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PROJECTIVE SPACE AS A BRANCHED COVERING
WITH ORIENTABLE BRANCH SET

ROBERT D. LITTLE

We show that if RPn is a smooth λ>fold branched
covering of Sn with orientable branch set and either k^n
or the singular set of the covering is connected, then n—
1, 3, or 7.

1* Introduction* Let M and M be smooth, closed w-manifolds.
A yfc-fold branched covering is a smooth map f:M—>M together
with smoothly imbedded, codimension 2 submanifolds KcM and
K = f"\K) c M, such that / restricted to M - K is a fc-fold cover-
ing, / restricted to K is a finite covering onto each component of
K, and the degree of / is k. Brand [2] suggests the problem of
determining the values of n for which RPn, real projective w-space,
is a branched covering of Sn and he shows that if RPn is a branched
covering of any manifold with trivial Stiefel-Whitney class, such
as Sn, then n = 2* ± 1. We show that the possible values of n can
be further limited if the branch set of the covering, K, is orientable
and either k ^ n or the covering is simple, that is, the singular
set, the subset of K where / fails to be a local diffeomorphism, is
connected.

THEOREM 1.1. // RPn is a k-fold branched covering of a π-
manifold with orientable branch set and either k ^ n or the covering
is simple, then n — 1, 3, or 7.

A Γ-manifold is a smooth, closed ^-manifold with stably trivial
tangent boundle, such as Sn. Our definition of simple branched
covering is due to Hilden, [5]. Brand and Brumfiel have extensively
studied simple branched coverings having the special property that
the connected singular set is all of K, [3].

The identity map provides a branched covering of S1 by RP1

and it is well known that RPZ is a 2-fold branched covering of S3.
Hilden and Montesinos have shown, independently, that every closed
orientable 3-manifold is a simple, 3-fold branched covering of S3,
[5], [7].

2* Normalized branched coverings* In [2], Brand defines a
normalized branched covering. He uses this concept to show that
there is a certain if-theoretic necessary condition for the existence
of a branched covering.
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If 7] is a 2-plane bundle over a complex X, let μk(η) be the
2-plane bundle obtained from η by the homomorphism μk: 0(2)

0(2) given by μfc(s) = zk for seS0(2) and μΛ(τ) = r for r = (Q _
If & is odd, μfc and the Adams operation ψk agree on 2-plane
bundles, ([1], p. 193). There is a map, ft:^ft(ϊ), given in local
coordinates by μk(xf z) = (#, 2fc), where xeX and ^ei ί 2 = C. The
definition which follows is due to Brand, [2].

DEFINITION 2.1. A branched covering f:M->M is called a
normalized branched covering if there are tubular neighborhoods
N and N of K and iίΓ, respectively, with the following properties:

2.2. dfx is non-singular for each xeM — K,
2.3. df\K:τK-*τK is an isomorphism on each fibre and
2.4. if I = normal bundle of KczM and ξ = normal bundle of

KczM, then for each component JBf, of K, there is an integer kt

such that jw^d) | Kt = /*f | JK, and the map /1N, mapping N onto iV,
is given by Dξ \ K, - ^ 2?Λ i( |) | £ = Df*ξ \ g< -^U Z?f.

It is possible to visualize a fc-fold, normalized branched covering
in the following way. For each component K3 of the branch set K,
there is associated a partition of k, Σ*=i ^ = k, where the number
of components of f~\Ks) is Σ*=i ίΐ> a n d o n ^ °f these components,
the map / has the form f(xf z) = (f(x), zki) in the local coordinates
of the disc bundle of the normal bundle of K, [2]. The integers ki
are called the exponents of the branched covering. Each exponent
is less than or equal to k, and so a normalized branched covering
has only a finite number of distinct exponents. Notice that a simple
branched covering has only one exponent greater than or equal to
2. In the case of the Hilden-Montesinos simple coverings of S3, K
is a knot and f~\K) consists of two components, one of which, the
singular set, has exponent 2, [5].

