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SECOND NOTE ON ARTIN’S SOLUTION OF HILBERT’S
17TH PROBLEM. ORDER SPACES

D. W. DuBoIs

We consider real varieties in K*/k, where K/k is maximal-
ly ordered and % is dense in K. Our principal results are:

ToeorREM 1. Assume V is irreducible. A. The closure
of the set of all simple points equals the set of all central
points —z€ V is central if some order of k(V)/k contains
every function which is positive at z. B. If f+r is totally
positive in k(V)/k for every positive » in %, then f itself
is totally positive.

THEQREM 2. For a semi-algebraic set S in K* defined by
polynomial relations b;(x) =0, g;(z) >0 1 =71,7 = m), define
B= (b, "",by, G={gy,--+,9.}. Then every irreducible
component of V,(B) contains central points on S if and only
if (*) for 0<p;ek, g,,€G, a;€k[X], X;p:I1;9: ai€ B
implies every a;€*VB.

For an ordered ground field © and a formally real extension field
F/k, the set 2(F/k) of all orders of F/k admits two natural topologies.
The standard topology, which originates in Harrison’s 1966 Memoir
[15], has basic open set Q2(F), while the weak topology uses basic
open sets Q,(FE), where E ranges in each case over the finite sub-
sets of F' = F\{0}, and

QE) = {Pe QFJk); P> E},
2y(E) = {PeQAF[k); U,D K},
Up=PnB\J».

An order P is the positive cone of an ordering while B, and J,,
respectively, denote the valuation ring of all elements finite over k,
and the maximal ideal of all infinitesimal elements. U, represents the
group of all positive units in B,. The real place associated with P is
denoted h,. The order space Q(F'/k) is applied here in a setting which
dates back to Abraham Robinson’s 1955-1956 papers on ordered fields
and definite functions [23], [24]. An existence theorem from Lang’s
1953 paper [18] is one of our most important tools. We consider
the real variety V = 7%(A) of all zeros in K*, K being a real closed
ordered extension of %k, of the real prime ideal A in the polynomial
ring k[X]=k[X,, ---, X,] in n variables. Thus the ring k[x] =k[X]/A
is a formally real domain over k and its field of quotients Z(x) is a
formally real field over k. By means of the reelprimnullstellensatz,
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358 D. W. DUBOIS

i.e., any polynomial which vanishes all over V must belong to A, of
which we give a new and easy proof!, we know that k(x) is equal
to &(V), the function field of V. The paper is devoted mostly to
this field F/k = k(V)/k = k(x)/k. K is always assumed to be real
closed. For any ordered field %, its real closure is written k.

For any subset H of V we define Q(H) as the subset of 2(F/k)
which consists of all those orders which have a center on H, and
we say that z is a center of the order P provided for all f(z) in F,
if f(z) is positive, then f(x) belongs to P. The concept of center is
basic. The most important cases of H are V itself, the set V, of
all centers on V of orders (central points), the set V° of all zero-
dimensional points of V, the strong closure V, of the set of all
simple points on V, and semi-algebraic sets of the form:

F(RE)=1{zeV;e(z) >0 for all 1T},

where E = {e;; i€ T} is an indexed of F, T being finite. Assuming
that % is real closed, Robinson (loc. cit.) proved that the set =2 (24 (E))
of all members of F which are positive definite over S#(¥) is in-
cluded in o(E):

O(E) {25 €.(@)fi=) é,c B, fieF},
=P lle@; UcCT,0<pek}.

Jevu
This generalizes Artin’s solution to Hilbert’s 17th problem. For a
subset L of V, L, is the set of all central points on L, & (L) is the
set of all members of F' which are positive definite over L, (L)
is the intersection of all orders which have center on L. Also,
P (F[k) is the intersection of all orders in 2(F/k). We prove, for
finite E in F', that

D (o (B)) = (7 (B)) = o(E) ,

which generalizes and strengthens Robinson’s generalization. We do
not assume % to be real closed. It is shown that Q(S#(F)) is an
(AC/k) family of orders and that F/k is an Archimedes-Clifford, or
(A — C) field — for any formally real extension M/k a family 4 in
Q(MJk) is (AC/k) provided for all f in M, if f+ p belongs to the
intersection N4 of all orders in 4 for every strictly positive p in %,
then f itself belongs to N 4; the field M/k is (A — C) provided 2(M/k)
is an (AC/k) family.

