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THE OPERATOR EQUATION AX-XB = C
WITH NORMAL A AND B

ALLEN SCHWEINSBERG

A necessary and sufficient condition for the solvability
of AX—XB=C was given by W. E. Roth for finite matrices
and by M Rosenblum for selfadjoint operators A and B on
a Hilbert space. Here the result is extended to include
normal operators and finite rank operators on Hilbert space.

l Introduction* In [6] W. E. Roth proved for finite matrices
over a field that AX — XB = C is solvable for X if and only if the

matrices Q D and Q # are similar. A considerably briefer proof

has been given by Flanders and Wimmer [4], In [5] Rosenblum
showed that the result remains true when A and B are bounded
selfadjoint operators on a complex, separable Hilbert space. In the
present paper the theorem is extended to include finite rank oper-
ators and normal operators on Hilbert space. We give an example
to show that normality cannot be weakened to quasinormality.
Finally, when A = B the following is true, even in the absence of

normality: if Q A and L i are similar, then C is a commutator.

2. The normal case* We begin with a lemma.

LEMMA 1. // ς» m \ is an invertible operator acting in the

usual way on the direct sum of Hilbert spaces S(fx 0 Jgf, then SS* +
TT* is invertible on

Proof. Let W=[f f][f f]*. Now SS* + TT* is bounded
below. For if | | /J | = 1 and lim \\(SS* + TT*)fn\\ = 0, we would
have

lim || T71 / 2(O0/J||2 = lim(TF(O0/J, (0 0 / J )

contradicting the invertibility of Wm. Since SS* + TT* is
Hermitian and bounded below, it is invertible.

This lemma is also a direct consequence of [3, Corollary 1],

THEOREM 1. Let A and B be bounded normal operators on
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complex Hίlbert spaces S2fx and 3%\ respectively. Then AX — XB=

C has a solution X if and only if \Q D and n B a r e

operators on f φ

Proof. Since [{ - * β β * ] - [£ AX - X*], M £ o f

theorem is immediate.

Conversely, assume similarity. Then Γ^ ψϊfi #1 = [(f I? i f f Ί
where Γf ^ Ί is invertible. Consequently QA - AQ ^CS, RB-AR =

CT, SA = 5S, and T£ = ST. The Putnam-Fuglede theorem implies
A S * = S * B and T*B = BT*. Also BSS* = SAS* = SS*B, so B
commutes with both &S* and TT*. Now

= (QA - AQ)S* + (RB -
= (QAS* + RBT*) - (AQS* + ART*)

The lemma shows that SS* + 2Ύ* is invertible. Since the inverse
commutes with I?, we arrive at C = AX — XB for X = — (QS* +
RT*)(SS* + ΓΓ*)-1, and the proof is complete.

This theorem does not hold for all operators. The following
example, similar to one given in [5], shows that the normality
hypothesis cannot even be weakened to quasinormality. Let A=Z7,
the unilateral shift, B = 0, and let P = I — UU*. Then we have
the similarity

U* -ITU OΎU I

P ίί 0 O O P

U I

0 0

but clearly for no X does I = UX - X0.
Not surprisingly, the order of the diagonal entries is critical.

The theorem holds for A = 0 and B = U, because

C = 0(-Cί7*) - (~CU*)U for every C .

Later we will see that the theorem is true for A = B = U, as well.
In spite of the example given above, the normality hypothesis

can be weakened somewhat. For example A and B need only be
similar to normal operators, as can be seen from the next theorem.

THEOREM 2. Let <& be the collection of pairs of operators (A, B)

for which AX — XB = C has a solution X if and only if Q β\ and

Q jo are similar. Suppose (A, B) e &. Then



THE OPERATOR EQUATION AX-XB=C WITH NORMAL A AND B 449

( i ) (Au J5J e ^ if A1 and Bt are similar to A and B respec-
tively.

( i i ) (B*, A*) e«r.
(iii) (A"1, B~x) eW if A and B are invertible.
(iv) (A + λJ, B + λJ) 6 •g5" /or αW complex X.

Proof. ( i ) If S-'ΛS = A, T-'B.T = 5, and

A, 0

_0 Bt

, σ
0

OTA OTS-1 0 1 „ [S OTA S-'CTTS-1 0

o ΓJLO BJL o τ - ι } R lo rJLo J? JL o rT-1

then

R-

Since (A, B)e<έ? we get S^CΓ = AX - Xβ for some X. Then C=
SAXΓ"1 - SXBT-1 = A^SXT-1) - {SXT~ι)Bλ.

[ B* C~\ ΓB* 0 Ί ΓA C*Ί

0 A* is similar to Q A* r t h e n 0 5 i s s i m i l a r

t o Γ^ ίΠ Thus, C* = AX - XB, i.e., C = £*(-X*) - (-X*)A*.
Lυ ^J ΓΛ-I n η r 4-1 Λ Ί

(iii) If o B " 1 a 0 B~ι\ a r e s ^ m ^ a r > ^ e n their inverses,
Γ(ί ^ Ί C 5 ] a n d Γ ^ B ] a r e s i m i l a r S o -ACJ5 = A X - XB, or C =
A X X X B 1

(iv) This is clear, since the relevant equations remain valid if
A and B are replaced by A — Xl and 2? — λl.

3* The finite rank case* First we observe a lemma which in
general would be false without the assumption of finite dimensionality.

LEMMA 2. // ΪQ1 |Π and [Q1 JΠ are similar operators on

and Sίf-L has finite dimension, then Ax and Bx are similar.

