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CARLESON MEASURES FOR FUNCTIONS ORTHOGONAL
TO INVARIANT SUBSPACES

BirLL ConN

Let D={z: |2]<1} be the unit disk. Suppose ¢ is an inner
function with singular support K and let M*=H’Q¢pH?
where H? is the usual class of functions holomorphic on D.
If ¢ is a positive measure on D, the closed disk, which
assigns zero mass to K, then call ¢ a Carleson measure for
M* if for a ¢>0,

§|f12dy§cnfu;

for all fe M*. (Here and elsewhere, ||f]. denotes the H*
norm of an H*® function.) In this paper the Carleson
measures for JM* are characterized for all inner functions
¢ such that for some ¢, 0<:<1, the set {2:|¢(2)|<e} is com-
nected.

If ¢ is a positive measure on D, then recall that ¢ is a Carleson
measure if there is a positive constant ¢ such that

HERI) = eI,

where I is an arc on the unit circle with center ¢ and length |I|,
and R(I) is the “curvilinear rectangle” {re*:1 — |I|/2r < r <1 and
16 — 6, < 1/2]I]}.

In [2], Carleson proved that there is a constant ¢ > 0 such that

[l 7@ rdp@ s el £

for all fe H? if and only if g is a Carleson measure.

Clearly, any Carleson measure is a Carleson measure for M:.
Functions in M*, however, can be better behaved than typical H?
functions. Thus one is lead to suspect that there are more Carleson
measures for M* than just the Carleson measures alone. This in
fact turns out to be the case.

For the sake of simplicity, we state an abridged version of our
main result.

THEOREM. Suppose @ is inner and {2:|®(2)| < &} is connected
for some &, 0 <e<1. Let pt be a measure which assigns zero mass
off T\K, where T is the unit circle. Then t is a Carleson measure
for M* if and only if, for some constant ¢ > 0,
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for all &€ D.

Now, it is easy to see that a measure g on the unit circle T
has the property that

7 e < el £t

for all fe H?® if and only if d, = bdf where b is a bounded function.
In this case,

L lef g, o
ST |1 — &e" | H=o

for all ¢e D. Thus one can see how the situation changes when
dealing with M* instead of H:

This paper is divided into four sections. The assumption that
{z: |@(2)| < €} is connected implies that @ is a covering map onto
the annulus {w:e < |w| < 1/¢}. This is proven in §1. In §2 the
covering map hypothesis is used to characterize those Carleson
measures restricted to certain subsets of {z:e < |@(®)]<1}. A
corollary of this characterization is that for ¢ < 6 < 1, arc length
on {z: |p(z)| = 6} is a Carleson measure. In §3 we prove a theorem
about M+ functions which is the key to our main results. Essen-
tially, we show that M* functions belong to a Hardy space of
functions defined on a larger domain than the disk. Section 4 con-
tains some examples and applications.

The measures we consider are always positive measures, even
if we do not specifically say so. The constant “¢” which appears
in various theorems changes each time it is used in a different
context. If F and E are sets, F\E denotes their set theoretic
difference. The symbol F' denotes the closure of F, and 6F denotes
the topological boundary of F.

This paper has benefited greatly from correspondence and con-
versation with P. R. Ahern and C. Belna. It is a pleasure to thank
them both.

1. Recall that any inner function @ has the form
= —\ 1tz
®(z) = ¢B(z) exp < ST - zda(n)) ,

where |¢| =1, B is a Blaschke product, and ¢ is a positive measure
on T which is singular with respect to arc length measure. Let



CARLESON MEASURES 349

K be the closure of the union of the zero set of @ and the support
of o; K is called the singular support of .

For any complex number 2,z # 0, define z* = 1/2. Let 0* be
the point at « on S?, the Riemann sphere. Then z* is the reflection
of z through the unit circle. If EF < S% let E* = {z*: 2€ E} be the
reflected set. The equation

P(R)P(zF) =1

defines an extension of @ which is holomorphic on S*\K*. Thus,
for t > 0, the sets

D, = {#z: @ is holomorphic at z and |@(2)| < t}
form a collection of open sets such that

D, D, for t<s
and

UD,=8S\K*.