In §3 we examine centering in more detail. It is shown that
Q(V) is (strongly) dense in Q(F/k). The natural relation

! This is due to T. Y. Lam, The Theory of Ordered Fields, Preprint, 1979.
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Cen, = {(P,2)e2(V) X V; z is a center of P}

is actually a map in case k is dense in K it is strongly continuous
while its contraction 2(V) — V, is weakly open. Assuming again
that % is dense in K we show equality of the sets V,, V, and V..
The first two are defined above while V, is the set of all points on
V whose every (strong) neighborhood on V is Zariski-dense in V.
Inclusion of V, in V, (i.e., every limit point of simple points is the
center of an order) is proved in [10], §2; this same section includes
a proof of inclusion of V, in V, and of V, in V,. Inclusion of &= (V)
in &2(V) results from a standard, easy modification of the proof in
the same section that &2 (V) is a subset of P (F/k) — cf. [13].

The case of an Archimedean ground field k¥ is taken up in §4.
Then for our H = 57 (E), the set “(H) is an (AC) cone in the
sense of [6] and [9]—see also Becker [3]. The subset 2(V) is open.
The structure theory of the paper just quoted is applicable, but now
we work with the space 2°(Fk), defined by

27 (Flk) = Q(F k)]~
“P~ @” means “hp, = hy”,

furnished with the quotient topology; .2°(F/k) is defined thus for
any formally real FJ/k, any ordered k. In the Archimedean case
we have

hef = sup{feQ; f —reP},

with + - assigned as value in each of the infinity-producing cases.
Theorems of this section reveal numerous connections between the
abstract ordered ground field results of the first three sections and
the theorems of Kadison, Becker and the present author for the case
of Archimedean ground field.

Section 5 treats fields having the (A — C), or Archimedes-Clifford
property. The class of all such fields is so large as to include every
finite algebraic extension of a pure transcendental extension of %
(see Theorem 9).

Semi-algebraic sets, i.e., solution sets of finite systems of rela-
tions of the form f;(X) =0 and g, (X) > 0, which need not lie on
any irreducible variety, are the subject of §6. We prove a criterion
for existence of central points in a semi-algebraic set. The condi-
tion, which is called compatibility of the set G = {9,(X)} with the
ideal generated by the f;(X), is a generalization of the old result
known to Baer, Artin and Robinson, that ¢(G@) is equal to FP(SZ(R)).

I wish to thank Dr. Pedro Abellanas of the Universidad Com-
plutense de Madrid for giving me the opportunity to deliver lectures
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there in early 1979, and for many other favors. Thanks also to Don
Pedro’s assistant Dr. Récio for helpful suggestions which led to very
essential improvements in my original formulation of the compati-
bility eriterion. Récio has developed independent criteria and found
a new reelnullstellensatz for semi-algebraic sets. I wish finally to
thank Dr. Récio, Victor Espino and Carlos Andradas, all students
of Don Pedro, for the wonderful Spanish hospitality which they
showed to my wife and me.

Historical note. An excellent account of the history of Hilbert’s
17th problem is given by Pfister [19]. Ribenboim [21] gives a lively
account of the reelnullstellensatz in its various forms and of the
early (1969) development of the subject of real commutative algebra.

2. Definiteness and the reelprimnullstellensatz. The reelnull-
stellensatz for real prime ideals, and Robinson’s generalizations, are
given very brief proofs. Then we prove some generalizations and
strengthened forms of Robinson’s theorems. By an application of
Lang’s Theorem 8 we prove our chief tool theorem, the algebraic
order theorem. As usual, ¥ denotes the real closure of k.

THEOREM 1. The reelprimnullstellensatz ([12]; cf. [8], [21], [22]).
Assume A 13 a real prime ideal in k[X]. Then for f(X) in k[X], f(x)
vanishes at every point of Zi(A) if and only if f(X) belongs to A.
Hence, 7 (7i(A)) = A and (V) = k(x).

Proof. Assume f(X)¢ A. From reality of A we have reality of
k(x), and accordingly choose an order P of Fk(x)/k. Since f(x) =0
holds, we may as well assume f(x) is strictly positive by P. As
allowed by Lang’s Theorem 8, which is stated below, we select an
algebraic real place b on k(x)/k which is finite at every x,, and posi-
tive at f(x). Then z = h(x) = (hx,, -- -, hz,) lies on 73(A) and f(z) =
f(hx) = hf(x) is positive. Hence, f(X) is not in #(7i(4)). This
establishes the nontrivial inclusion of the assertion.

