (v, Zp), then lim^oo (u)J(v)n = 0.
(ii) If dist (u, Zp) = dist (v, Zp) Φ 0, then

(u)J(v)n is bounded as n runs through the positive integers.

Furthermore, the convergence in (i) is uniform over all u, v at
fixed distances from Zp and the bound in (ii) depends only on the
distance of u from Zp.

First we will consider a JΓlm If suitable conditions are placed
on a,b,c then log.F(α, 6; c; 1) can be expressed in terms of the
p-adic log gamma function Gp in the same form as Gauss' formula.
This result has also been demonstrated by Koblitz in a different
manner.

THEOREM 2.2. // beZp and dist (α, Zp) < dist (c, Zp) then
log F(a, b; c; 1) = Gp{c) + Gp(c - a - b) - Gp(c - a) - Gp(c - 6).

Proof. When b is a negative integer we can apply Gauss'
formula and the identity Gp(x + 1) = Gp(x) + log x to obtain the
theorem.

When a and c are fixed, the series for F(a9 b; c; 1) converges
uniformly with respect to b in Zp. Hence the mapping 6->F(α, b; c; 1)
is continuous on Zp.

Before considering log F(a, b; c; 1) it is necessary to be sure
that F(a, b; c; 1) is never zero.

Suppose that F{a, b c ΐ) — 0. Then there a sequence of nega-
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tive integers, bίt approaching δ, with

lim F(a, bt\ c; 1) = 0 .
i—>oo

It follows from the formula for F(a, bt;c;ϊ) that

F(-a, δ<; c - α; 1) = 1/F(a, 6,; c; 1) .

Hence lim^ooFC — α, bt; c — α; 1) = ©o. This contradicts the fact that
F( — a, b c — a; 1) is finite.

Now we know both sides of the equation in Theorem 2.2 are
continuous functions of δ in Zp, so the theorem follows.

If b is a positive integer, .F(α, 6; c; 1) can be evaluated in closed
form. This is just an application of one of Gauss' formulas between
contiguous functions.

LEMMA 2.3. If b is a positive integer and dist (a, Zp) <
dist (c, Zp), then

F(a, b; c; 1) = (* - D-- •(* - 6)
(c - α - l) (c - a - 6)

There are classical formulas for the values of certain generalized
hypergeometric functions at x — 1. We will consider two such
results for a 3F2, Dixon's theorem and Saalschϋtz's formula. The
function 3F2(x) = 3F2(a, b, c; d, e; x) is called well-poised if

l+a=b+d=c+e.

THEOREM 2.4. If be Zp, dist (c, Zp) < dist (e, Zp) αraJ 3F2(ίc) is
well-poised, then zF2(x) converges for all x with \x\ ^ 1 αwd

( 2 ) 3F2(1) - 2^i(&, c; l/2(c + e + p ; P

2Fλ(b, c; c + e; 1)

Proof. If δ is a negative integer, (2) is a polynomial identity
which is a special case of Dixon's theorem for complex variables,
see [1].

In general, the p-adic convergence in (2) is a consequence of
Lemma 2.1. Lemma 2.1 also shows that if c and e are held con-
stant, 3F2(1) is a continuous function of b on Zp. Since we have
already shown the denominator of the right side of (2) does not
vanish, both sides are continuous and the theorem follows.

A 3F2 is said to be Saalschiitzian if a + b + c = d + e — 1. In
this case we have
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THEOREM 2.5. // BF2(x) is Saalschutzian, beZp and dist (α, Zp),
dist (c, Zp) < dist (e, Zp), then

F ( π h.r.Λ\ - J?i(β, b e; 1)r ^ α 0 c 1; — - — —3-r?^α, 0, c, 1 ; ,
JF&a, b e-c; 1)

Unlike Dixon's theorem, this result is not valid in general with
complex parameters. However, Saalschϋtz's theorem says that if b
is a negative integer the above formula holds. The usual continuity-
argument establishes the result in general for p-adic parameters.

In the first section we considered ratios of hypergeometric
series with a,b,ceZp. In the next section we will return to these
ratios and want to approximate c by a number not in Zp. The
following theorem generalizes Theorem 1.1 to the case in which
ctZv.

First we need to extend some definitions to allow for numbers
not in Zp. Γp{x) is defined for x e Zp, but Morita showed that there
is a power series for Γp(x) when ord ($) Ξ> 1. This series, together
with the equation for Γp(x + 1) shows that Γp(x) has a natural
extension to

= {x: x e Ωp and dist (α?, Zp) ^ 1/p} .