>0

If 0 <ex1, let A,,. be the annulus

A ={wie < |w| <1/e}.
Define
R, = {z: @ is holomorphic at z and & < |@(2)| < 1/¢} .

Then R, = U3.2,, where the 2, are the distinet connected com-
ponents of R.. (The union may be finite.) We will be interested
in the situation that D, is connected for some ¢, 0 < & < 1.

THEOREM 1.1. Suppose for some ¢, 0 < e <1, D, is connected.
If TNK+# @ then R, = Uz, 2, where:

(i) each 2, is a simply connected set which is symmetric
with respect to T,

(ii) the map p: 2,— A, .. is o covering map.

Proof. Fix n. Let 2,€¢02,: we may suppose z,¢ T. Consider
the case where |z,| < 1.

Let I'. be the set {z: 2] < 1, |®(z)] =¢}. Thus z,€I.. Observe
that ¢’ never vanishes on I, since D, is connected. Let v be the
component of I, which contains z,. Since D, is connected and TN
K+ @, 7 is not contained in ‘D. Thus 7 is a simple arc whose
closure intersects T'N K. It is well known that either ¥ N T consists
of one point or two points.

In the first case, ¥ is a Jordan curve, and D, must consist
entirely of the region which 7 bounds. Thus R, = 2,, 02, = YU7*,
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and (i) holds.

If 7 contains two points, then v divides D into two components,
one of which must contain D,. The other component is entirely
contained in 2,. It follows ¥ U ¥* is a Jordan curve, and 2, is the
simply connected region which 7 U ¥* bounds. Thus (i) is true.

If the original point 2, lies outside of D, then |®(z,)| = 1/c. By
considering zF, for which |@(z§)| = ¢, and repeating the arguments
above, we complete the proof of property (i).

To prove (ii), let «: D— 2, be a conformal map of the unit
disk onto 2,. Since 02, is a Jordan curve, 4 extends to a homeo-
morphism of T. By symmetry we may assume that

@) Yy{w:|lw| =1, Imw >0}) =02,ND

®) y{w:|w| =1, Imw < 0}) =2, N D*.

Let g(w) = @(4(w)). Then ¢ < |g| < 1/e, and therefore ¢ is an outer
function. Furthermore,

l9(&)| = ¢

for ce TN {Im¢g > 0}, and
l9(@] = 1/e

for e TN{Im¢ < 0}. This proves that g: D— A, . is a universal
cover. Since 4 is conformal, the theorem is proved.

As a corollary of the proof of Theorem 1.1, we make the fol-
lowing observation.

COROLLARY 1.1. If D, is conmnected, then D . is simply con-
nected.

Proof. We first show that D,, is connected. Clearly, D < D,,..
Let zeD,.. Then zc R, and hence, ze€2,, for some n. By the
proof of Theorem 1.1, 2, N D # @. Thus D,,. is connected.

To show that D,. is simply connected, it suffices to show that
S?D,, is connected. But the map z — z* defines a homeomorphism
of S\D,, and D.. Since D, is connected, so is D.. This finishes
the proof.

It may occur that K < D. In this case, ¢ is a finite Blaschke
product and we have the following result.

THEOREM 1.2. Suppose @ is a Blaschke product with m zeros,
counted according to multiplicity. If D, is connected then the map
@: R, — A, .. 15 an n:1 covering map. Furthermore, D,. is simply
connected.

Proof. Since @ is a finite Blaschke product, we need only show
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R, contains no point where ¢’ vanishes. But if @'(z) = 0 for some
2z such that ¢ < |p(2)| < 1/e, it follows that D, has at least two
components. This is a contradiction. The rest of the proof is
elementary and is omitted.

We finish this section with an observation which will prove
useful later.

COROLLARY 1.2. If D, is conmected and ¢ < & <1, then D, is
connected.

Proof. By Theorem VIII. 31 in [8] any component of D, is
simply connected and if + is a conformal mapping of the unit disk
onto one such component, then s = 1/6 @(y) is an inner function.
Since |s| takes values less than ¢, D, intersects every component of
D,. Thus D, is connected.

We immediately get the next result.

COROLLARY 1.8. If D, s connected and € < 6 <1, them D,, is
simply connected.

