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A SPECTRAL CONTAINMENT THEOREM ANALOGOUS
TO THE SEMIGROUP THEORY RESULT etoU) £ σ{etA)

D. M. TERLINDEN

It is known that if A generates a (Co) semigroup (etA),
then eί<rU) £ σ(eu)9 where σ denotes "spectrum." This result
is generalized to the context of solution operators of certain
ntYi order linear differential equations.

1* Introduction* Let (Tt) be a (Co) semigroup on a Banach
space X with generator A. It is known [2, p. 457] that

(1.1) β' "> £ σ(Tt) .

Since Γ t/ solves the differential equation

(1.2) " ~ *

Ttf can be formally written as etA, so that (1.1) can be written as

(1.3) etσU) £ σ(etA) .

In this paper it will be shown that if one replaces the first deriva-
tive in (1.2) by an nth order linear differential expression L producing
the equation

(Lx — Ax

*>(0) = 0 for j = 2, , n — 1

solved by Stf for some linear operators St and replaces etz, the
solution in C of

ixf = zx

(αj(O) = 1 ,

by φ(t, z), the solution of

Lx = 2#

• a(0) = 1

x{i)(0) = 0 for j = 2, , Λ — 1

(so that formally £•* = ψ(t9 A)), then the analog

ψ{t9 &(Ay) c &(St) \

φ(t, σ(A)) £ ί
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of (1.1) and (1.3) holds. The theorem will be stated precisely and
be proved in §3.

2Φ Definitions and notation*

A. NOTATION. Let φ be C or X valued in C{n). Let φ =
(Φf Φ\ " »^(n"1))» where n, the dimension of the vector, is the same
as the order of differential expression appearing in context. If / is
a constant, let / = (/, 0, 0, , 0).

B. DEFINITION. Let X be a Banach space over C. Let L be a
linear nth. order differential expression of the form

L =!»••<-•

where the aό are continuous complex valued functions on [0, oo) and
an = l. Let A be a closed densely defined linear operator on X
The initial value problem

(P)

(ueC(n)[0, oo)

u(t)eDA for ίe[0,

Lu = An

uφ) = f

is well posed if there are bounded linear operators St e &(X) for
0 ^ t < oo and a vector subspace Y of X so that

(1) Y £ JD4 and Yo = {/: / e Y and A/e F} is dense in DA in
the DA norm. (||a;||^ = \\x\\ + ||Aas||, the graph norm.)

(2) If g e Y and u(t) = S^, then w(ί) solves (P) with / = g.
(3) For each / e l , iSf/ is continuous in t.
(4) If u solves

u(t)eDA for £e[0,

Lu = An on [0, oo)

U(θ) = δ,

then u = 0 on [0,

This definition is formulated so as to correspond with that in [3].
As will be shown in 5.B, one can take the subspace Y to be all of
DA, in which case YQ = DA2. In this case (1) is automatically satisfied
whenever p{A) Φ 0 , because then DA2 is dense in X. Thus the reader
may recast the definition in less complicated terms without affecting
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the validity of the main theorem or its proof.
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C. DEFINITION. The operators St described above such that Stf
solves (P) for feY are called the solution operators.

D. DEFINITION. Let (P) be as in Definition B, the definition of
"well posed." The corresponding scalar equation is

(P)

ueCn[0, o

Lu = zu

ύ(0) = ΐ .

(u is complex valued.)

For each zeC, this equation has a unique solution which will
be denoted ψ(t, z), so that formally St = ψ(t, A).

3* Statement and proof of main theorem*

A. THEOREM. Let X be a Banach space, A be a closed but not
necessarily bounded linear operator on X, and

(P)

ueC{n)[0, oo)

u{t) eDA for 0 ^ t < oo

Lu(t) = Au(t) for 0 ^ ί <

a well posed problem in X with solution operators St for 0 :g

t <

(p) Lu(t) = «w(ί) /or 0 ^ ί <

u(0) = ί

6β ίfeβ corresponding scalar equation with solution ψ(tf z). Then

fit, σ{A)) Q σ(St) .