Lang’s Theorem 8 (slightly gemeralized), [18]. Along with the
hypotheses of Theorem 1, assume that E is a finite subset of F and
that P is an order of F which contains FE. Then there exists an
algebraic real place on k(x)/k which is finite and positive at every
member of E and which is finite at every x,.

Note. Although Lang assumes that % is real closed, the gener-
alized form stated above is an easy extension of his Theorem 8. See
Elman, Lam and Wadsworth [14], §4 bis.

The set of all zero-dimensional points on V is denoted by V°;
it is equal to the set 73(4). The Krull place associated with an
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order P is denoted h,. The order P is rational, or algebraic, ac-
cording as h, is rational, or algebraic, and dim P is defined as dim £,
rank P is equal to rank #,.

For our purposes the following corollary to Lang’s Theorem 8
has a particularly useful form.

Algebraic order theorem. Keeping the hypotheses of Lang’s
Theorem 8, there exists an algebraic order P of k(x)/k which is finite
on every x; and centered on 57 (H).

Proof. Using Lang’s Theorem 8 we select a real algebraic place
h on F/k which is finite on the «;, and positive over E. By means
of Krull’s construction we obtain an order P which is compatible
with % (i.e., fe Up if and only if hf > 0). Then the point z = h(x)
is an algebraic center of P and it lies on S#°(K). Moreover, since
the residual field of & is Archimedean over %k, h and h, are isomor-
phic with each other. Hence P is algebraic.

THEOREM 2. Assume E is a finite subset of F(F =k(V)), and that
kc K, K being real closed. Then (S is the closure of S)

A, 2,(E)N V) Q7 (E)) Cc (o7 (R) = QE) = 2y(H).

A'. If Klk is Archimedean then 2,(E) N (V) = Q(S#(E)).

B. oE)=AP(FE)=2(FE)NVH = N24E). This in-

cludes Robinson’s theorem.
C. 2(V)=22Uk(V)) =202(V).
D. A(V)=2(V))=FPKV)) =o{1}).

Proof. First we observe that C is a consequence of A by taking
E = {1}. Similarly, D follows from B and C.

The last equality in A is left to the reader. For the first in-
clusion of A, assume P is in 2,(F) with center at z on V, which
implies that Fc U,. Hence z€ 57 (F), and Pe 2(s~(E)). Next we
prove the reverse inclusion, assuming K/k is Archimedean, which
will complete the proof of A’. Now if P is centered at zeS#Z(F)
then for every e in F, e(z) is positive and neither infinite nor in-
finitesimal, whence Pe 2,(E) N 2(V). As to the second inclusion of
A, we note that it follows immediately from the algebraic order
theorem.

The algebraic order theorem also shows immediately that Q2(F)
is a subset of Q%S (H)). For the reverse inclusion, let P be an
order outside of 2(F), so that E is not included in P. We decom-
pose K as follows:

E=FEUE", E'=EnP, E'=En(-P),

and set
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E" =FE'U (—E" .

By noting that E” is not empty we see that the neighborhood Q2(£")
of P is disjoint from Q2(2727(E)), and thus P is not in the closure of
(o7 (K)). This completes the proof of Part A.

For part B, observe first that the equality of o(#) with NQ(&)
was known to Baer [2] and Artin [1]. Applications of the algebraic
order theorem yield easily the equality of (277 (K)) with NQFE and
also the middle equality of Part B. Thus the theorem is proved.

fl‘HEOREM 3. Assume Q(F) is not empty, E being a finite subset
of F. Then Q27 (E)) is an (ACJk) family. The field Flk is an
Archimedes-Clifford field. Compare Dubois [6].

Proof. Let f(x) be outside F (57 (E)). There is then an order
P which excludes f(x) and which has a center in 227(#). By the
algebraic order theorem there exists an algebraic order P’ which
includes —f(x) and which has a center z in 2Z°(K). Hence, f(z) <0
holds. There exists a positive element # in % such that f(z) + » <0,
whence f(x) + r is outside of P’. Thus f(x) + 7 is outside of
FP(5#°(R)). This proves the contrapositive form of the condition
(ACJk) for (7 (E)).