Let 2&i — {x:\x + i\S 1/p}. Γp is holomorphic on each £^ .
x 6 i^4, 0 ^ i ^ p — 1, we will let x = i and x' = (x + x)/p. Let

If

THEOREM 2.6. / / α, 6, c e ^ , 6 6

then

where

T{a, b; c; 1) = ε(α, 6, c)

' ' C ) "

dist (α, Zp) < dist (c, Zp),

- b) '

1 if c^

p(cf-a'-V) if

(c'-α'~6')/(c'-α') if

(c'-a'~b')lp{cr-a')(c'-V) if α, b>c .

^ α , 6

Proof. The conditions on α, 6, c guarantee the convergence of
both F(a, b; c; 1) and F(a\ b'\ c'\ 1). If a and c are held constant,
each side of the above equation is continuous in b on Zp. Hence it
is sufficient to verify the theorem when b is a negative integer.
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This is the same type of calculation made in Theorem 1.1 except
that there is no restriction that c ^> a + b.

3* Koblitz's conjecture* When Dwork showed that ^~(a, b c x)
had an analytic continuation for certain α, b, c, he wrote

J ^ ( α , b; c; x) = l i m Fs-π(^ b c x)

with

jPs(α, 6; c; x) = Σ , * a* ,
«=o (c)Λw!

and then showed the limit on the right gave the continuation for
x not near 0.

When Koblitz calculated ^~(a9 b; 1; 1), see [6], he conjectured
that Hindoo F8+1(a, b; 1; 1)/Fs(a', V; 1; 1) exists for all α, b e Zp9 provided
Fs{a', br; 1; 1) does not vanish, and that its value is

Γp(a)Γp(b) ί 1 if α + 6 < 2>
ε ( α ' 6 ) Γ,(α + 6) δ ( α ' b) = I-p(α + bY if α + 6 2> p.

While we will show that in certain cases this value for the
limit is not quite correct, it seems likely that in most cases the
conjecture is valid.

We will look at Koblitz's conjecture in a more general setting.
Namely, under what circumstances does

F(x) = F(a, b c x) = lim
Fs(a', bf; c'; xp)

exist, what is its value and what relation is there between the
values of this limit for different values of xΐ We will not answer
these questions in general here, but will consider a special case
with x in a neighborhood of 1 and then focus on x = 1.

THEOREM 3.1. If α, ceZp, c is not 0 or a negative integer and
b and a — c are nonnegative integers, then F(a, b c x) is a quotient
of holomorphic functions on each of the discs D(0, 1~) and D(l, 1~).

Proof. If x e Z>(0, 1~), then clearly

F(a, b; c; x) - F(a, b; c; x)/F(a', V; c'; xp) .

In order to consider x e D(l, 1~) we refer to a result of Cassou-
Nogues, [2]. She showed that if n->an can be extended to a uni-
formly differentiable mapping of Zp —> Zp9 then
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exists and defines a holomorphic function on D(l, 1~). The condition
that b and α — c are nonnegative integers allows us to apply
Cassou-Nogues' result separately to the numerator and denominator
after inserting a factor of p-s/p~s into the expression for F(a, b c x).

As an example, let's consider a ~ b = c = 1. Then, F(x) = 1 +
x + xv~ι for £ in both D(0, 1~) and D(l, 1~).

The situation is not so simple when a — 2 and 6 = c = 1. Then,
if £eZ>(0, 1-), F(a?) = (1 - O/(l - ίc)2, and if xeD(l, 1~),

= (1 - xη/(l - xf + (xp - l)/(α? - 1) log x .

When x = 1, the natural generalization of Koblitz's conjecture
is that if F$(a', 6'; c'f 1) does not become 0 for large s, JP(1) exists
and its value is given by the formulas in Theorem 2.6. In fact,
this conjecture is false in certain cases, but when we look deeper
into this problem we will see there are good reasons to expect it
to be true in many cases.

First, let's look at some examples. If ae Zp and b — c = 1, then

F.(α, 1; 1; 1) = (α + 1) -(a + ps - l)/(ps - 1)1 ,

and a short calculation shows F(a, 1; 1; 1) = pa'/a. Though F(l)
exists for all aeZp if b = c ~ 1, the value when a Φ 0 is the nega-
tive of the result conjectured by Koblitz.

A direct calculation can also be made when b — 2 and c — 1.
In this case F(l) exists for all aeZp and agrees with Koblitz's value
if a — 0 or 1, but is again off by a minus sign if a > 1.