Note that denoting St by the suggestive notation ψ(t, A), this state-
ment become ψ{t, σ(A)) £ <r(φ(t, A)).

Proof. The reverse containment of the complements will be
shown, i.e., that if ψ(t,X)ep(St), then Xep(A). Assume λ is such
that ψ(t, λ) 6 p(St).

By the variation of parameters formula there is a scalar valued
kernel K(t, s) which is C{n) in t and C(1) in s so that if Kφ is defined
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by (Kφ)(t) = I K(t, s)φ(s)ds for any continuous scalar valued or X
valued function φ, then u — Kφ is the unique scalar or X valued
solution of

(λ — L)u — φ

β(0) = 6 .

Consider the problem

(λ - L)u = Stf( 3 1 } WO) = o .

For any fixed/6X, Stf is continuous in t. Hence, given / e l , (3.1)
has a unique C{n) solution KSJ. Let NJ = -KSJ. Since SJ is
continuous in s for each fixed /, the | |S 8 | | are uniformly bounded
on compact intervals by the uniform boundedness principle. Since
in addition K is continuous in s, Nt is seen to be 6 &{X) for each
fixed t.

Assume, as we may by 5.B, that Y = DA so that Stf solves
Lu = Au, u(0) = 0 for any feDΛ.

If feDA, then LStf= AStf, and since LStf is continuous in t,
so is AStf. Thus, StfeDA and Stfis continuous in t with respect to

the DA norm. Hence, since Ntf = - KSJ = - Γ JBΓ(*, s)S8fds, Ntfe DA.
Jo

Furthermore

-(λ - A)J^/ = [ K(t,
Jo

(3.2) = Γ Kit, β)(λ -
Jo

= £(λ

since A is closed and Stf solves

(Lu =

ko) = /.
Since — (λ, - A)Ntf = K(X - L)Stf, by the variation of para-

meters formula — (λ — A)Ntf must solve

|(λ - L)u(X - L)Stf

Clearly Stf solves

- L)u = (λ - L)SJ
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Hence Stf + (λ - A)NJ solves

(3.3) g " ^ = °

But (3.3) is obviously solved by ψ(t, X)f. By uniqueness in the initial
value problem Stf + (λ — A)Ntf = φ(t, X)f. Hence

(3.4) (λ - A)Ntf - (ψ(ί, λ) - St)f for all fe DA .

Since A and S8 commute by Lemma 5.A, (λ — A)Ntf =

(λ - A) [ -K(t, s)Ssfds = Γ - JSΓ(ί, s)Ss(λ - A)fds - iSΓ̂ λ - A)f. Hence
Jo Jo

from (3.4)
(3.5) Nt(X - A)f = Mi, λ) - $ ) / for all fe DA .

By using the density of DA in X and closure and continuity proper-
ties, one concludes from (3.4) that

(3.6) (λ - A)Ntf - (ψ<ί, λ) - $ ) / , / e l .

Since φ(t, λ) e ^(SJ, (ψ(t, λ) - Sf) is a bisection. Thus, (3.6)
shows that (λ — A) is onto, and (3.5) shows that (λ — A) is one to
one. Thus (λ — A): DA —> X is a bisection, and from the closed
graph theorem, (λ — A)~ι exists in &{X), i.e., Xep(A). This com-
pletes the proof.

Note. For λ such that ψ(t, λ) e ρ(St), (λ - A)-1 = JSΓt(̂ (ί, λ) - S^)"1.
This fact follows from (3.6) and from the fact that (λ — A)~~ι exists
as a bounded linear operator.

4* Remarks* There are a variety of well posed second order
problems to which the theorem applies. Any problem solved by a
cosine function [1, Ch. 2, §8] is well posed as are all problems consi-
dered by Stafney in [3].