3. Centering and simplicity. To the order space properties
already used and deduced in §2, we add some deeper results, includ-
ing a proof that, in case &k is dense in K, Cen, is continuous, and
that a point of V is central if and only if it is inner (i.e., a member
of the strong closure of the set of all simple points on V).

THEOREM 4. Ewery Qy(E), for finite E, is open in 2(F/k). The
set of all such Qy(E) ts a base for a topology in Q(F[k).

Proof. Let 7, s be positive elements of %, and set
Er,s)={e—1r;ecE}U{s —e;ec E}.
Then
2v(B) = U QE(r, ) .

Hence Q4(E) is open. Routine computations show that the 2,(E)
form a base for a topology.
The topology just alluded to is the weak topology in Q(F/k).
We turn next to the centering relation,

Cen, = {(P, 2); Pc Q(F/k), z is a center of P}.
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It is not necessarily a mapping. Except for an occasional explicit
use of Zariski’s topology on V, we use the standard strong topology
inherited from K".

THEOREM 5. Assumek is demnse in K. Then Cen, is a strongly
continuous map. The contraction 2(V)— V., is a weakly open map.

Proof. Let G be an open set in V. The density hypothesis
implies

G = 27 (H) .

()G
Hence, by means of Theorem 2, we deduce

2G) = LY (Lx(E) N L2V)) -

This is open by virtue of Theorem 4; it is, in fact, open in the weak
topology in 2(V). Thus the set Cen; (G) = 2(G) is a weak open set,
for arbitrary open G, whence Cen, is strongly continuous.

Let 2,(E) N 2(V) be an arbitrary weak open set in 2(V). Ap-
plying Theorem 2 again we get

Ceny (25(E) N 2(V)) = Cen, 2(o27 (&)
=Z(E)NAV) .

This proves the weak openness (observe that S#(F) is open on V).
We denote by V, the set of all “strong” points of V, i.e., points
every strong neighborhood of which is Zariski-dense in V.

THEOREM 6. Assumek is dense in K. Then V,=V,=V,, i.e.,
for a point to be central it is necessary and sufficient that it be an
inner point or that no (strong) neighborhood of it be included in any
proper subvariety.

Proof. That V, is a subset of V, is proved in [10], from the
case k = R (Dubois-Efroymson [12]), by means of an instant applica-
tion of Tarski’s principle. The inclusion V,C V, is an easy exercise
with Jacobians. In [10] (cf. [11]) we proved V,CV,. Now we prove
V.CV, Assume that 2z’ is a point of V\V,. There exists a neigh-
borhood Y of 2z’ on V, which may be taken in the form

Y = 57 (E), for some finite EC F,

by virtue of the density hypothesis, and a nonzero polynomial func-
tion g(x) in k[x] such that g(Y) = {0}. Then each of g(x) and —g(x)
is positive definite over S~ (F), whence each of these belongs to
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FP(SF (R)), according to Theorem 2. Since g(x) is not zero, there
are no orders centered on o7°(E) and, in particular, none centered
at z’. This completes the proof of the theorem.

4, Archimedean ground fields. For any orders P and @ of
any formally real extension F/k, we say that P and @ are equivalent
to each other and write “P ~ Q”, whenever h, =h,. The cor-
respondence P+ cls P maps 2(F/k) into the set of all real places on
F/k, its image being the set 27(F/k), of all real places of the form
hp. The set Z7(F/k) is topologized by the quotient topology for the
map above. For any subset 4 of Q2(F/k), we use 2°(4) to denote
d]~; in case F' = k(V), V being a real variety, we write 2°(V) in
place of 2(V)/~. The easy proof of the following lemma is omitted.

LEMMA. Assume that k is an ordered subfield of K= R. As
usual, V= 7x(7) for a real prime ideal A in k[X]. Then 2(V)
and Z27(V) are open sets.

With the hypotheses of the lemma, recall that
hpf =sup{reQ;f— reP}.

From here on in §4, we resume the notations of §1, taking
K=R, and V = 7x(.%). Assume also that E is a finite subset of
F(F = k(V)) with H = SZ(E). The notation B(H) denotes the ring
of all f(x) which are bounded on H, partially ordered by the posi-
tive cone F(H).