A different type of behavior occurs when 6 = 1, c — 2 and α is
a positive integer greater than 2. Here we can use the idea in
Cassou-Nogues' work and find

This expression is discontinuous at each value of α.
We believe the cause of this complicated value of F(l) is that

6 > c. If c is 1, c — p — 1, so a and b never exceed c and diffi-
culties of this type probably do not occur.

For the remainder of this section we will take x = 1. One way
to look at Koblitz's conjecture and its generalization to c Φ 1 is that
we want to be able to reverse the limits in the expression

limlim J Ή Λ M T D
F.{a', V; 7'; 1)
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where 7 g Zp. While the examples already given show this cannot
always be done, we will show that if Fs{a\ δ'; c'; 1) does not decrease
too rapidly as s-̂ 00 and the digits in the p-adic expansion of — c
are not too small, then the limits may be reversed. In proving
this result we will need to know where lim?_>c F(a, δ; 7; 1) = 0. The
following theorem answers this question.

Let Z+ denote the positive integers, Z~ the negative integers,
Z+ = Z+ \J {0} and Z_ = Z~ U {0}.

THEOREM 3.2. If a,b, ce Zp, eg Z_ and 7 g Zp9 then

liraF(af δ; 7; 1) = 0

if and only if either
( i ) δ, c e Z+ with b ^ c and if also a e Z+, then a ^ c or
(ii) be Z~, a — ce Z+ and b < c — a or
(iii) (i) or (ii) holds with a and b reversed.

Proof. If (i) holds then Lemma 2.3 shows that the limit is 0.
If (ii) holds the same result follows from the formula that applies
when δ e Z~,

Now suppose that none of (i), (ii) or (iii) hold. Gauss7 relations
between contiguous hypergeometric series are formal power series
identities, so we can use them with p-adic numbers. By letting
x — 1 in one of these identities the equation

(7 - α)(τ - b)F(a, δ; 7 + 1; 1) - 7(7 - a ~ b)F(a, δ; 7; 1)

is obtained. This leads to

F(a, δ; 7 + m; 1) = .(7)»(7 ~ α ~ ^ F(a, δ; 7; 1)

and also

F(a, b; 7 - m; 1) = y ~ a ~~ m)»(7 ~ ~ m)m jp(α> ft; 7 ; i) .
(7 - m)Jrί - a -b - m)m

If a — c and b — eg Z+, there is no problem letting 7 —>c in the
formula for J (̂α, δ; 7 + m; 1). If, however, say, a — ceZ+, the
formula for F(a, δ; 7 — m; 1) will be used unless ceZ+,

If ceZ+ and α — ceZ+f then Lemma 2.3 (with a and δ inter-
changed and c replaced by 7) shows that unless (i) or (ii) holds,
lim^c F{a, δ; 7; 1) Φ 0.

Now assume that limr_c F(a, δ; 7; 1) = 0 and a — c, b — c g Z+.
Then,

lim F(a, δ; 7 + m; 1) = 0 for m = 0, 1, 2, .
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Let Bm be a disc around c + m with \F(a, b; 7; 1)| < 1 when
7 6 Bm. Let ^ be a finite covering of Zp chosen from the Bm.
Inspection of the series for F(a, b; 7; 1) as a function of 7 shows
that F(a, b; 7; 1) is an analytic element on each set of the form
dist (7, ZP) ^ δ(δ real), and, hence, by Krasner's Mittag-Leffler
theorem, must attain its maximum value at some 7 where
dist (7, Zp) = δ. When 7 is large, \\F(af b; 7; 1)1 = 1. This leads to
a contradiction if δ is chosen sufficiently small.

The above approach also works when a — c or b — c is in Z+,
so Theorem 3.2 is proved.

Note that if (ii) of Theorem 3.2 holds then an argument similar
to the proof of Theorem 1.2 shows that Fs{a\ &'; e'; 1) = 0 when
ps > b'. Hence, as Koblitz did for c = 1, we must exclude this
possibility in order to be able to define F(a, b; c; 1).

We can now give a sufficient condition for a generalization of
Koblitz's conjecture.

THEOREM 3.3. Suppose a,b,ce Zp, c g Z_, 7 e Ωp—Zp, F8(a', V\C'\1)Φ

0 when s is large, \imr^c F(a\ br; 7'; 1) Φ 0, | e ( ί ) | = 1 and if c Φ 1,

then c{i) > a{ί\ b(i) for i = 0, 1, 2, . . . . Then, l i n w p~sFs(a\ 6'; c'; 1) =

00 implies

u F.+1(a,b;c;ΐ) _ , b , Γp(c)Γp(c - a - b)

with

1 if c ^ a + b

' ' ~ p{c' -a' - 6') if c <a + b .

