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IDENTIFICATION SPACES AND UNIQUE UNIFORMITY

RiCHARD H. WARREN

Properties of T-identification spaces and uniform iden-
tification spaces are used to obtain necessary and sufficient
conditions for topological spaces to have a unique compatible
uniformity.

1. Introduction. The major results in this paper are five char-
acterizations of completely regular spaces with a unique compatible
uniformity. All prior results of this type assume the space to be
Tychonoff, i.e., completely regular and Hausdorff. In our approach
we introduce a uniform identification space and develop some of its
properties in order to demonstrate a 1 — 1 correspondence between
the family of compatible uniformities on a completely regular space
and the family of compatible uniformities on its T,-identification
space.

Section 2 contains background on T,-identification spaces and
several new features of such spaces which we use later in the paper.
In §3 we present the main aspects of uniform identification spaces
which lead to the order isomorphism in Theorem 38.5. In §4, which
contains the major theorem of the paper, we sketch the development
of five characterizations of Tychonoff spaces with a unique compatible
uniformity and then prove that each of these characterizations has
a parallel for completely regular spaces.

2. Ty-identification spaces. In 1936 M. H. Stone proved that
every topological space can be made into a T,-space by identifying
points with the same closure. A complete statement of Stone’s work,
with additional properties not included in Stone’s paper, can be found
in Theorem 14.2 in [8]. Briefly, given a topological space (X, .9 ),
define « ~y iff {2} = {y}. Then ~ is an equivalence relation on X
and the quotient space (Y, 7°) is a T,-space. For xze X, let D, be
the member of Y containing . Then f: X > Y by f(x) =D, is a
continuous, open and closed map onto Y.

Throughout this section (Y, 7°) will be the T;-identification space
of (X, 97), and D, and f will be as designated in the two preceding
sentences.

A topological space (X, .7 ) is said to be C-embedded (in the
terminology of [3], normally embedded) in the space (Z, %) if every
real-valued, continuous function on X has a continuous extension to
Z, possibly through a homeomorphism of (X, .7 ) onto a subspace
of (Z, z). Such a homeomorphism is called an embedding of (X, )
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into (Z, Zz). Also, (X, 97) is said to be densely embedded in (Z, %)
if there is an embedding f of (X, .Z7) into (Z, %) such that f(X)
is dense in Z.

THEOREM 2.1. (Y, 77) is densely embedded in (X, 7).

Proof. Let W be a subset of X containing exactly one element
of each equivalence class. Let g: W— Y by g(w) = D,. Clearly ¢
is 1 —1 and onto. To verify that g is continuous, let Ge€?". Then
f U@ e 7 and thus f(G)NW is open in W. Since fG)=
U{D,: D,eG}, it follows that ¢7%(G) = f(G)NW. To verify that
g~ is continuous, note that if He 7, then H = U{D,: x € H}. Hence
g HNW) = f(H)e 7"

To see that W= X, let x€X. Then xc D, for some we W.
Thus w is in every neighborhood of x. Therefore z¢c W.

COROLLARY 2.1. (Y, 77) is C-embedded in (X, 57).

Proof. Let g be the homeomorphism in the previous proof.
Given a real-valued, continuous map h on (Y, 7"), then hof is a
real-valued, continuous map on (X, .7 ) which extends % o g.

LEmMmA 2.1. If g: X — S ts continuous and (S, %) is a T,-space,
then g(x) = g(y) whenever y e D,.

Proof. Suppose y €D, and g(x) # g(y). Since (S, %) is T,, there
is G e % such that GN{g(x), g(¥)} is a singleton. Thus the open set
g~ %@) contains exactly one of the points z, ¥ which contradicts the
equivalence relation determining D,.

THEOREM 2.2. (Y, 77) has property (*) iff (X, .9) does.

(*) For every real-valued, continuous function ¢ defined on the
space, g~'({r: r = 1}) or g7'({r: » £ 0}) is compact.

Proof. Let g be a real-valued, continuous function defined on
X. As a result of Lemma 2.1, we may define a real-valued function
hon Y by h(D,) = g(x) for each D,€¢ Y. Hence g = hof. It is easy
to show that h is continuous and if C is a compact subset of Y,
then f*(C) is a compact subset of X. Therefore, if & has property
(*), then g does also.