For each integer k ^ 2, Brand defines a if-theoretic characteristic
class 7]k in l£O(ΛfO(2)) with the property that ^|JS0(2) = 7 — μh(i),
where 7 is the universal 2-plane bundle. Let Kk. = {x e K\ f maps
the fibre over x of the tubular neighborhood of K in M to the fibre
over f(x) of the tubular neighborhood of K in M by the map z-±zhi}f

where kt is one of the exponents of /, 1 ^ i ^ m. For each i,
1 ^ i ίg m, let (̂  be the composite map

(2.5) M -?U Γ(f I ^ ) - ^ AΓ0(2) ,

where c€ is the collapsing map onto the Thom space and ht is induced
by the classifying map of the bundle ξ\Kkί. A slight modification
in the proof of Brand, taking into account the fact that the number
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of distinct exponents is finite, yields formula (2.7) in the next
theorem.

THEOREM 2.6. (Brand, [2]) If f\M-*M is a branched covering,
then, given a differential structure on M, there is a unique diffe-
rential structure on M making f a normalized branched covering.
The tangent bundle of M determined by this unique differential
structure is related to the exponents of f by an equation in the
group KO(M),

\6 •/ ZlVl — J ZIYI — 2LX g% Ίki

We will conclude this section by proving a theorem which shows
that (2.7) does not depend on the change of differential structure in
the special case M = RPn and that this formula is especially simple
in the case where the branch set is orientable. Before we can state
and prove this theorem, we need some preliminaries, beginning with
a lemma about smoothings of RPn. By a smoothing of RPn, we
mean a smooth ^-manifold, M, together with simple homotopy
inverses ψ: RPn —> M and φ: M —> RPn. We may assume that φ and
ψ are homotopy equivalences only, since Wh(Z2) = 0, ([4], pp. 45
and 72).

LEMMA 2.8. // ψ: RPn -» M and ψ': RPn -> M' are two smooth-
ings of RPn, then in KO{RPn), ψ*(τM) = ψ'*(τM').

Proof. We may assume that the twisted degree of φ is +1,
since we may compose with a self homotopy equivalence of RPn of
degree —1 in the case n odd where twisted degree is the ordinary
degree ([8], p. 466), and since άegφ = + 1 necessarily in the case n
even, ([8], p. 468). By setting v = ψ*vM, where vM is the stable
normal bundle of M, we see that a smoothing determines an element
of the bordism group Ωn{RPn, v), ([9], p. 32), of degree + 1 . The
smoothing Mr determines an element of degree + 1 in Ωn(RPn, vf),
where i/ = ψ'*vM' Let vRPn be the Spivak normal fibration of RPn,
([9], p. 105). According to Spivak's theorem, Ωn(RPn, v) contains
an element of degree +1 if, and only if, v is stably fibre homotopy
equivalent to vRPn. Therefore, v and vr are stably fibre homotopy
equivalent, that is, they have the same image under the map
K0(RPn) -> E"τop (RPn) = the group of stable fibre homotopy equi-
valences classes. But image {K0(RPn) -> J^Top (RP71)} = J{RPn), ([6],
p. 211), and K0(RPn) s J(RPn), ([6], p. 225). Therefore, v and v?
are stably isomorphic. It follows easily that f * ( r l ) = φ'*(τMf).
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If RPn is a branched covering of a π-manifold, then it follows
from the full generality of the theorem of Brand that n = 2* ± 1.
If the branch set K is orientable, so is K, since f\K is a finite
covering, and therefore f is orientable because RPn is orientable
when n is odd. This means that the maps ht: T(ξ\ Kk.) —> MO{2) lift
to MS0{2), which has the same homotopy type as BS0(2) and BU(1).
These liftings are the only consequences of the orientability of K
needed in the proof of Theorem 1.1, and so we remark that Theorem
1.1 remains true if the hypothesis that K is orientable is replaced
by the weaker hypothesis that K is orientable.

It follows from the construction of Brand that there are orien-
table characteristic classes ηk in K0(MS0(2)), such that ηh\ BS0(2) =
y — Λ(7), where 7 is the universal orientable 2-plane bundle, ([2],
p. 2). Using the same symbols in the orientable and non-orientable
cases will not cause any confusion in what follows.

The group KO(RPn) is a finite cyclic group with generator λ — 1,
where λ is the class of the canonical line bundle, ([6], p. 223). It
is well known that (τRPn) = (n + l)λ, where the parentheses indicate
the stable isomorphism class of the tangent bundle determined by
the standard smooth structure on RPn, ([6], p. 17). If n is odd,
let g denote the composite

(2.9) RPn — CP^ — BU(X) ,

where q is the canonical map, ([6], p. 223), and i is the inclusion.