2. Suppose s€ H*, and ||s]l.<1. Let 0 <e<1 and set 4,,=
{w:e < |w| < 1}. Suppose further that s:s™*(4.,) — 4., is a cover-
ing map. The main result of this section is a characterization of
Carlson measures which take all their mass on certain subsets of
57 (4A.,0).

Let |z] = (1 + ¢)/2 and set B(z, 1 — ¢)/2) equal to the open disk
centered at z with radius (1 — ¢)/2. Since s is a covering map, we

have
s‘1<B (z, 1 2_ ¢ )) =UG,,,

where the C,, are pairwise disjoint and s:C,,— B(z, (1 — ¢)/2) is a
homeomorphism. Let & be the collection of all such C,,, where z
ranges over the circle of radius (1 + ¢)/2.

We prove the following theorem.

THEOREM 2.1. Let F be a compact subset of A., and let t be
a measure on D which assigns zero mass off sT'(F). Then the
JSollowing conditions are equivalent:

(i) e is a Carleson measure.

(ii) There is a constant ¢ > 0 such that SC |8'(z)|dp(z) = ¢ for

all C,.cZ.
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Proof. Since F is compact, it is contained in the finite union
of noneuclidean disks of the form

NGz, 1) = {& |T5§§-§-] <}

We may also assume that for each N(z, ), there isant, r <t <1,
and a z, |z| = (1 + ¢€)/2, such that

NGz, 1) S Nz, 8)  B(%, 1 - )

Thus we may assume that g assigns zero mass off the set
§7H(N(zo, 7).

Write s7'(N(z,, 7)) = UG,, and s'(N(z,, t)) = U R,, where G, S
R, and s: R, — N(z,,t) is a homeomorphism. Let a, be the point
in G, for which s(a,) = z,, We make the following observation.

LeMmA 2.1. The sequence {a,} is uniformly separated.

Proof. Let h(z) = (z, — s(?))/A — z,8(z)). Then {a,} is the zero
set of h, and |h| = 7 on 0G,. Let B, be the Blaschke product with
factors a,/|a,| (@, — 2)/(1 — G42), k #* n. Then | B,| never vanishes
on G,. Furthermore, for z<€dG,,

|B.(2)| = |h(2)| = 7.
It follows from the minimum principle that
| By (@) =7,

and the lemma is proved.
Define the measure 6, to be point mass at z. We have the
immediate corollary; see [2].

COROLLARY 2.1. The measure v = >,0,,- (1 — |a,[) is a Carle-
son measure.

Let I be an arc on the unit circle with center ¢ and length
[I|. For m > 0, define mI to be the arc with center ¢“ and length
m|I|. The next lemma enables us to compare g to v.

LEMMA 2.2. Suppose condition (i) of Theorem 2.1 1is true.
Then there are constants ¢, > 0 and m > 0 such that

(1) #@G,) e —|a,l’) for all n.

(2) 2f Iis an arc on T and RI)NG, = O, then G, & BR(mlI).
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Accepting Lemma 2.2, for the moment, we show that condition
(ii) implies condition (i). For I an arc on T we have

pERI) = 2, B N G)

= > (G,
G.NRI) + @ .

Since Lemma 2.2 is in force, G,NR(I) # @ implies a,c R(mI).
Thus

MBI = e,I‘Z(Jm”#(Gn)
= > e @—la,]

anetc(ml)
= c(R(ml))
= 017(7))'/”7/']1‘ ’

where 7(v) is the Carleson constant for v. Thus g is a Carleson
measure.

We now prove Lemma 2.2. Fix w. Since & is a 1:1 map of
R, onto the disk {w:|w| < t} we may choose a branch of 2" such
that

9(z) = h7'(2/t)

maps the unit disk onto R,. By the Schwarz-Pick theorem, if z,
2,€R,,

Y 2, — %
>s) 1 2
( 1—2z2,

< l h(zl)/t _ h(zz)/t
T 1 = th()h(zy)!

If z, and 2, are restricted to G, we see that

(**) 2, — %,
1— 22,

=c¢<1,

where ¢ depends only on 7 and ¢. It is not difficult to see that for
an m depending only on ¢, if 2z,€ R(I) then N(z, ¢) € R(mlI). This
establishes (2) of Lemma 2.2.