The proof of the converse is straightforward.
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THEOREM 2.3. If X s a set, Y is a partition of X and 7 is
a Tytopology on Y, then there is a unique topology &~ on X such
that (Y, 77) is the Ty-identification space of (X, 7).

Proof. Since Y is a collection of disjoint subsets of X which
covers X, for each x € X there is exactly one D, € Y such that x € D,.
Let /1 X— Y by f(x) =D,. By Theorem 10.10 in [8] the family
< ={f"YB): Be7"} is the weakest topology on X such that f is
continuous. We shall show that (Y, 7°) is the T,-identification of
(X, 7).

Let 2, ye X. If ye D, and xz€ f~'(B) where Be 7, then since
f(B) = U{D,: D, e B}, it follows that ye f~'(B), i.e., each member
of D, is in every open subset of X which contains . On the other
hand, if y¢ D,, then D,ND, = @. Since (Y, 7°) is T,, there exists
Be 7" which contains D, or D,, but not both. Hence f~*(B) contains
2 or y, but not both. Therefore the members of Y are exactly the
classes which are determined by the equivalence relation on X where
v~y iff {x} = {y}.

Let Zz be the quotient topology on Y determined by f. Since
7z is the strongest topology on Y such that fis continuous, 7°C %.
If G e Z7, then f~(G) € =~ and there is Be 7 such that f~}(B) = fYG).
Sinee f is onto, B = f(f~(B)) = f(fYG)) = G.

To see that .o~ is unique, let & be a topology on X such that
(Y, 7°) is the T,-identification of (X, &°). Since .7 is the weakest
topology on X such that fis continuous, .o~ ©.%”. Suppose Se€ .\
Sinee f is an open map, f(S)e 7. So f(f(S))e.o and there is
te fA(FSH\S. Now teD, for some s€S. Thus s is a member of
a set in & not containing ¢, which contradicts the equivalence
relation ~.

THEOREM 2.4. Let (X, 9 ) be a subspace of (S, &) whose T
identification space is (T, 7). If (Y, 7") is C-embedded in (T, %),
then (X, 97) 1s C-embedded in (S, .&).

Proof. Let g be a continuous, real-valued function on X. As
a result of Lemma 2.1, we may define a real-valued function 2 on Y
by h(D,) = g(x) for each D,€ Y. Hence g = ho fand h is continuous.
By assumption & has a continuous extension £ to T. Let e S— T
be the quotient map e(s) = [s] where [s] is the equivalence class
containing s. Then koe is a continuous extension of g to S.

THEOREM 2.5. Let (Y, 7") be a dense subspace of the T,space
(T, ZZ). Then there is a topological space (S, &) such that (T, %)
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18 the Tidentification of (S, ) and (X, .9 ) is densely embedded
wm (S, ). Furthermore, if (X, 7 ) is C-embedded in (S, &), then
(Y, ) is C-embedded in (T, Z').

Proof. Let S= XU(T\Y), so without loss of generality we
may assume TNX = @. For each open subset A4 of T form A* =
U{D,: D,e ANY}UA\Y. Then {A*: AcZ} is a topology on S. As
usual, define x ~y for x, yc S iff {x}° = [y}°. Note that when x and
y are distinct points in S, then x ~y iff 2, yeX and 2 ~y in X.
Thus ~ determines the members of 7, with the identification of {t}
with ¢ whenever teT\Y. It is easy to show that the quotient
topology on T agrees with % and that (X, .97) is a dense subspace
of (S, &).

Let h be a real-valued, continuous function on Y. Then hof
is a real-valued, continuous function on X, and thus has a continuous
extension j to S. As a result of Lemma 2.1, we may define a real-
valued function ¥ on T by k(D,) = j(x) for D,e Y and k(¢) = j(t) for
teT\Y. Let e:S— T be the quotient map. Then j=koe, k is
continuous and k|, = h.

Let C*(X) be the set of bounded, real-valued, continuous func-
tions on X and let C*(X) have the topology of uniform convergence.
By A(X) we denote the subset of C*(X) consisting of those func-
tions which are constant on the complement of some compact set in
(X, 7).

THEOREM 2.6. Let (Y, 7) be the T-identification space of (X, .7 ).
Then A(X) is dense in C*(X) 1ff A(Y) s dense in C*(Y).

