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CERTAIN TRANSFORMATIONS OF BASIC

HYPERGEOMETRIC SERIES AND

THEIR APPLICATIONS

V. K. JAIN

We obtain identities of Rogers-Ramanujan type related
to the modulus 13. We also obtain the (/-analogues of the
nearly-poised summation theorems and use them for obtain-
ing (/-analogues of general transformations of nearly-poised
hypergeometric series. We also discuss some important
applications of the transformations obtained in this note.

Recently, Askey and Wilson [4] derived the transformation

(1-1) 403,

a\ b\ c, d q q "] __ Va\ b\ c\ d2; q2; q2 Ί

jώV q , —ahV q , — cd\ 4 3[_aΨq, —cd, —cdq J

(provided α, Z>, c, or d is of the form q~N

9 N a, nonnegative integer).
In an earlier paper [11] we have an alternative proof of (1.1). We
begin this note by showing in § 3 that all the transformations
proved by Singh [13], for obtaining the g-analogues of identities
of the Cayley-Orr type, can be deduced from (1.1). We also show
that (1.1) may be used effectively to prove the following trans-
formation:

(1.2)

α, qV a, -qV α, iq n, -iq n, -q n, q n, o; q; -aq

Va, — Va, —iaqί+n,iaq1+n, αq1+n, αq1+n

1+471 η

I
J

Ίβr

due to Andrews [2] which is his key result for obtaining the iden-
tities of the Rogers-Ramanujan type of modulus 11. In fact, we
shall prove the transformation:

i, c, e, -e, -q~n, q~n; q; H

ce

(1.3)

V a, — i/α, aq/c, aq/e, —aq/e, —aqι+n, aq1+n

*; q2]n[-aq; q]2n

Λ
Γ 2 2/ 2 21 4 ^

[a2q2/e2; q\

a"

α2

333

-q~2

a a
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which is a generalization of (1.2) and to which it reduces for β =
iq~n, c->0. (1.3) can be used with advantage for obtaining the
identities of Rogers-Ramanujan type related to the modulus 13, not
given, thus for. In the sequel, we also present a generalization of
(1.1) along the lines of a similar result of Burchnall and Chaundy
[9].

In § 4, we prove the ^-analogue of the summation theorem for
the nearly-poised 4

(2a - 2c)N(-e)N(1.4)

in the form

(1.5)

2a, l + a,e, -N:

a, 1 + 2a - e, 1 + 2e - N (1 + 2a - c)N(-2e)N

aq,e,
a, a2q/c, c

-iV.

= [α2/c2; gjivrtc"1; <?L[~-αg/c; g]N

[a2q/c; g]N[c~2; ?W-α/c; q]N

This result also gives the g-analogue of the summation theorem for
nearly-posed 3 F 2 , viz.

(1.6)
'2a, c, -N;

1 + 2a - c, 1 + 2e - N_
(2a - 2c)N(l + a - c)N( - c)N

on replacing 'a' by '— a} and then proceeding to the limits in the
usual way.

In this connection it may be of interest to note that Andrews
had obtained a ^-analogue of (1.6) in the form

(1.7)

?,c,q-N, -a^/e q;
4V8| „ . , , „ „ ,

; q]
Wqc^ q^ic-' qlx

, {(1 + ftV')(l - a*c-2q1+N) + a'qc-^l - qN

" α2c-2)(l + a'c-'q)

However, in view of the identity

x- + PI

< c, q'N, -aψ/c; q; g"]_ (1 + α) , Γ«2, - α ? , c, ςr^; ρ; ^

_a2q/c, c2qι~N, - a2q/c

_ q(l - age-1) \a
(1 + a'qc-1) \a

- a, a2q/c,

9 c, ) q; q2

(1.8)
= (1 + α)

a'gc-1) A9\-a,a*q/c,

o(l -

, -aq, c, g~N; g; g

(1 + a'gc-1) Icΐq/c, c2gι~N
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cqf g ^ g g"!7 J
(the last two series may be summed by g-analogue of Saalschϋtz
summation theorem), it is not difficult to show the equivalence of
the summation theorems (1.5) and (1.7). However, we prefer to
stick to the form (1.5) as it has the added advantage that it gives
the g-analogue of (1.4) as well as of (1.6) in an straight forward
form.