Assume H contains a simple point. From Theorem 6 we know
that there are orders centered on H and any such order belongs to
Q(E). It follows (Theorem 3) that &~ (F) is an (AC/k) family and
so P(H) is an (AC/k) positive cone. Since k is Archimedean, Z°(H)
satisfies also the condition (AC) defined in Dubois [6]. The norm
“I |7 is defined there as follows:

|fx)|| = sup{re@; f+ r and f — r belong to “F(H)}.

The completion of B(H) in this norm is denoted B*(H).

Results of the above paper can now be applied to prove the
theorem following. Constructions of the maps and spaces mentioned
in the theorem are sketched after the statement. The proofs are
omitted. The key is that the ring B(H) is, by virtue of Theorem
3, a Stone ring (see [7] and Becker [3]).

THEOREM 7. Assume kC R = K. Assume that V is an ir-
reducible weql variety in R™ over k and that H = 27 (H), for a finite
subset K of F(F' = k(V)[k), contains a simple point of V. Then there
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exists, for 1 =1,2, a compact Hausdorff space T; and a strongly
order-preserving isomorphism qr; of B*(H) onto the pointwise partial-
ly ordered ring C(T,) of all continuous real functions on T,. For
any monzero b(x) in B(H) the support of +.(b(x)) is all of T;. The
spaces T, are canonically homeomorphic by a map

v T, —T,
and the induced map

v C(Ty) — C(TY)

i an isomorphism of partially ordered rings. This ' is characte-
rized as the unique solution for « to the equation

anP‘l: qp‘z R

Constructions. For T, we take the maximal ideal space of B*(H),
and for T, we take 27(F) = 2(E)/~. The maps are defined as
follows:

b =A{M, r);re RN (b + M), Me T} .

This b is actually a function on T,, continuous and real. To define
4y, let be B(H). Then for he 2 (E),

(yb)h = hb ;

now q+, is extended to all of B*(H) by continuity.

For any maximal ideal M in T, and any order P in 2(H), we
say “P 1is centered at M”, or “P 1is associated with M”, provided P
contains every b(x) whose coset mod M contains a positive real
number—i.e., b is positive at M. Then the correspondence:

.~ M+—> hy providen P is centered at M,

defines a map, which is the v of the theorem. To say that . is
strongly-order-preserving means simply that

B*(H)* = 37(C(T)") .
THEOREM 8. Let MeT,, hp = YM (hence P is centered at M).

Case 1. Assume P belongs to 2(V), say z is the center of P
on V. Then for all b(x) e B(H),

A. bkz) =0<=b(x)eJ, = bx)c M.

B. b(z) > 0=0b(x)e Up = 4, (b)M > 0.

C. For all ¢(x) in E, e(z) = 0.
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Case 2. Assume P has no center on V. Then some x, is in-
finitely large by P.

Because F/k is an Archimedes-Clifford field and kFCcR = K,
Theorems 7 and 8 have birational analogues for Q(F/k), Z(F/k),
2 (FIk)y = Q(F k)| ~, with B(F/k) defined as follows:

B(F/k) = {f(x); for some r<€@Q, f+ F(F/k)} .

The proofs and statements require only routine modifications
(see [9], §6); the analogues follow.

THEOREM 7. (Birational form of Theorem T) In the statement
of Theorem T, delete E, H, 57 (). Replace B*(H) by B*(F/k).
The conclusions remain valid, 15 the constructions below are made.

Constructions. Replace B(H) by BF[k), 27(E) by 27(F/k),
QE) by QF|k), B*(H) by B*(F/k).

THEOREM 8. (Birational form of Theorem 8) Let the statement
of Theorem 8 stand. The conclusion is still valid for the construc-
tions above.

Finally we note that by introducing extended real functions
with values in the one-point compactification R, of R, improved
versions of Theorems 7, 8 and 7/, and 8 can Dbe obtained. The
routine details may be supplied by the reader. See our [9].

5. Snow-fields and Archimedes-Clifford fields. Let F/k be an
arbitrary formally real extension field, % being ordered, as usual.
Let 4 be a subspace of Q(F/k). We define J, as follows:

Jy= N{Jp Peg}.

