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POINTWISE DOMINATION OF MATRICES
AND COMPARISON OF ^ NORMS

BARRY SIMON

Let p be a real number in [1, oo) which is not an even
integer. Let N — 2[p/2] + 5. We give examples of N X N
matrices A and B, so that | ai5| ίg btJ but Tr &A*A]p/i) >
Tr

Let A and B be N x N matrices with

(1) K i ^ .

If we define the p norm of a matrix by

(2) IIA ||p = Tr ([A*A]P/2)1/P

then it is trivial that, if p is an even integer, then

(3)

when (1) holds. For one need only write out the trace explicitly in
terms of matrix elements. In a more general context, we conjec-
tured in [5] that (1) implies (3) whenever p ^ 2. The attractiveness
of this conjecture is shown by the fact that I know of at least five
people other than myself who have worked on proving it.

It was thus quite surprising that Peller [3] announced that (3)
fails for some infinite matrices whenever p is not an even integer.
In correspondence, Peller described his counterexample which relies
on his beautiful but elaborate theory of ^ Hankel operators (4) and
on a paper of Boas (2). It follows from Peller's example that (3)
must fail for some finite N but it is not clear for which N. Our
purpose here is to give explicit N and to avoid the complications of
Peller's ^-Hankel theory.

The idea of the construction is very simple. Boas [2] constructed

polynomials f(z), g(z) with [\f(eiΘ)\pdθ > \\g(eie)\pdθ even though the

coefficients, an, of /and coefficients, bn, of g obey \an\ ^ bn. a and b
should be thought of as Fourier coefficients of f(eiθ) and g(eiθ). It is
obvious that for sufficiently large N, Σf-11 \fiflii$N)\9 ^ ΣiU1 \9(βi59*)\
where ΘN = 2π/N. Again / and g should be viewed as functions on
ZN and the coefficients of the polynomial (if N is larger than the
degrees) as ϋΓ^-Fourier components. But the functions on ZN are
naturally imbedded in N x N matrices in such a way ||A||ϊ is just
Σ 1/(0*^)1* a n d s o tihat the order (1) is equivalent to the order on
Fourier coefficients.
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To be explicit, given N and c0, , cN_λ let A be the matrix

zN = exip(iθN) and let φi be the vector with components (1, zη

Nf z2/, ,

*Ψ-1)S); 3 = 0, — -, N — 1 and observe that

( 4 )

where

( 5 )

with

( 6 )

j = fiJDΨs

fU)=

isWe use (6) to define X* for any integer / although, of course,
periodic in / with period N.

Of course, we have just exploited the fact that if σ is the matrix
which cyclicity permutes the coordinates by one component, then
Aσ — σA (indeed A = X cPσ

k) and since — σN = 1, σ is naturally
diagonalized in terms of the group Z^. The X's are just the charac-
ters of ZN. (In Physicist's language, since A has periodic boundary
conditions, one diagonalizes it in momentum space.)

Since the φά are orthogonal vectors, A is a normal operator.
For such an operator | |A||J is just the sum of the pth powers of
the eigenvalues, i.e.,

( 7 )

(8a)

(8b)

We take

N =

k =

2k + \ —

p] +2

'] + 5 .

Motivated by Boas' example, we choose

V ^ / °0 — x J °1 — ' > °& — Λ j l k J ^^ — u ί i J -

where r is sufficiently small and

1 , fc
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= ( j , _ iχJL, _ 2 ) . . . ( !*do)

Notice that since p is not an even integer and since p/2 + 1 < & <
p/2 4- 2, we have that λ < 0. Let ds — \cό\ and let B the correspond-
ing matrix so (1) certainly holds.

We compute \\A\\l using (7) and the binomial theorem which is
certainly legitimate if r is sufficient small

ι/ωr =

where
fc-1

2 f c - l

= Σ

— ' Λ2ϋ

λ
P/2

+ 1)

-A;

1

k \ 2 /

Because JV= 2k + 1, the characters Zo, , Z2fc are orthogonal so
squaring and summing:

— — λ .

1=0 \ 3

The formula for [|-B||J is identical, except λ is replaced by |λ|
But λ is exactly chosen so that

ΐMTH
Thus, for r small, || A\\p > \\B\\P.

It was necessary to take N = 2Jc + 1 rather than just k + 1 to
avoid cross terms between the r0 and r^ {/ ^ 2k) factors which have
the wrong sign and only vanish because Zo and 1^ are orthogonal
for /<, 2k.

We close this paper with a series of remarks:
(1) Peller constructs infinite matrices A, B which are matrices

of compact operators on 4 with (1) holding, Be^v and A<ί^v. It
is easy to get such operators from our examples as follows: normalize
A, B so that \\A\\P > 1 > ||JB||P ^ \\B\\ ^ ||A||. Let us view 4 as the
tensor algebra over CN, i.e., as C 0 CN ® CN2 ® and let Γ(A) =
1 0 A 0 (A (x) A) 0 . Then | Γ(A)<y | ^ | Γ{B)iό \ and Γ(A), Γ(B) are
compact, Γ(B)e^ but
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(2) Given any measure space, (M, μ) with L2(M, μ) infinite di-
mensional, we cannot have that \\A\\P <^ o\\B\\p for some fixed c and
all A, B with \{Af)(m)\ £ (J5|/|)(m). For one can always imbed CN

into L2(M, μ) in a way preserving \\A\\V norms and order (map
(au * , α j into Σ^</ι(w) with /< multiples of characteristic func-
tions of disjoint sets). If HAH^cH^H, held for L\M) it would
hold for any CN. But by taking tensor products of our example one
can arrange that || A||p/|| J5||p is arbitrarily large. [It is interesting
that this tensor product/operator theory version of Katznelson's re-
mark (quoted in Bachelis [1]) is more natural than the function
theoretic construction.]

(3) Let N(p) be the smallest N for which there exist matrices
for which (1) holds but (3) fails. Clearly we have shown

N(p) £

but equality is most unlikely for any p. Indeed for 1 <J p < 2, we
have N(p) = 2 since if

- G - ί ) - C D
then | |B | | ; = 2P, \\A\\ζ = 2(v/2)2) > ||J?||J if p < 2. Moreover, we owe
to S. Friedland the following simple argument showing that N(p) ^ 3
if p > 2. If C, D are positive matrices with

(11) \ciS\^dis

then with μ$(-) = singular values, we trivially have

μ^C) + μ2(C) ^ μλ(D) + μ2(D)

(since for 2 x 2 positive matrices μλ(C) + μ%{C) = Tr (C)). By general
rearrangement inequalities [5]

Tr (Cp) ^ Tr (Dp)

for any 1 ^ p ^ oo, Given A, B obeying (1) and applying this re-
mark to C = A*A, D - £ * £ , we see that (3) holds for any p ^ 2 if
iSΓ— 2. It would be interesting to know the precise value of N(p).
Two natural guesses are [p/2] + 1 and 2[p/2].

It is a pleasure to thank V. Peller for most valuable correspond-
ence and S. Friedland for useful discussions.
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