The summation (1.5) has been further employed for obtaining
two transformations connecting a terminating nearly-poised Saals-
chϋtzian 6φ5 into a terminating well-poised 12φn. It may be remarked
that Bailey in his book [7] has mentioned four known transforma-
tions of nearly-poised hypergeometric series [7; 4.5 (3-6)]. The
g-analogues of two of these [7; 4.5(3) and 4.5(6)] only were obtained
by Bailey [8]. The above two transformations deduced by us are
g-analogues of the remaining two transformations 4.5(4) and 4.5(5)
given in Bailey's Tract [7]. We conclude the paper by obtaining
the summation formula

(1.9)

α, Q^ a, -qVa,-^, ^q1+N, V' d, -V' d, Vdq, -Vdq, q~N; q; q
d d

aqft.
1; q]N[a2qd~u

f q]N '

which is a ^-analogue of a summation theorem for well-poised 7F6(Ϊ)
(different from the DougalΓs theorem) due to Bailey [7; Ex. 8, p.
98] (see also [6]).

2* Definitions and notations* If we let,

| g | < 1, [α; q]n - (1 - α)(l - aq) (1 - αcf"1), [a; q]0 = 1

and

[a; qh = Π (1 - aqr) ,
r=0

then we may define the basic hypergeometric series as

p+lψp+r

^ gi» - \
° [g; glnPiί g]« [K+r; q]n
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where the series p+1φp+r(x) converges for all positive integral values
of r and for all x, except when r = 0, it converges only for |a?|<l.

Further, we shall denote by

— Γalf a 2 , - - , a r ; q l , , . . . , , , ττ i1 - αigQ-"(l - arQ
j)

π k K . &. } p Bd-δ.βo d-ft.ίO

3. For obtaining the transformations used by Singh [13] to
obtain the ^-analogues of identities of Cayley-Orr, we begin by
setting b = ak, c= -aΨk2qN and d = q~N in (1.1) to obtain

^lα 2 ί ; i/ q, -cfkV q, aΨV J iΦ\{abk)% (abkf, a*¥q J '

Using the transformation [12; 8.3]

\a,b,c,q-N;q;q~\

Lβ, fir, h J

(3.2) Γi glΓiL gl

;̂ Q]N\ ̂ U Q

e e ΛΓ
—, - Γ , c, q N;q;q
a o

h

(where abc = eghq"'1) on both the sides of (3.2) (in the left hand
side with a -> a2k\ b -> -aΨk*qN, c->a\e-^ (abk)\ g -> tfkVq, h -+
— a2k\/ q and on t h e r i g h t hand side w i t h q —*• q*, a —*• o2, b —> (abkyq2N,
c -^ a2W, e —>• {abkfq, g —»• (abk)2, h —>• aιk'q), we g e t

a\b\ -q~N, q N;q;q

(3.3) [ kq 2' k'

f̂fc2; q%k™

L ,— q'~m q1-
α2

Again, using the transformation (3.2) on the right hand side of (3.3)
(with q -* q\ a -> α2fc2, b -> l/(α6&)2 ρ1-2^, c->Vk% e^b~2q2-2N, g-xt^q1-™,
h —> aΨk2q), we have

α2, δ2, -

—, -k-'q-"*—

(3.4)

x
7, {abkT2q2-2N, q~2N; q2; q*

~2q r 2"2 Λ r, (abkqf
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Once again using the transformation (3.2) on the right hand
side of (3.4) (with q -> q\ a -> Vk% b -* a?k% c -> (abkYq-*-™, e ->
(abkqf, g -• δ " γ - 2 * , Λ -> α^β*"**), we get

(3.5)

α2δ2&2, &-1ρ-JV+ - ί , -A - ^ - ^ + A

[α2fc2; g2]y[62fc2; q'UJabkqf; q%
[{abkf;

~a% b%

(3.5) is one of the results proved by Singh [13]. All the other
results due to Singh [13] may be deduced by applying the transfor-
mation (3.2) to (3.1) and (3.3) (see [1] for details).

