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THE OPERATOR EQUATION AX —XB=C
WITH NORMAL A AND B

ALLEN SCHWEINSBERG

A necessary and sufficient condition for the solvability
of AX—XB=C was given by W. E. Roth for finite matrices
and by M. Rosenblum for selfadjoint operators A and B on
a Hilbert space. Here the result is extended to include
normal operators and finite rank operators on Hilbert space.

1. Introduction. In [6] W. E. Roth proved for finite matrices
over a field that AX — XB = C is solvable for X if and only if the

matrices [64 g:! and [64 g] are similar. A considerably briefer proof

has been given by Flanders and Wimmer [4]. In [5] Rosenblum
showed that the result remains true when A and B are bounded
selfadjoint operators on a complex, separable Hilbert space. In the
present paper the theorem is extended to include finite rank oper-
ators and normal operators on Hilbert space. We give an example
to show that normality cannot be weakened to quasinormality.
Finally, when A = B the following is true, even in the absence of

normality: if [64 g] and [OA X] are similar, then C is a commutator.

2. The normal case. We begin with a lemma.

LEmMMmA 1. If [g ?ﬂ is an 1nvertible operator acting in the

usual way on the direct sum of Hilbert spaces 57, P 57, then SS*+
TT* is invertible on 57,

Proof. Let W—[Q ‘?{][g }Tﬂ* Now SS* + TT* is bounded

below. For if ||f,]| =1 and lim ||(SS* + TT*)f.|| =0, we would
have

lim [| W0 D f) |I° = lim (W (0D f.), (06D £.)
=1lim ((SS* + TT™*)f,, f.) =0,

contradicting the invertibility of WY. Since SS* + TT* is
Hermitian and bounded below, it is invertible.

This lemma is also a direct consequence of [3, Corollary 1].

THEOREM 1. Let A and B be bounded normal operators on
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complex Hilbert spaces 57, and 5%, respectively. Then AX — XB=
C has a solution X if and only if [64 Ig] and [61 g] are similar
operators on S, P 7.

Proof. Since [g —‘%JI}? g:”:g ‘){l = |:64 AX %XB ], half of the

theorem is immediate. ~

Conversely, assume similarity. Then [g ?,][64 g = [64 gJ[g g]
where g ]{FIE’] is invertible. Consequently Q4 — AQ =_ICS, RB— AR =
CT, SA = BS, and TB = BT. The Putnam-Fuglede theorem implies
AS* = S*B and T*B = BT*. Also BSS* = SAS* = SS*B, so B
commutes with both SS* and TT*. Now

C(SS* + TT*) = (QA — AQ)S* + (RB — AR)T*
= (QAS* + RBT*) — (AQS* + ART™)
= (@S* + RT*)B — A(QS* + RT*).

The lemma shows that SS* + TT* is invertible. Since the inverse
commutes with B, we arrive at C = AX — XB for X = —(QS* +
RT*YSS* + TT*)™, and the proof is complete.

This theorem does not hold for all operators. The following
example, similar to one given in [5], shows that the normality
hypothesis cannot even be weakened to quasinormality. Let A=TU,
the unilateral shift, B=0, and let P=1— UU*. Then we have

the similarity
[U*—I}[U 0}[U I]_[U I
P Ujlo oloU*| |0 o]’

but clearly for no X does I = UX — XO0.
Not surprisingly, the order of the diagonal entries is critical.
The theorem holds for A = 0 and B = U, because

C=0~-CU* — (—CU*)U for every C.

Later we will see that the theorem is true for A = B = U, as well.

In spite of the example given above, the normality hypothesis
can be weakened somewhat. For example A and B need only be
similar to normal operators, as can be seen from the next theorem.

THEOREM 2. Let & be the collection of pairs of operators (4, B)
for which AX — XB = C has a solution X if and only if [64 g] and

[64 g} are similar. Suppose (A, By e &. Then
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(i) (A, B)e<Z if A, and B, are similar to A and B respec-
tively.

(ii) (B*, AM)eZ.

(iii) (4™, BYeZ if A and B are invertible.

iv) (A 4+ A, B+ N)e& for all complex .

Proof. (i) If ST"AS=A, T7'B,T = B, and

R_I[Al 0 B [Al C} ’
0 B, 0 B
then

R_{S OJ[A o][s-l 0 J . [s OJ[A S‘ICT][S*I 0 ]
0 T|0o B o T |0oT]o B 0 7"
Since (4, B)e & we get S7'CT = AX — XB for some X. Then C=
SAXT — SXBT~* = A(SXT~) — (SXT)B.. ]
*
(i) If [BO lﬁ] is similar to [B;) X*}, then [6‘1 A ] is similar
to |4 0] Thus, C* = AX — XB, i.e., C = B*(—X*) — (—X*)A*.

0 B 2 5
(iii) If [‘% 1BC_1 and [‘% Bo_l] are similar, then their inverses,

[64 _‘%CB] and [64 g} are similar. So —ACB = AX — XB, or C=

AX — XB™,
(iv) This is clear, since the relevant equations remain valid if
A and B are replaced by A — I and B — Al

3. The finite rank case. First we observe a lemma which in
general would be false without the assumption of finite dimensionality.

Lemma 2. If [641 8] and [gg t 8] are similar operators on SZ,P
&4 and 57, has finite dimension, then A, and B, are similar.
_JTA, 0

Proof. Let A = [0 O]’ B = [‘1)31 8], and k = dim 5#. Denote

nullity and rank by » and p respectively. If A # 0 then y(A,—\I)"=
V(A — M) = (B — AN)" = v(B, — AI)" for all natural numbers n.
Also

YA =k — p(Al) =k — p(A") = k — o(B") = k — p(B") = »(BY) .