Proof, For simplicity, let

and

F s ( ^ F.{a'9 6'; ,'; 1) * e ^

with ^ = {α; dist (α, Zp) ^ 1/p}.
For γ e ^ and each positive integer s there is the identity

Fs(c) - g{p) - F.(c) - F.(7) + F.(y) - g{Ί) + g(y) - g(c) .

Since g and F s are continuous at c, the terms Fs(c) — FJti) and
g(e) are small if 7 is close enough to c. The problem now is
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to choose 7 near c so that F8(y) — g(γ) is small.
By Theorem 2.6, g(y) = F(a, b; j ; l)/F(a', &'; 7'; 1), so

(3) „ F(a\ V; 7'; l)Fs+1(a, b; 7; 1) - F(a, b; 7; l)F.(a'; b'; 7'; 1)
Fs{a\ V; 7'; ΐ)F(fl', b'; 7'; 1)

At this point we will deal just with c Φ 1. The case c = 1
will be treated afterwards. The basic result of Dwork's article,
[5], shows that if α, b,yeZp, \j{i)\ = 1 and 7 ( ί ) > α ( ί ), 6(ί) then

F(a\ V, c'\ xp)Fs+1(a, b; c; x)

= F(α, δ; c; x)Fs(α', 6'; c'; xp) (mod ps+1[[x]]) .

This is a formal power series congruence.
An examination of Dwork's proof shows that if we take 7 in

ϋ ^ , rather than just in Zp, the congruence is still valid provided
that 7(s) e ^ . (Only the proof of (1.3) of Lemma 1 of [4] uses
7 e Zp. The result, however, can be proved with just 7 e ^ . ) If

7 = c + 0, I θ) ^ 1/p, then 7' = c' + 0/p. Thus if 7 is sufficiently
close to c, 7 ( s ) e£^\ Furthermore, the conditions |c ( ί ) | = 1, c ( ί ) > ά ( ί ) ,
6(ΐ) carry over to 7 ( ί ) when 7 is close to c.

Since the series F(a, b; 7; 1) and F(a\ 6'; 7'; 1) converge when
7 ί Z p, Dwork's formal congruence, with x — 1 becomes a numerical
congruence. That is, if 7 is sufficiently close to c,

F(α', 6'; 7 ;; l)Fs+1(a, 6; 7; 1)

= F(a, b; 7; l)F.(α', 6'; 7'; 1) (mod ps+1) .

This gives sufficient control over the numerator in (3).
Since it is assumed that limr^c F(af9 6'; 7'; 1) Φ 0, there is some

positive M depending only on α, 6, c so that every neighborhood of
c contains a γ ί Z p such that \F(a', 6'; 7'; 1) | > M.

Now for F8{a\ b'; 7'; 1). A necessary condition for the formula-
tion of Theorem 3.3 is that Fs(a', δ'; c'\ 1) Φ 0 when s is large.
Hence, given s, when 7 is close enough to c,

We are finally ready to show (3) is small when s is sufficiently
large. First, by the hypothesis of the theorem, if we are given s
we can choose S such that \p~8Fs{a\ 6'; c'; 1)| > 1/ikfε for all s > S.
Then, for each s > S, if 7 is chosen close enough to c to satisfy
all of the conditions mentioned above and also chosen so \F(a', b'; 7'; 1)|>
M, the above estimates can be put together to show
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We can now conclude that

\ιm Fs(c) = g(c) .

When c — 1, the conditions c{ί) > ά{i), b{i) are unnecessarily
restrictive. In order to handle this case we refer to Dwork's first
paper, [4] involving the basic power series congruence used above.
In it he considered hypergeometric series of the form F(a, b l x).
We claim that Theorem 2 of [4], which establishes the congruence,
can be used if Y is taken close to c. The point here is thatw!/(τ)»
behaves as well as (a)Jn\ in Dwork's theory. If one looks at
Corollary 1 on page 36 of [4] it is clear that the only possible
difficulty in having things upside down is that (i) may fail. The
following lemma shows there is no problem when y is close to 1.

LEMMA 3.4. Let zeΩv, ord (z — 1) ̂  1. Then

\Az(n)/AA[n/p])\ = 1,

where Az{n) — (z)Jn\.

The proof is a simple induction.

The proof of Theorem 3.3 when c = 1 continues in the same
manner as when c Φ 1.

Theorem 1.2 and the case c = 1 of Theorem 3.3 suggest that
the conditions c{ί) > a{i\ bH) in Theorem 3.3 can be weakened to
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