Next, for proving (1.3), we start with the Watson's transfor-
mation [14; 3.4.1.5]:

a, qV α, -qV α, c, d, e, f, q~n; q; °LΪΪ1
cdef

(3.6)
nLef An

- V Ί L OQ OQ aq qQ Qi+n, v α, —, — , —, —, aq
c d e f

ca
efn-n aq aq
a c d

Reversing the order of the series on the right hand side of
(3.6), we obtain (on setting / = —e, d = —q~n):

a, Ϊl/T, -qi/~a, c, e, -e, ~q~\ q~n; q;
ceΔ

VT, -Vτ, 5Sf, 22, -52, -
e e e

-aqΠaq; q]n[e2; «2].Γ--91 + n; ϊ l
L C Δn

nL e

x
e a a

Ql-n gl-» (

, q-n;q;q
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X ,φ
a a

__C

 π-2n π-2n. ~2.

a

e a a

(using (1.1) w i t h α2 -> -αg/e 2 , 62-> - g~277α, c -> (c/a)q'n9

x 4φ

aq aq2 a2q2

 2n. 2. 2

e2 e e2c2

q2~2n a2q3 a2q2

(using (3.2) with q -> g2, a -* -arιq-2n, b -> c2α"2g"2n, c -> -αgβ" 2, β ->

Reversing the order of the series 4^3 in the right hand side of
the above expression, we get (1.3).

Furthermore, using (1.3) we prove the following three trans-
formations. These transformations on specialization yield identities
of Rogers-Ramanujan type related to the moduli 11 and 13:

X 4

(3.7)
-c*a,-2q-in, a-'q-

W;

to; ff].α - α)Γ^; ί l β*
LC Jn

r«v o«i

(3.8)
_ y.

and
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Γα4#4 #41 y 1 y 1 \βQ\ Qun+2r( ~ j(iin 6rqin

L A. * Λ, JOO _^^J ____*-! p « rt-i p J J*| Γ _i _L _LT / ^ i 9 _lo?-4-A*»-i-9\

(3.9)

[<?; ?]»Σ
»=0

Proof of (3.7). Setting β = iq~n in (1.3), we get

__-i

[q; gUl - a) Γ ^ ; q] [aY; «*],+,[«*; β 1 ] , ^ '

(3.10)

X AΦ<

", -q-2n,q~2n;q2;q2

l-c2a~zq-tn, a~ιq-in, a^q1-^

Now, in Bailey's transformation [14] choosing

_ [o; g].(l -

and
Γr O41 Γ^ /741 /y^/y48^1-

and evaluating </5n>, <7ra> by using (3.10) and following formula [15]

a, δ, c; q; ς

(3.11)

δ;
ab

TΓT
a '

e
V

e φi

(where, either α, 6, or c is of the form q p, p a nonnegative integer.
In case only c is of the form q~p then (3.8) is valid only if \ec/ab\<l),
we get (3.7) on letting x, y —> oo.

Proof of (3.8). In (3.10), letting

[αg;g.4n(--) Λ g~ 2 n 2 ^ [q~in; Q%qrir~

, we have

n Γ/v. ΛΊ (Λ s*nZr\( \r^2r/^{l/2)r{5r—l)
>rn [u-, yj r\i- — CHI ) \ — ) CL (/

r = 0 [g; g]r(l - β)[αV; g4]n+r[g4; g'ln-r

" -° [gj ? ] f [αV; g4]n+r[g4; gin-,

r = 1 [g; g]r[α*g*; g*]»+r[g4; g4]n-r
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= f [aq; g] f(-)V'g"W f l i f t"{(l -
= f

[q; q]rW; q%+rΛ<t\ <i%-r

or,

^ [aq; q]r(l - a2qir+2)(-)ra2rqa/'
/ i

>• ' /-ί A Λ\ / \m . . 9«2 m Γ

> 47i-j-2\Γ 4/y4. /^4l *^^Λ Γ/Ύ̂  /Y^l Γ/v* /Y^l

Next, in Bailey's transformation [14] choosing

8 [«*;«*]. ' ' [αV β*].' [ff Λ

δ« = [*; <?4],[2/; qi],aι'q*'/x'y and evaluating </3π>, <7n> by using (3.12)
and the g-analogue of Gauss'summation theorem [14; 3.3.2.5], we
get (3.8) on letting x, y —• oo.