Containment may be strict in the semigroup etσU) £ σ{etA) case.
A genuine second order example of strict containment in the main
theorem also exists where L = d2/dt. Hille and Phillips mention [2,
§26.16] a (Co) group (Tt) whose generator A has empty spectrum.
Then

ίx" = A2x

U'(0) = 0

is well posed and solved by the cosine function St = l/2(Tt + T_t).
Yet, spectral equality fails in cosh {t]/σ{A2)) £ σ(St), because
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σ(A2) = 0 , but σ(St)Φ 0 .
It appears that the initial conditions on (pn) and (Pn) in the

statement of the theorem can be altered to other conditions differing
in only one coordinate from the zero initial conditions. We think
our proof could be altered to reflect the change.

5* Commutativity results*

A. LEMMA. Let

(Lx = Ax

ko) = /
be a well posed problem in a Banach space X. For all t > 0, if
feDAf then StfeDA, and ASJ= StAf.

Proof This lemma can be proved exactly as the special case in
[3] is proved.

In case p(A) Φ 0 , a more direct proof can be constructed by
noting that (λ — A)~xSt(X — A)f and Stf both solve the same initial
value problem and so must be equal.

B. COROLLARY. In the Definition 2.B of "well posed," Y can
be chosen to be all DA.

Proof. Suppose that Y and YQ satisfy the conditions of 2.B.
The only condition on Y that is not obviously met by DA is that
u = Stf satisfy

(5.1)

ueσn)[O,

Lu = An

ύ(0) = f

for each feDA.
Let Y and Yo be as originally given. Choose feDA. Choose a

sequence (/n) from Y so that fn —> f in the DA norm, that is /« —> /
and Afn —> A/ in the norm of X

Then since the norms of St are bounded on finite t intervals,
StAfn —> StAf uniformly on finite t intervals. Since St and A commute

(5.2) AStfn -> AStf uniformly on finite t intervals.

For any ψeC([0, c°), X) define Kψ to the unique solution of

(Lu = ψ

\ύ(0) = 6.
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In particular this solution u is in C{n). By the variation of parameters
formula Kψ is given by

(Kψ)(t) = [* K(t, s)ψ(s)ds
Jo

for some continuous kernel K.
Let φ be the unique (scalar) solution of

Lu = 0

= ϊ .

Then φg is the unique X valued solution of

l«(0) = 9

Both SJn and KASJn + φfn solve

(Lu =

and so by uniqueness for the well posed problem,

(5.3) SJn = ^AS t/n + φfn .

Since ^ is defined by an integral with continuous kernel and
since by (5.1) AStfn -> AStf uniformly on finite t intervals,

KAStfn >KASJ.

Clearly φfn —> φf. Hence, from (5.3), taking limits of both sides,

(5.4) Stf = KAStf + φf.

KAStf solves Lu — AStf, AStf is continuous, and φf solves Lu = 0.
Hence, both KAStf and φf are in Cin), and their sum Stf is also in
C(n). This establishes the first condition in (5.1). Applying L to
both sides of (5.4),

(5.5) LStf=AStf.

Since {KAStf)U - 0 and (φ(t)f)U = ^(0)/ - 1/ = /, (Stf)?=0 = f Thus
u{t) = Stf satisfies the other conditions of (5.1).

C. LEMMA. Let X be a Banach space and let

(Lu = Au
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be a well posed problem in X with solution operators St. Then the
solution operators commute with each other (that is, SsSt = StSs,
8, t ^ 0).

Proof. Consider s ^ O as fixed and t as variable, so that L
depends on t and takes derivatives in ί. By Corollary B, take Y in
the Definition 2.B of "well posed" to be all of DA. For any feDA,
SsfeDA by Lemma A (commutativity result). Then by the defini-
tion of St,

( β J = AStS,f

But using the fact that Ss is linear and continuous, S8 commutes
with differentiation. Ss also commutes with scalar multiplication.
Hence Ss commutes with L. Thus

LSβJ = SSLSJ = S8AStf = ASsStf ,

and

Hence,

βtf = ASβJ

Now (5.6) and (5.7) show that both StSj and SsStf solve

(Lu = Au

and so since Lu = Au is well posed, the two solutions must be the
same. Thus

S8Stf = StS8f

for all / 6 DA. Since DΛ is dense in X and St and Ss are continuous,
Sβf - StS8 on X.
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