Since v(A4; — A" = v(B, — AI)" for all » and n, A, and B, are similar.

THEOREM 3. Let A and B be finite rank operators on complex
Hilbert spaces. Then AX — XB = C has a solution X if and only
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if [64 B?:' 18 similar to [64 g}

Proof. Observe that each finite rank operator A on a Hilbert

space &7 is unitarily equivalent to one of the form OAI 8:] where

A, operates on a finite dimensional space. Simply write 5# as
S, P 54, where 57, is finite dimensional and contains the ranges
of A and A*. In light of Theorem (2i) we may assume that A4 and
B are already in this form. Then the assumption that [A O] is

0 B
similar to [64 1(-13] becomes

A,000 A, 0C, G
0oo0o00}. . . 00C, C,
is similar to
00B,0 00B 0
0000 00 0O

Equality of ranks requires that C, =0, C,=4,X, and C, = —X,B,
for some X, and X,. Next observe the similarity

IOOXZ(AlO C, AXJIO0O 0 —-X, A 0C 0

ozxao)oo—nglo 0I-X, 0 | 0000
0010[00 B, 0 [00I 0| | 00BO|
00 0 IJo00 O 0 Jloo o I 0000

After row and column interchanges we obtain the similarity of

A 0 00 A, C, 00
0 B 0O 0B, 00
and .
0 0 00 0000
0 0 00 L0000
Lemma 2 implies the similarity of A4, 0 and [Al Cl], and Roth’s
10 B, 0 B,

original theorem for finite matrices implies C, = 4, X, — X,B, for
some X,. Finally

[Cl CQJ _ (AIXl — X,B, A X,] _ J"Al O“H_X1 X, [Xl X[}FBI 0"‘
¢, ¢l | -XxB 0, 00/ X o |X o0/00’

i,e.,, C=AX — XB.

3. The case A =B. If we set A =B in Theorem 1 then it
becomes a statement about commutators in the range of the deriva-
tion 4,(X) = AX — XA.
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THEOREM 4. Let A be a bounded normal operator on a complex
Hilbert space. Then I:OA X:l and [OA g] are similar if and only if
C is in the range of the derivation 4,.

Once again normality cannot be weakened even to quasinormality,

because the theorem fails for 4 = I:g] 8] where U is the unilateral

shift. Note that, as in the earlier example,

Uooo UIO0O
0000, . . . 0000
00 T 0 is similar to 00T 0
0000 0000

which, via a row and column interchange, is similar to

UoolIr
0000
00U O
0000

But clearly [8 (IJ is not in the range of 4,.
If A =B = U then all is well.

THEOREM 5. Let U be the unilateral shift. Then UX — XU =

C if and only if [g] g] is similar to [5] 0].

Proof. As usual, one direction is immediate. Suppose though

that [g] 8:' is similar to ]:(E] 8} Then, with procedure and notation

as in the proof of Theorem 1, U commutes with S and T, operator

QR

entries in the invertible matrix S Tl Invertibility implies the

existence of operators Y and Z for which SY + TZ =1. Let fe
2. Then f=Y*S*f+Z*T*f. So |[fIIZ Y*[I[S*Fl+IZ* |1 T*f]l =
Y*IE+ NZ* D) S*FIIF+ | T*FI1HY2.  Since S and T commute
with the shift, they must be analytic Toeplitz operators. The
inequality [|S*f||* + ||T*f|* = €*|| f|* for ¢ > 0 implies the existence
of additional analytic Toeplitz operators W and X for which SW +
TX = I ([1]; Theorem 6.3). So, again as in the proof of Theorem
1, C=CSW+TX)= QU — UQW + (RU-UR)X=QW+RX)U —
UQW + RX), and the proof is complete.

In general, while similarity of 1:64 g] and [OA X] need not imply
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that C is a commutator in the range of 4,, it is true that C must
be some commutator.

THEOREM 6. Let A be a bounded operator om a complex Hilbert

space 57, If [‘61 g] 18 similar to [64 X], then C 18 a commutator.

Proof. If 57 is finite dimensional then of course Roth’s theorem
implies the present one. Suppose dim 57 = \W,. Reecall that in [2]
Brown and Pearcy characterized commutators on infinite dimensional,
separable Hilbert spaces as all those operators not of the form A\I-+
K where )\ is a nonzero scalar and K is compact. Thus it suffices

to show that [64 M Z K } cannot be similar to [64 AO] Suppose on
the contrary that

A0 [A N+ K
S S = .
oas=lo
Then S 6‘“ A(’)‘ S = [én )mA"zn+ K"] where K, is compact, for n=
0,1,2, .--. In fact if f is any analytic function, then

S{fﬂ) 0 }S= [f(A) NF(A) + K]
0 f(4) 0 (4

where K is compact. Now, letting || |, be the Calkin algebra
norm, we see that

" A) M f(4) + K
Il = s+ Rlos |19 S E
< 1SS LA

In particular let f(z) = ¢**. Then ||ane*|, < ||S7*|,]|S!,||e**|l;. For
large |a| this implies ||e*4|, =0, i.e., e** is compact. But ¢ is
invertible and cannot be compact.

Finally suppose dim 57 > &R,. Then again the noncommutators
are those of the form Al 4+ K where »# 0 and K belongs to a
certain proper closed ideal [2; Theorem 4]. The preceding argument
with obvious modifications handles this case as well, and the proof

is complete.
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