Proof of (3.9). In (3.10), setting c ->• 0, we get

[og; gli. y to"4"; 94]rg2r

(3 13) [qi'' ffi]-iaV; 9 4 ] 2 J 1 ^° fe2; ί Ί ' t a ^ - * " ; 9l^

= y [a; g] f(l - ag 2 r )(-) arga/2)r(3r-1)

r=0 [g; ^] r(l — α)[α4#4; ^4]n+rte4» (?4]n-r

(3.13) may be rewritten in the following form (its proof follows on
the lines of the proof of (3.12))

r̂-ι [cic/, q\r\i. — a q )\ — a) q

However, in Bailey's transformation, choosing

_ 1 v _ 1 g _ [aq; g],(l - αY s+

[q; q]s

x8ys

and evaluating <βn>, <τn> by using (3.14) and the g-analogue of

Gauss' summation theorem [14; 3.3.2.5], we get (3.9) on letting

%, V -» °°

Identities of Rogers-Rarnanujan type related to the modulus 13.
(3.7) for c-> oof a = 1 and p = 0 yields
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f f [g;<?L
» » [g2; q(3.15) [q;q\~ r=a«=° [g2; g'Lfg4; q'W; g4k+2r

Π (i-gT1

n*0,6t7 (mod 13)

But, (3.7) for c-> oo, a = 1 and p = 1, gives

[<?4; g4]oo £ ^ b ; g k + 2 r ( - ) V n 2 + 3 r 2 + ^ - 4 π - 5 r

(3.16) [tfίtfL '=o»=o [q2; q2]r[q'; q%[q'; Q%n+2r

= Π (i - tf71)"1 + Π (i - β T 1 .
w*0,2,ll (mod 13) w^O,3,lO (mod 13)

On the other hand, (3.7) for c —> oo, a — q and p = 0, reduces to

(3.17)

[q\ Q% y y fa, q]in+2r+
Γ 1 '* ' ̂  •' ^ Γ 9 9Ί Γ

Π (1 - gT1

»*0,l,12 (mod 13)

Next, on setting α = 1, (3.8) yields

[g4; g4]

(3.18)
Σ Σ

7 . ^ Ί ( \w / y2n 2+3r 2+4nr+4n+3r
/> (Ihn+2r\~~) Q

Π (i - gr1

0,2,11 (mod 13)

Whereas, in (3.8) setting a = q'1 and using (3.15), we get

|7v4. ^41 ( oo oo Γ/v /Ύ! ^ \n/ Ύ2n2+3r2+4nr+8ra+7r+4

(3.19) [g;
1+ Σ Σ

r=0 ίt=0 [g 2 ;^

Π ( l - g")"1 •
w^0,5,b (mod 13)

Lastly, in (3.8) setting a = q and using (3.19), we have

4? ff4]°° i i _i_ y 1 y to> g]4n+2r + l("~) n g 2 n + 8 r + 4 n r + 1 2 n + U r + 8

(3.20) [g; g]
Π (l - g")-1

0,4,9 (mod 13)

Similarly the five identities of Rogers-Ramanujan type related to
the modulus 11 due to Andrews [2] may be obtain from (3.7) and (3.9).

In view of the above applications of (1.1), it may be of interest
to record a generalization of (1.1). In fact we prove that if α, 6,
e, f is of the form q"N, then

(3.21) c\ -ef, -efq
= Σ [g2; g 2 ] J c 2 ; g 2 ] 2 .

aΨ
_cq2n, -cqΐn, -efq2n
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(3.21) reduces to (1.1) for c = abV q.
We complete the proof of (3.21) by evaluating

S -

(3.22)
[q;q]Λc2;q2U-ef;q]r(abr

X

a~2q2~2r

9 b-ψ~2

in two different ways. Firstly, if we substitute the series defini-
tion of 302, change the order of summations and then diagonalize
the two series, we get

S = y [a2; Q2Ub2; q2]r[e; q]r[f; q]f<Pq-<

^ [ Ϊ ; QUO2; q%[-ef; qUab)»

I ϊ'q~% eqr, fqr; q; q

L~Q, ~efqr

Summing the inner 3φ2 by the ̂ -analogue of Saalschiitz summa-
tion theorem [14; 3.3.2.2], we get the left hand side of (3.21).