Proof. (=) Let geC*(X) and ¢ > 0. As a result of Lemma
2.1, we may define a real-valued function & on Y by A(D,) = g(x)
for each D,€ Y. Then g =hofand heC*(Y). Since A(Y) is dense
in C*(Y), there is a continuous function ¥ which is constant on the
complement of a compact set C in Y and satisfies |k(D,) — h(D,)| < ¢
for each D, Y. Then f~'(C) is compact in X and ko f is constant
on the complement of f~*(C). Also |k(f(x)) — g(x)| < & for each x ¢ X.

(=) Let heC*(Y) and ¢ > 0. Then hofeC*(X). Since A(X)
is dense in C*(X), there is a continuous function g which is constant
on the complement of a compact set K in X and satisfies |h(f(x)) —
g(x)| < & for each xe€ X. As a result of Lemma 2.1, we may define
a real-valued function k on Y by k(D,) = g(x) for each D,e Y. Then
g =kof and k is constant on the complement of the compact set
f(K) in Y. Also |h(D,) — k(D,)| < ¢ for each D, e X.
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3. Uniform identification spaces. For the definitions of a uni-
form space and a proximity space, see [8]. Recall that if U, VC
X x X, then Uo V = {(x, y): (x, t)e U and (¢, y) € V for some £} and
Ulx) = {y: (x, y) e U}. If (X, 5#) is a uniform space and Z is a set
with h: X — Z a map onto Z, then the quotient uniformity induced
on Z by h is {AC Z X Z: there is H € 57 such that (x, y) € H implies
(h(zx), h(y)) € A}, which is the largest uniformity on Z such that % is
uniformly continuous, see [9, p. 255]. It is easily verified that the
quotient uniformity is {g(H): He 52’} where g(H) = {(h(a), h(b)):
(a, b) e H}.

Let (X, &7°) be a uniform space. For z, ye X, define x ~ y iff
y e H(x) for each He 5%, Then ~ is an equivalence relation on X.
Throughout this section Y is the set of equivalence classes, D, is
the member of Y containing z, f: X — Y by f(x) = D, and 5% is
the quotient uniformity on Y induced by f. Also, (Y, .9%") is called
the uniform identification space of (X, 27).

LemMA 3.1. (Y, 2¥7) is a separated uniform space.

Proof. Suppose D, and D, are distinct equivalence classes. Then
there exists He 22 such that H(x)NH(y) = @. Since D,C H(y),
Hx)ND, = @. Choose F'e¢27 such that Fo FC H. If there exists
a€D, and be D, such that (a, b) € F, then (x, a) e F, since x€ D, C
F(x). Hence (x, b)€ F'o F, and thus b € H(x) which is a contradiction.
We conclude that (D, X D)NF = @. Therefore (D,, D,) ¢ g(F)e 2%

COROLLARY 3.1. If (X, &7) is a uniform space, then N{H: He
o}y = U{D, X D,: x € X}.

Proof. Using F in the proof of Lemma 3.1, it follows that
N{H: He 57} c U{D, X D,: x € X}. The other containment is a result
of D,c H(x) for each He 57

THEOREM 3.1. Let (X, 52) be a uniform space, let 0 be the
proximity on X induced by 52 and let o be the proximity om Y
induced by 9. Then the following diagram commutes.

f

X, ) ———— (Y, %)
1 proximity l
(X, 9) identification (¥, a)

Proof. In (X, d), the equivalence classes are determined by the
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relation x ~ y iff xoy [9, p. 276]. Since xdy iff y e H(x) for each
Hesw iff x ~ vy, it follows that the same members are determined
for Y by either path. Since the proximity induced by a quotient
uniformity is the quotient proximity of the induced proximity [9,
p. 276], the diagram commutes.

COROLLARY 8.2. In addition, let .7 be the topology on X tnduced
by 6 and let 7 be the topology on Y induced by «. Then the fol-
lowing diagram commutes.

(X, &¥) (Y, %)
R proximity
(X, 9) identification (Y, a)
X, ) i (Y, 7)

identification

Proof. The topology induced by a uniformity is the induced
topology of the induced proximity [8, Theorem 21.15]. Starting with
(X, 0), it is known that the paths are equivalent [9, p. 276].

LEMMA 8.2. Let (X, 57) be a uniform space and let He o7
Then there is E € 57 such that EC H and E = U{D,XxD,: (x, y) € E}.