DEFINITION. The subspace 4 is a snow-pack on F/k provided for
every (relatively) open subset I'" of 4, J, = {0}. Equivalently, 4 is
a snow-pack provided for every f, if f is infinitesimal by every order
in some nonempty open subset of 4, then f is zero. The field F/k is
a snow-field provided Q(F'/k) is a snow-pack on F/k.

LEmmA (cf. [6], §3). If 4 is a snow-pack on Fk, then 4 is an
(ACE) family. In case k is Archimedean-ordered, the converse is
valid.

Proof. The converse is an immediate consequence of Theorem 7
in §4. Assume 4 is not an (AC/k) family. It is easily verified (see
[6], Theorem 3.2), that there exists f in F, and Q in 4 such that
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The set I"' = {P; Pc 4 and f¢ P} is an open set containing Q.
Also f belongs to J, but since f¢@Q, f is not zero. Thus 4 is not
a snow-pack.

COROLLARY. FEwvery smow-field is an Archimedes-Clifford field.
If the ground field ts Archimedean ordered, the converse is varid.

THEOREM 9. Assume that F|k is a formally real finite algebraic
extension of a pure transcendental extension of the ordered field k.
Then Flk is an Archimedes-Cliford field: and if k is Archimedean
ordered, then F[k is a snow-field.

Proof. It is verified with small difficulty that the hypotheses
permit expressing F in the form F = K(U), with K = k(T'), where
T is a finite set and U is a transcendence base of F' over K (not k).
Since K/k is finitely generated, it, along with every real finitely
generated extension of it, is an (A — C) field, by the corollary. The
theorem will be proved if we show the following: if K/k has the
property that each of its finitely generated pure transcendental
formally real extensions s (A — C), then every pure transcendental
extension of K is an (A — C) field.

To prove the italicized statement, assume F' = K(U), and that
U is an infinite transcendence base of F/k. Let # be the family
of all subfields of F' of the form K(S), where S is a finite subset
of U. By hypothesis this is a family of (A — C) fields. The family
is clearly totally directed, i.e., it satisfies the following conditions:

(i) For every E, and E, in .&# there exists E, in &% which
is an extension of each of E, and E,.

(ii) For every E, and E, in &, if E, is a field extension of
E,, then E, is a total extension of FE,, i.e., the restriction map ez, z,
which maps each order in Q2(F,/k) to its intersection in E, is sur-
jective (every order of E./k extends).

We next show that every totally directed family also satisfies:

(iii) The union E. of all members of & is a total extension

field of every E; in the family .&#.

The proof, sketched below, is a straightforward transfinite in-
duction. First, using Zermelo’s theorem, we index the members of
Z Dby means of a well-ordered set. Now, given any E in %, a
re-indexing produces, by means of condition (i), a well-ordered as-
cending chain E, (E,D E), of members of .&# whose union is E.:
E, = E, and for o > 0, E, is the first member of the original well-
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ordered set which contains all preceding E;. In a similar way, given
an order P of K, an ascending chain of P, is constructed by taking
P, = P, and using (ii) for passing from B to g8 + 1, while for a limit
ordinal «, P, is the union of all P, for 8 < a«. Then the union of
all P, is an order of E. which extends P,. In this way condition
(iii) is verified.

Since F' = K(U) is the union of all the (A — C) fields in &, the
theorem will be proved if we prove the following:

LEMMA. The union E/k of any totally directed family Z of
(A — C) fields is itself an (A — C) field.

To prove the lemma, assume f belongs to E and that for all
positive 7 in k, f + r belongs to P(E/k). There is a field E in .7
which contains f. Let P be an order of E/k, and let P be an ex-
tension of P to E (such P exists by virtue of condition (iii) above).
Now f + 7 belongs to P for every positive » in % and hence f + »
belongs to P = PN E. This latter condition is valid for every order
P of E; in other words, f -+ = belongs to P(E/k) for every positive
7 in k. Since E is by hypothesis an (A — C) field, we have f itself
in Z(E/k). By Artin’s easy theorem [1], f is a positive combination
of squares in E. Hence f belongs to “*(&/k). This proves that £
is (A — C), and the theorem is all proved.

Note. The finiteness restriction on the algebraic extension is
not superfluous, as shown in Dubois [9], §6.17.

THEOREM 10. Cf. Lang, loc.-cit. Theorem 9. For the same
hypotheses on Flk, for every f in F, f is positive definite over
22 (Fk) if and only if f belongs to F(F/k).