Proof. Let A = Γ^1 Jjl B = Γ^1 JΊ, and ft = dim ^ . Denote
nullity and rank by v and p respectively. If λ Φ 0 then v(Ax—λ/)n=
v(A - λl)n = v(JS - Xl)n = V(JB! - λl)71 for all natural numbers w.
Also

Γ) = A: - p(Aΐ) = k - p(An) = Jc - ρ(Bn) = k -

Since v(Ax — λJ) n = v(-Bx — Xl)n for all λ and n, Ax and Bx are similar.

THEOREM 3. Let A and B be finite rank operators on complex
Hilbert spaces. Then AX — XB = C has a solution X if and only



450 ALLEN SCHWEINSBERG

A 0 isβ I is similar to L* β

Proof. Observe that each finite rank operator A on a Hubert
space έ%f is unitarily equivalent to one of the form Λ * Λ where
A1 operates on a finite dimensional space. Simply write <§ίf as
3tf[ Θ ^ t where gίf^ is finite dimensional and contains the ranges
of A and A*. In light of Theorem (2i) we may assume that A and

B are already in this form. Then the assumption that π n is
VA CΊ •- -

similar to L β\ becomes

A,

0

0

0

0

0

0

0

0

0

B,
0

0"

0

0

0

is similar to

Ax

0

0

0

0

0

Ca

0

c2ct

0

Equality of ranks requires that C4 = 0, C2 = AiX2 and C3 = —XzBι

for some X2 and X3. Next observe the similarity

1 0 0 X2

0 I X3 0

0 0 1 0

0 0 0/

Ά, 0

0 0 -

0 0 B

0 0 0

0

0

0

T O O - X 2

0 I - X 3 0

0 0 1 0

0 0 0 I

A, 0 Cx 0"

0 0 0 0

0 0 5,0

0 0 0 0

After row and column interchanges we obtain the similarity of

0 B

0 0

0 0

0 0 0'

Bt 0 0

0 0

0 0

and

, d 0 0

0 A 0 0

0 0 0 0

0 0 0 0

Lemma 2 implies the similarity of Q 1 g and jr1 1

original theorem for finite matrices implies
some Xt. Finally

and Roth's

for

c 2

i.e., C--= AX- XB.

0 0 Xs 0 oj'

3. The case A = B. If we set A = B in Theorem 1 then it
becomes a statement about commutators in the range of the deriva-
tion ΔA(X) = AX- XA.
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THEOREM 4. Let A be a bounded normal operator on a complex

Hiϊbert space. Then n Λ and Λ A \ are similar if and only if

C is in the range of the derivation ΔA.

Once again normality cannot be weakened even to quasinormality,

because the theorem fails for A = ~ ~\ where U is the unilateral

shift. Note that, as in the earlier example,

u
0

0

0

0
0

0

0

0
0

u
0

0~
0

0

0_

is similar to

~U

0

0

0

I

0

0

0

0

0

U

0

0"

0

0

0_

which, via a row and column interchange, is similar to

U 0 0 Γ

0 0 0 0

0 0 ί/0

. 0 0 0 0 .

But clearly L Λ is not in the range of ΔA.

If A = B - U then all is well.

THEOREM 5. Let U be the unilateral shift. Then TJX— XU' =

C if and only if\n τj \ is similar to\ Q JJ .

Proof. As usual, one direction is immediate. Suppose though

that Q rj is similar to L p . Then, with procedure and notation

as in the proof of Theorem 1, U commutes with S and T, operator

entries in the invertible matrix o j , . Invertibility implies the

existence of operators Y and Z for which SY + TZ — J. Let fe
Γ*/. So

(| |Y*| | 2+ | |^*| | 2) 1 / 2(| |S*/il 2+ I|Γ*/||2)1/2- Since S and T commute
with the shift, they must be analytic Toeplitz operators. The
inequality | |S*/ | | 2 + | |T*/ | | 2 ^ ε 2 | |/ | | 2 for ε > 0 implies the existence
of additional analytic Toeplitz operators W and X for which SW+
TX = I ([1]; Theorem 6.3). So, again as in the proof of Theorem
1, C = C(SW+ TX) = (QU- UQ)W + (RU-UR)X=(QW+RX)U-
U(QW + RX), and the proof is complete.

In general, while similarity of L> . and Λ j need not imply



452 ALLEN SCHWEINSBERG

that G is a commutator in the range of ΔA, it is true that C must
be some commutator.

THEOREM 6. Let A be a bounded operator on a complex Hilbert

[ A C~\ VA OΊ

Q A \ is similar to\ Q A \ , then C is a commutator.

Proof. If Sίf is finite dimensional then of course Roth's theorem
implies the present one. Suppose dim £ίf = fc$0. Recall that in [2]
Brown and Pearcy characterized commutators on infinite dimensional,
separable Hilbert spaces as all those operators not of the form λ l +
K where X is a nonzero scalar and K is compact. Thus it suffices

A XI + i Π _ _ * i_ _._.,_ ^ [A 0"to show that j?

the contrary that

cannot be similar to Suppose on

[A1

_0

0"

A_

A XI + K

0 A

Then i

0, 1, 2,

where i ^ is compact, for n —

In fact if / is any analytic function, then

'f(A) 0

0
S =

-f(A) Xf'(A) + K

. 0 f(A) .

where K is compact. Now, letting
norm, we see that

be the Calkin algebra

Γ/(A) Xf'(A) +

L 0 f(A)

aA is compact.
For

i.e., e But
In particular let f{z) = eaz. Then W
large | α | this implies ||βαA[^ = 0,
invertible and cannot be compact.

Finally suppose dim Sίf > £ζ0. Then again the noncommutators
are those of the form Xl + K where λ Φ 0 and K belongs to a
certain proper closed ideal [2; Theorem 4]. The preceding argument
with obvious modifications handles this case as well, and the proof
is complete.
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