Proof. Find symmetric G € 5~ such that Go G C H. Note that
GcGoG. Then find Fes7 such that Fo FC G. If (7, s)¢ H, then
H(»)n{s} = @. If there exists tecG(r)NG(s), then (r,t) and (s, ?)
are in G. Since G is symmetric, (7, s) € G o G, which is a contradic-
tion. Thus G(r)NG(S) = @. As in the proof of Lemma 3.1 we can
conclude that (D, x D)NF = @. Set E= U{D, x D,: (x,y)eF}.
Since (z, y)e D, x D,, if follows that FC E and hence, Eczo~. If
(a, b) € E, then (D, x D,)NF # @, and from the above work (a, b) € H.
Clearly, £ = U{D, X D,: (%, y) € E}.

THEOREM 3.2. (Y, %) is uniformly isomorphic to a uniform
subspace of (X, 7).

Proof. Let S be a subset of X consisting of exactly one point



IDENTIFICATION SPACES AND UNIQUE UNIFORMITY 489

from each equivalence class in Y. The relative uniformity on S is
{HN(S x S): He 5#}. Consider the map d: S— Y by d(s) = D,.
Clearly, d is 1 — 1 and onto. To verify that d is uniformly con-
tinuous, let Ke .27 Then there is H e .2~ such that f(H) = K. If
(@, ¥) e HN(S x 8), then (d(x), d(y)) = (f(®), f()) e f(H). To verify
that d-' is uniformly continuous, let H ¢ 57 and consider EN(S x S)
where E is the entourage in 5# guaranteed by Lemma 8.2. If
(D,, D)) e f(E) which is in 9, then (d7(D,), d"'(D,)e ffE)HN
Sx8S)y=FEnES x SYcHN(S x S).

THEOREM 3.8. Let (Y, 5¢7) be the uniform identification space
of (X, 7). Then & = {g(K): Ke %} is a base for 57, where
97(K) = {(a, b) e X x X: (f(a), f(b)) € K}.

Proof. By Theorem 20.21 in [8], # is a subbase for the weakest
uniformity & on X such that f is uniformly continuous. Thus
£ c sz To verify that % is a base, note that g7%(K) = U{D,x D,:
(D,, D)ye K}and D, x D, = D, x D, or (D, x D,)N(D, x D,) = @&, from
which it follows that ¢g-(K)Ng (L) = g (KNL). If Hes7 then
let Ee 57 be the entourage guaranteed by Lemma 3.2. Therefore
E = g7(g(F)) and g(E)ec.%. Hence srC &.

THEOREM 3.4. Let X be a set, let Y be a partition of X and let
22 be a separated uniformity on Y. Then there is a uniformity
& on X such that (Y, 5¢7) is the uniform identification space of
(X, 27).

Proof. Since Y is a collection of disjoint subsets of X which
covers X, for each x ¢ X there is exactly one member D, of Y such
that xe D,. Let f: X —» Y by f(z) = D,. By Theorem 20.21 in [8],
the family % = {g7Y(K): Ke .9} is a subbase for the weakest uni-
formity 5# on X such that f is uniformly continuous. Here g~%(K) =
{(a, D) e X x X: (f(a), f(b)) e K}. We shall show that (Y, 2¢7) is the
uniform identification space of (X, 7).

If ye D, and Ke 2%, then (D,, D,)e K and hence y < g '(K)(x).
If y¢ D,, then since .9 is separated, there is some K,€ .2 such
that (D,, D,) ¢ K,. Thus y ¢ g(K,)(x). We conclude that the members
of Y are exactly the classes which are determined by the equivalence
relation on X where x ~ y iff y € H(x) for each He 5~

Let <& be the quotient uniformity on Y induced by f. Since
f is uniformly continuous with respect to %" and &, 27 c & On
the other hand, if L e ¢, then there is He 5~ such that h(H) = L,
where h(H) = {(f(»), f(8): (r, s)e H}. Since & 1is a base for 57
there is Fe.# such that Fc H. Then there is K¢ . 9% such that
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9 (K)=F. Thus KCL and therefore Le 5~

THEOREM 3.5. Let (X, .9 ) be a topological space and let (Y, 77)
be its Ty-identification space. Let O be the family of all uniformities
on X compatible with & and let 2 be the family of all unifor-
mities on Y compatible with 7. Then © and 2 are order isomorphic.