THEOREM 2.10. // RPn is a branched covering of a π-manifold,
then

(2.11) (w + l ) ( λ - l ) = £»?%,•

// the branch set is orientable, then there is a set S c {1, 2, 3, , m}
such that

(2.12) (^ + l ) ( λ - l ) = Σ</*ίV

Proof. Formula (2.11) follows immediately from Theorem 2.6,
Lemma 2.8, and the remarks above concerning (τRPn) and K0(RPn).
To establish (2.12), recall that MS0(2) = 517(1) = K(Z, 2) and that
homotopy classes of maps from RPn to K(Z, 2) are in one-to-one
correspondence with H\RPn; Z) = 2Γ2. Therefore, if one of the
maps gt in (2.11) is essential, it is homotopic to g. The set S is
defined by the condition that i e S if and only if gt is essential.
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3. The proof of Theorem l l The proof of Theorem 1.1 is
organized into three short lemmas. As a preliminary, we review
some elementary properties of the if-groups. There are two opera-
tions which connect the real and complex i£-theories. The comple-
xification operation, εu: KO(X) -> K(X), which is induced by the
operation of tensoring with C over R, is a ring homomorphism and
a λ-ring homomorphism and hence commutes with the Adams opera-
tions. The operation ε0: K(X) —> KO(X), which forgets complex
structure, is a group homomorphism. If ζ is any real bundle, then
eQeuξ = 2ζ, and if a) is any complex bundle, then εuεoω — ω φ ω,
([6], p. 191).

LEMMA 3.1. If g is the map (2.9), then

[0, k odd
9 Vk = (2(λ - 1), k even .

Proof. Let ζ denote the canonical complex line bundle over
Cpt«/2i or 517(1). It is well known that g*ζ = q*ζ = εMλ, ([6], p.
223). It is easy to see that the class ηh in K0(MS0(2)) corresponds

to εoζ - μkεQζ in Kb{CPin/^) via the homotopy equivalences MS0(2) =
BS0{2) = BU(l) and the inclusion i: CPίn/^ -^ B 17(1). One simply
uses the definition of rjkf the facts that the homotopy equivalence
2? £7(1) = BSO{2) commutes with μh and that the Euler class of εoζ
is cx(ζ), the generator of H\CPin™; Z), ([6], p. 243). Therefore,
we have

(3.3) g*ηk = g*(εoζ - μkεoζ) = εoεuX - μkεoεuX = 2λ - μk(2X) .

Now 2λ = X φ λ is an orientable bundle with classifying map induced

by the map Z2—>O(2) which sends 1 into (~~Q _^j = rotation by π.

So, (3.2) follows from (3.3) and the definition of μk9 ([2], p. 3).

In the proof of the next lemma, we will need to know the order,
cn9 of the finite cyclic group KO{RPn). It is well known that cn —
2φ{n\ where φ(n) is the number of integers in the set {s: 0 < s ^ n,
SΞΞO, 1, 2, 4 (mod8)}, ([6], p. 223). An easy computation, ([6], p. 221),
gives the following values for cn, where n is one of the values in
the theorem of Brand,

ϊ2*-1-1, n = 2* - 1, t ^ 3 ,

>f~1+\ n = 2ι + 1, t ^ 2 .

Given a branched covering of UP n over a ττ-manifold, let p be
the number of distinct even exponents in a normalization of / with
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essential classifying maps (2.5). In view of (2.12), (3.2) and (3.4),
we have proven Lemma 3.5 below.

LEMMA 3.5. If RPn is a branched covering of a π-manίfold
with orientable branch set, then

(3.6) p = A (n + iVmod— order KO{RPn)\ .

In particular,

(3.7) p = 2*-1(mod22 '"1-2), w = 2* - 1, t ^ 3 ,

(3.8) p == (2*-1 + l)(mod 22*"1), w = 2' + 1, ί ^ 2 .

LEMMA 3.9. // RPn is a k-fold branched covering of a π-mani-
fold with orientable branch set, and n Φ 1, 3, or 7, then

(3.io) A^ + i^p

Proof. The right-hand inequality is clear since any exponent in
a normalization must be less than or equal to k and the number of
even numbers less than or equal to k is smaller than [(l/2)fc]. The
left hand inequality is also clear because (3.7) and (3.8) clearly
imply that n — 2* ± 1, n Φ1, 3 or 7, then (l/2)(n +1) is the smallest
possible representative of the congruence class of p modulo 1/2 order

K0(RPn).