Proof. (By Anonymous). Assume f¢ P(F/k). Take the K of
Theorem 9 above to contain f. Then f¢ F(K/k). Lang’s Theorem
9 gives us an order @ such that A,f < 0 holds, whence for some
(and every) extension of @ to an order P of F/k, we have hpf < 0.
This proves half of the assertion, and the converse is obvious.

6. Compatibility. Let k be an ordered field, [ X ] the polynomial
ring in » variables as in the early paragraphs. Let .7 be a finite
set of indices. Consider the relations

f(X)=0, 1=j=<uv
a(X)>0, des,

where f; and g, belongs to k[X]. The solution set to . is a semi-
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algebraic set. Let B be the ideal generated by the f;(X) and let
G be the (indexed) set of all ¢g,(X). By a central solutiou to &~ we
mean a solution z in K™ which is a central point on one or more of
the irreducible real components of 7%(B). Since we are not assum-
ing that B is either real or prime, we digress briefly to the situa-
tion of a commutative ring A with unity, without (ordered) ground
field k. For an ideal B in A the real radical of B is the intersection
of all real prime ideals over B. For this definition and the lemmas
below, see our 1970 paper [12], §1. In case A has no ground field,
all references below to p, and & should be deleted.

LEMMA 1. The real radical VB is the set of all x in A which
saisfy a relation of the form

" + >, pai€ B,

Jor some natural number m, vositive v, in k, and a; in A.

For a set G = {g,;1€ T}, where T is finite, the set G (compare
§1) is

@={p~_]_1}gi;0<pek,UCT}.

For an ideal B in A, G is compatible with B provided for all §; in
G and all a; in A4,

S, g0 ¥B implies every a,€ VB .

THEOREM 11. The condition that every irreducible real component
of 7%(B) contain a central solution to S is equivalent to compatibili-
ty of G with B.

Proof. By means of Lemma 2 below the proof is reduced to
the case where B is a real prime ideal, and that case is settled by
Lemma 3 below.

LEMMA 2. Let A be a unitary commutative ring, let B be an
ideal in A and let G be a finitely indexed subset of A.

A. Assume G is compatible with B. Then G is compatible with
every minimal real prime over B.

B. Assume A is Noetherian. Then the converse of A is valid.

C. Assume G 1is compatible with every 7real prime over B.
Then G s compatible with B.

Proof. We make liberal use of the results of [12]; theorems,
lemmas, etc., referred to below are from that paper.
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A. Let P be a minimal real prime over B— see Theorem 1.3G.
Then P is also a minimal real prime over ¥ B, hence it is associated
with ¥B. We choose an element ¢ outside of ¥B so that P =
VI¥B:c]. Now assume for §, in G, a, in A, that 3 §,a¢ belongs
to P= YP. Then for some m,

[Z gi(caz)2]27n = [¢* >} .ol = CM(Z g:a.)*" € VB .

Reality of ¥<Z now implies that 3, g,(ca,)* belongs to ¥B. Com-
patibility implies that each ca, belongs to VB, which is contained
in P. Since P is prime and ¢ is not in it, a, belongs to P for every
1. Hence G is compatible with P.

B. Assume that y = 3 §,a: belongs to ¥B. Then y belongs
to every real prime over B. Now assume that G is compatible with
every minimal real prime of B. Then every a, belongs to every
minimal real prime, and hence, by the Noetherian assumption, every
a, belongs to ¥B — see Theorem 1.4b.

C. This is now obvious.

LEMMA 3. Now let A = k[X] = kX, ---, X,], with ordered field
k. Assume B is a real prime tdeal in A, and that G = {g,;1€ T}
is a finite indexed subset of A. Assume G is compatible with B.
Then the system & has a central solution. The converse is also
valid.

Proof. We take an order of k(x) which contains G/B = {g,(x);
7€ T} as allowed by the assumed compatibility. The algebraic order
theorem guarantees that & has a central solution.

Conversely, assume that z is a central solution to .&°. Assume
further that > §,(X)a,(X)* belongs to B. Let @ be an order of k(x)
which is centered at z. Then §,(2) > 0 holds for every 7 whence
g.z) is a nonzero member of Q. Also we have > g,a,(x)* = 0. Hence
every a,(x) is zero so a,(X) belongs to B. This proves compatibility.
The lemma, and with it the theorem, is proved.
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