Proof. By Corollary 3.2 we may define h: ® - 2 by h(5¥) is
the identification uniformity of 5% As a result of Theorem 3.3, h
is 1 —1. By Theorem 3.4 in conjunction with Theorem 2.8 and
Corollary 3.2, h is onto. Since h(S5#°) is a quotient uniformity, it
follows that h preserves order. Noting how A~(%") is formed in
the proof of Theorem 3.4 allows us to conclude that hA~' preserves
order.

It is noted that Theorem 3.5 can also be proved from Theorem
2.1 in [7].

4. Unique compatible uniformity and proximity. Early in
the study of uniform spaces it was observed that a compact, com-
pletely regular topological space admits exactly one compatible uni-
formity [8, Theorem 20.38]. Using normally separated sets, Doss
[2] characterized Tychonoff spaces which have exactly one compatible
uniformity. Later Gal [3] gave two additional characterizations of
Tychonoff spaces with this phenomenon. Newns [6] has given a
characterization based on the structure of the uniformity. Doss’
work is extended to completely regular spaces in Theorem 4.1(d),
G4l’s work in Theorem 4.1(e) and (f), and Newns’ work in Theorem
4.1(b).

In Corollary 2.2 of [4] it is shown that a Tychonoff space has
a unique compatible proximity iff it has a unique compatible uni-
formity. Note that [4] requires a Hausdorff assumption since Corol-
lary 2.2 is based upon the Stone-Cech and Smirnov compactifications.
This result is also in [9, p. 277]. We prove in the next theorem
that this result is valid without a Hausdorff assumption.

THEOREM 4.1. Let (X, .7 ) be a completely regular topological
space. Then the following are equivalent:

(a) There is a unique uniformity on X compatible with 7.

(b) There is a unique totally bounded wuniformity on X com-
patible with 7.

(¢) There is a unique proximity on X compatible with 7.

(d) (X, 77) has the property that for every real-valued, con-
tinuous function f defined on X, {x: f(x) =1} or {x: f(x) <0} s
compact.
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(e) (X,.97) is C-embedded in every completely regular space
containing (X, &) as a dense subspace.
() A(X) is dense in C*(X).

Proof. Let (Y, 7") be the T,-identification space of (X, 7).

(b) = (¢). The implications follow from Theorem 21.28 in [8].

(a) = (e). Since .9~ and 7" are lattice isomorphic, it follows
from [1] that the family of proximities on X compatible with o
is isomorphic to the family of proximities on Y compatible with 7-
Hence (b) is equivalent to the existence of a unique proximity on Y
compatible with 7. From [4, Corollary 2.2] this is equivalent to
the existence of a unique uniformity on Y compatible with ¥ By
Theorem 3.5 this last statement is equivalent to (a).

(a) = (d). Couple Theorems 3.5 and 2.2 with Doss’ Theorem in
[2].

(a) = (e). Let X be a dense subspace of the completely regular
space S whose T,-identification space is 7. Denote the equivalence
classes of S by [s] where se€S. If se€ X, then we identify the equi-
valence class D, of X with [s] of S. Thus Y is densely embedded
in T. It follows from Theorem 3.5 that (a) is equivalent to ¥ having
a unique uniformity, which by Gal’s Theorem (v) in [3] implies that
Y is C-embedded in 7, and by Theorem 2.4 X is C-embedded in S.
On the other hand, (d) implies by Theorem 2.5 that Y is C-embedded
in every Tychonoff space containing Y as a dense subspace, which
by Gal’s Theorem (v) in [3], is equivalent to Y having a unique
uniformity.

(a) = (f). Couple Theorems 3.5 and 2.6 with Gal’s Theorem (iv)
in [3].

Each of the following three statements is equivalent to Theorem
4.1(d). In the terminology of [2], of any two normally separable
sets in X, at least one is compact. In the terminology of [5], if A
and B are functionally distinguishable subsets of X, then A4 or B
is compact. In the terminology of [9], of any two disjoint zero-sets
in X, at least one is compact.

Comparing Theorem 4.1(d) with Theorem 7.20 in [5], it is noted
that locally compact can be deleted from the statement of Theorem
7.20.
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