Next, equation (**) yields a g8 > 0, independent of %, for which

_ 2
inf l——ﬂz— = 5.
21,2256“1 —_ ‘zz‘

In particular, if z€ @,, then

1 > B

L—[zF ~1—Ja,l*’
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Now let z,— 2, = z in equation (*) and use the last inequality
to conclude that

IB(2)] = A — (/)

=S T1 2P
o 8L — ()t
- 1_|an;2

for all zeG,. Since

’ —_ 1—]2(,'2 ’
YO =T sy O

we see that for some constant ¢, > 0,

[s'(2)| = i—_——l—n-l—?

for all ze@G,.
Finally, by this last inequality and condition (ii) of Theorem 2.1,

(G,) - —|—? < SG I$G) dp < ¢ .
This proves (1) of Lemma 2.2, and the theorem in one direction.

To show that condition (i) implies condition (ii), observe that
n(C,,) < u(G,) for some n. By the proof of Lemma 2.2, if z€G,,
then for a constant ¢, > 0,

2 < &
1—1{z " 1—]e,f

Furthermore, G, & N(a,, ¢). If ¢ is a Carleson measure then for a
constant ¢,, depending on ¢,

UN(a,, o) = ¢;.- 7)1 — |a,[) ,

where 7(z) is the Carleson constant of x. Thus

Sck s@ldpe < | 1v@lap= | ~—--—“°'|<sz' A7)

= 1"‘_|ni2 1@, = ——m#(N(am 0) = cs-c- () .
This proves the theorem.

As an application, suppose @ is an inner funection and D, is
connected. Let e <d <1 and set I' = {z:|p()| =6}. Let g be
arclength measure on I'. By Theorems 1.1 and 1.2 we may apply
Theorem 2.1, with @ in place of s, to g. Since for any C,.€ &,
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|, 19@ldu@ =  19@dl sz,
Cnyz I'ney,,
we have the following result.

COROLLARY 2.1. Let @ be imner and D, comnected. Then if
€< 6 <1, arclength on {z: |9(2)| = 6} is a Carleson measure.

In §1 we showed that under the hypotheses of Corollary 2.1
D,,; was simply connected. In fact, more is true.

THEOREM 2.2. Let @ be inner and D, connected. Then if € <
6 <1 and |9(0)| < &, 0D,; 18 a rectifiable Jordan curve.

Proof. We first prove that oD, is a Jordan curve.

Let R; be defined as in Theorem 1.1, and write R, = Uy, 2.,
where the 2, are the components of R,. Let 7, = 02,\D. Then if
J,=2,NT and F = T\U J,, we see that

a.Dl/azFU lj’yn.

Let «,:J, — 7, be a homeomorphism which fixes the endpoints
of J,. Define the mapping of T onto 42,, by the formula

, a,(e?), if e?eJ,
a(e’) =1 e

e, if e?ec F'.
We must show that « is continuous. It suffices to do this for ¢“ ¢
F. This amounts to showing that if a sequence of arcs J, approach
¢, then the associated ares v, must approach e¢*. If this fails to
be the case then there is a cluster point of the ares 7,, z, such
that 2, # ¢. If |z] <1 then it follows that |p(z,)| =4, and z,€
I'={z:12| <1, |9()|=6}. As in §1, @ never vanishes on I.
Thus there is a ball centered around 2z, which I" divides into two
regions; on one of those regions |@| > 4, and on the other |p| < 4.
This contradicts the assertion that z, is a cluster point of the arcs 7,.
If there is no 2, with |z,] < 1, and z, # ¢, then it is easy to

see that

lim |p(re™)| < 0

for all ¢ on an arc connecting z, to ¢?. Since @ is inner, this is
impossible. Thus « is continuous at ¢, and 02, is a Jordan curve.
Turning to the rectifiability, it isn’t hard to see that « has
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total variation
HMH=§WA+W%

where |7,| denotes the length of the arec v, and |F'| denotes the
measure of F. Sinece « ¢0dD,,;, by Corollary 2.1, ||da| < . This
proves Theorem 2.2.

REMARK. It follows from the rectifiability of 0D,, and Theo-
rems VIII 30 and 31 in [8], that |F'| = 0. Thus arclength measure
on 082, is equivalent to arc length measure on 02,,\T.