Secondly, we may rewrite (3.22) as

9 — V [β2> Q2\r\b2\ <f\r\β\ q]2r[f'> ffLr^ff^1"2^
r-° to; tfLto2; q2]2r[~ef; q]2r(

x

(3.23)

9 c, 9 \l 9

α 2 ' δ 2

Σ

X
q-ir Q-*r

a2 V

In the transformation

(3.24) 4,

-*.„. egq

e,g

(which is obtained from (3.2) by substituting for h and then letting
α-»°o), transforming the 3φ2 on the left hand side by the same
formula (3.24) (with e replaced by g), we get

(3.25)
-τ> c> [g;q]N\—;q

Γ— q] [e; ?L

— , c, q N;q;q
0

g, -V
e
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Now, using (3.25) for transforming the two 3φ2 series in (3.23)
[to transform the first of the two zφ2 in (3.23), we use (3.25) with
q->q2, N = r, e -»q2~ir/a2, e/b -> g2~4r/c2, c -> g1"21*, β/flr -> g"2r/&2 and for
transforming the second sφ2 in (3.23), we use (3.25) with q-*q2,
N = r, β -> g"47α2, β/δ -> g"47c2, c -> g-2'"1, c/flr -> g"2r~2/δ2], we get

S = ^ [O'2; gL[&2; g]2r[g; g]2r[/;

X

= V

2; q2

Writ ing t h e series definition for inner 3φ2 and t h e n interchanging
t h e order of summations of t h e two series, we get t h e r i g h t hand
side of (3.21).

If a or 6 is of t h e form q~N, e = x, f = o, t h e n (3.21) yields

α2 Λ2 /y»2 /γ2 c'g
= Σ

[α2; <fL[62;

X

[ g 2 ;

eg 2 7 1 , - e g 2 7 1

Λ; g ;

In which replacing α, 6, c, by q~N, q\ qc respectively and letting g->l,
we only get a terminating version of the following formula of
Burchnell and Chaundy [9; 5.7] (with x replaced by 1 — 2x):

a, b; Ax(l — x)'

c

(3.26)
Σ-
n=0

2a + 2n, 2b + 2n; x

c + 2%

On the other hand to obtain the non-terminating version of
(3.26), we start (3.21) by replacing e by -e,f=q~N and then



344 V. K. JAIN

replace α, 6, c, e by qa, q\ q% qe respectively and let q —• 1 to obtain

"α, b, e, — N;

c,he-N), λ(e-N+l)
Δ Δ

(3.27)
(a)nφ)n (a + b - c + γ)u(-N)tn4n

X
2a + 2n, 2b + 2w, —-ZSΓ -

In (3.27) on replacing e by i\Γ(l — I/a?) and letting i\Γ-> oo, we
get the non-terminating version of (3.26).

4* We begin this section by proving a ^-analogue of the
transformation due to Bailey [5; 2.5] in the form:

55-, a\/q, -aV' q, ^
q b

(4.1)

_ [ ^ g]α

h—,W<l, -bv'Q,
av q

=, abV q

provided \a2z\ < 1, |62^| < 1.

Proof of (4.1). Using the g-analogue of a nearly-poised summa-
tion theorem due to Bailey [8; (3)] in the form

- T O _ _ _ I»

—, bV q, -bVq, ——, q-n; q; q
q av q

κ ?

[ 2 i i r o 21 w

α g > q\r\β q\ q J J ^—> g
*; g]n

the left hand side of (4.1) may be rewritten as:

,^7' τ/7' α2
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= Σ
r=0

Lav q Jr jΓ *.

Summing the ^0, we get the right hand side of (4.1).
Augmenting parameters on both sides of ^-series (4.1) by using

g-beta transform [10], we get

Z-, aVq, -aVq, —£-, c,d;q;¥z
q oV q

(4.2)

= f

X
z; 9]»[β;«]»[/; g]» [β g» fqΛ

£, eq\ dq"; q; Vz

In (4.2) setting d — q~N, z = qb~\ f = aϊeb~1ίe~1q1~N and summing
the inner 3^2 on the right hand side by the g-analogue of Saalschiitz
summation theorem, we get

(4.3)

—, aV q, -aV' q, -4L,, c, q~N\q;q
q by q

yT VT ^' *' "7 eδ2

*1, &τ/7, -6vT, -4-,β,

_ [ec~u, qh[^a~2; q]N

[e; «]jr[eδ2c-ια-2; q]H

x

-
av q

_i/7' i/g' α2

(4.3) for N—>oo yields the ^-analogue of a non-terminating
version of a transformation due to Bailey [5; 2.51] in the form
(with e replaced by a2e):

[a2e;
[α'βc"1; q]o

(4.4)

f a be
bv q c

-
y q v q

_ We;
-1; q]β

•5^^

aV q
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On the other hand (4.3), for b = — 1, reduces to the summation
theorem:

" 2

—, a\/~q,c,q-N;q;q
Q

(4.5)

ac ql-

— q\ [ea"2;q]Nί

[e; q]N[
I

It may be worthwhile to remark that (4.5) could have been
obtained directly by transforming the Saalschϋtzian 4φ3 in (4.5) by
using (3.2) with a —> a2q~\ b —> αl/ q, e —> a\V q, g —> e and h —>

Now, if we specialize e = a2/c in (4.5), we get (1.5) (on replacing
a by

Next, using the summation theorem (1.5), we can prove the
(/-analogue of a transformation of Bailey [7; 4.5 (4)] in the form if
k = a2qjbcd t h e n

Γα, q\/~a, 6, c, d, q~N; q; q

'J ,— aq aq aq a2

J 7 Ί ¥

Γ * ^ Ί Γ^2. J Γ *ff Ί
L α J^L a JNL V a ΛN

[kq; q]N[k2a~2; q] \ q

(4.6)

~k, qVk, -qλ/k, —, —, —, qV a, -V a, Vaq,
a a a

a

Ί / T - Ί / T
 α ^ aq aq

6 c cί
q

y

1/ α

:t k y — ,

α

Further replacing "i/"α" by "—l/~α" in (4.6), we get the q-
analogue of another result of Bailey [7; 4.5(5)].

Proof of (4.6). Using the ^-analogue of DougalΓs theorem [14;
3.3.1.1] in the form

807,

k, qVT, -qVT, ̂ , &, ^,ar,rnlQ;'
a d d

τ/T - τ / T aq aq aq ka1~n ka1+n

V to, V fay -~-~, t Z" f \L , i^H

b c d d
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[kg; q]n[b; q]n[c; q]n[d; q]n

±; g] \ψ; g] Γ^; gΊ \ψf g]
k ΛnLo ΔnL c ΔnLd Δn

we may rewrite the left hand side of (4.6) (denoted by S) in the
form:

N [a; «],[?!/ a; q]n [-|; ί

n=° [q; q\n\V a; q]n[a2k-ψ N; q]n[kq; q]n

Irh Iff* \cfi
tv\J lv\J fi/Vϋ n

a d d

X

b c d a

N [k; q\r[kq\ q\ Γ^; q] Γ^; q\ Γ^; g] [a; qlr W a; q]r

y Lg JrLg JrLα AT

; q%[f, q\ [f, q\ [f, q~[ [kq; q]»

^"' 4
k

summing the inner 4̂ 53 by (1.5), we get the desired result.
Lastly, we prove the formula (1.9).

Proof of (1.9). In view of the g-analogue of DougalΓs theorem
in the form:

a, -qV a, c, dqn, eq~n, kqn, q~n; q; q

Π — I / T Γ a q a a1-71 a π1+n aπι~n ππι+n

af v a, — 9 —q , — q , —q. > wq
c d e k

^;q] \ψιg]ee Δϊn Lae Δn

«2; q] \W. ql N . q-] Γβg. ql μ. J
c ΔnL e J2n L cde ΔnLce ΔnLa Δn

(where k = cfqίcde)'1), we have

Γ^;q] \ψ;el Γ^;?1 [d;q]Jk;β]J<r*; ίLff"
^ Lα ΔnLde ΔnLce J2«

,q]J^;q] β
Le 2



348 V. K. JAIN

(4.7)

Id; qUk; q]nΓ-2SL; q\ ["-£; q] [q-*; q]nq
Λ

L cde JnLa An

X βΦ;

\ [ l
e -in L e

a, qVά, -qV~a, c, dqπ, eq~n, kqn, g""; q; q

c d e k

N

Σ
r=0

X

[a; q]r[aq2; q2]r[c; q]τ[d; q]2r[k; q]2r[q~N; q]rq
r

— q\ \—><l\ [d2a~2q-N; q]r[aq; q]2rc
r

a a

^qί+2r, aq1+2r, $-, d2a~2q~N+r

e e

In (4.7) taking c — a/d, k = aq/e and then summing the inner
302 on the right hand side by the g-analogue of Saalschϋtz summa-
tion theorem [14; 3.3.2.2], we get (1.9).

I am grateful to Dr. Arun Verma for suggesting the problem
and for his helpful discussions during the preparation of this paper.
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