We are now ready to prove Theorem 1.1 by proving its contra-
positive. The inequality (3.10) clearly implies that if RPn is a
branched covering of a π-manifold with orientable branch set and
n Φ 1, 3, or 7, then the degree of the covering is greater than or
equal to n + 1. The left-hand side of (3.10) together with (3.7)
and (3.8) imply that if n Φ 1, 3, or 7, then p Φ 0,1 and so the
covering is not simple. Note that if p — 1, then n = 1 or 3.

4* Adams operations and the brand characteristic classes.
We remarked above that ηk corresponds to the class εoζ — μkεoζ in

KO(BU(1)). Since εu is a λ-ring homomorphism and μk can be
expressed in terms of λ-ring operations and Adams operations ([1],
p, 193), εu commutes with μk and so εj]k = εwεoζ — μkεuεQζ=(ζ + ζ ) -
(ζfe + ζfc). This means that it is possible to compute the action of
the Adams operations on εuηk and produce formulas like the formulas
for the action of the Steenrod operations on the Stiefel-Whitney
classes, ([6], p. 245). We include these computations for the sake
of completeness and in the hope that they will be useful in other
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contexts, since we will see below that these formulas provide no

information on the characteristic classes in KO(RPn).
In order to state our last proposition, we introduce some nota-

tion. If x — ζ + ζ and y — ζk + ζk and j is an integer, the poly-
nomial (xj — yj)/(x — y) is symmetric in ζ and ζ and consequently is
the image of a polynomial in ζ under the operator euεQ. We denote
this polynomial by Θ(k, j). The proposition below follows easily
from a little algebra and the fact that the Adams operation, ψj,
has the property that ψ3ζ — Z3'.

PROPOSITION 4.1. // ψ3' is the Adams operation, then

(4.2) ψjrjk Ξ ηkεoθ(k, j) - Σ ( \ )ψj~2i7]k(mod kernel ε j , j odd ,

(4.3) <ύrjηk = ηkεQθ{k, j) - ' f l . )ψj~2ίVk (mod kernel εu), j even .
i l \ % j

The action of the Adams operations on KO(RPn) is given by
ψj(X — 1) = λ — 1, j odd, and <̂ "(λ — 1) = 0, j even. The group
K(RPn) is a finite cyclic group of order 2[n/2] and εu: K0(RPn) -»
K{RPn) is always an epimorphism and is an isomorphism if n^O, 6,
7 (mod 8), ([6], p. 223). In particular, εu is an isomorphism if n —
2* - 1, ί ^ 3, and εu has kernel Z2 if w = 2* + 1, t ^ 2. Therefore,
not much is lost by complexifying and it is reasonable to suppose
that the naturality g*ψ3εuτ)k = ψjg*εj]k might provide some infor-
mation concerning the classes g*ηk, since we can compute the right-
hand side using (3.2) and the left-hand side using (4.2) and (4.3).
However, it is easy to see that #*ζr = εttλ, r odd, and g*ζr = εw(l),
r even, ([6], p. 234). This observation plus induction, counting the
odd and even exponents in θ(k, j), and using the relation λ2 = 1 in
the ring K0{RPn), show that the naturality equation yields no new
information.

5* Conclusion* It is clear that formula (3.10) says more
about RPn as a branched covering of Sn with oriental branch set
than what is said in Theorem 1.1. For example, the fact thatp^O
if n Φ 1, 3, or 7 says that high dimensional protective space cannot
be a normalized branch cover of the sphere with orientable branch
set and every exponent odd. The fact that p Φ 0,1, if n Φ 1, 3, or
7, rules out normalized covers where each partition associated with
a component of K has precisely one exponent greater than or equal
to 2 and this exponent is the same for all partitions. Brand and
Brumfiel [3] study k-ΐold branched coverings of this type where the
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partition of k common to all components is the trivial partition of
k. Such coverings generalize simple coverings where the singular
set is connected and is all of K. These observations and Theorem
1.1 constitute evidence for the conjecture that if RPn is a branched
covering of Sn with orientable branch set, then n = 1, 3, or 7.
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