3. In this section we characterize Carleson measures for (pH?)*
in the case that D, is connected.
For £e D, define the function

_1 - 9@
K.(z) = T
Then K.,e M* and
o 1 — |p@)f
K. |2 ==—12s/ 1
I K = 112

See [1], page 194 for the proofs. Let g be a measure on D which
assigns zero mass to K. Let p, be the restriction of g to D,
Then if 0 <0 <1,

K@ e = - | T ame)

Suppose ¢ is a Carleson measure for M*. Then the last ine-
quality yields

¢ >S1—E”

> Ll
A—oy = L—&p

where ¢ is independent of £ It follows that g; is a Carleson
measure for D. Conversely, if p, is a Carleson measure for D,
then g; is a Carleson measure for M*. We have proven the follow-
ing lemma.

LEMMA 3.1. The following properties are equivalent:
(i) p is a Carleson measure for M*.
(ii) (a) y; is a Carleson measure for D and

(b) ¢ — pt; is a Carleson measure for M*.

We turn, therefore, to the problem of characterizing Carleson
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measures for M* which assign zero mass to K U D,.

Assume that 0 < e < d < 1. Then D,,; is simply connected and
we may choose a conformal map ¢: D— D,;. Let o =07

Suppose g is a measure on D which assigns zero mass to KU
D, and set g, = |¢'|g¢t. Then if E C D, the equation

V(&) = t(o(E))

defines a measure on D. We prove the following theorem.

THEOREM 3.1. The following properties are equivalent:
(i) The measure v is a Carleson measure.

(ii) The measure pt is a Carleson measure for M*.
(iii) There is a constant ¢ > 0 such that

Sa(c ) [P'@1du@) = o

for all sets C,,€ &, where & is the collection defined in Theorem
2.1 with s = dp(o) and -0 in place of &.

Proof. We show first that (i) implies (ii). If fe M+, then it
is well known that f has a holomorphic extension to D,;. See [4].
We need an explicit expression for f(z2) when |z| > 1. Since fe M+,

S Bf-5d6 =0
T
for all be H*. Thus
of = e “h a.e. [df]
where he H®. For all 2z, [z| = 1 define

(1) Fl(z) = sv(z)—i—ﬁ(l/z) :

Then F(e¥) = f(e¥) for ¢”¢ K and it follows that F(z) = f(z) for
all z¢ KU K*. Equation (1) will imply that f is well behaved on
D,;.

To make this precise, let T, be the circle of radius 1 — 1/n
centered at 0, and set C, = o(T,). Then E*D,;) is the class of
analytic functions defined on D,,, which satisfy the condition

lim | | £G)Flde] < = .

The space E* is closely related to H*(D). In fact fe E*D,,) if and
only if
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flo(w))o'(w)'? = g(w)

for some ge H*D). For a full discussion, see [5], pages 168-169.
Since dD,,; is a rectifiable Jordan curve, o' ¢ H'(D), and the
measure on T given by |o'(w)||dw]| is arclength measure for 6D,,.
Since g and ¢’ both have radial limits a.e. [df], it follows that
lim,_, f(o(re”)) exists a.e. [df]. Thus we may write

lol = | lo@)riaw] = | |£Gw)rlow)]|dw]
=\, 1F@ridl .

Thus E* is a Hilbert space with norm defined by the equation

Ifls =, 1F@FIdal,

and g — f is an isometry of H® onto E®. Recall that F =0D,,NT
is a set of measure 0. Thus

Il =1, 1r@Fldal.
9Dy/s\r
These observations and equation (1) are the key to the next lemma.

LeMMA 3.1. If fe M* then the extension of f to D, belongs to
E*D,;). Furthermore,

IS e = el £

where ¢ is independent of f.

Proof. Suppose feM*N H=. If f and h are related by the
equation

f=@e®h a.e. [do],

then ||k]le = || f|l. Thus equation (1) shows that f is bounded on
D,;. Since o'c H, fe E*. We calculate || f||%: using the fact that
f is continuous off the singular support of ¢, and the fact that
arclength on I = {2: |p(z)| = 0} is a Carleson measure. Thus

| () | m(1/7) P2
\T |z

1Fl= 1, If@Pdsl =

1/8

= 15| Ine)Plawr = Lkl = LIk

where 7 depends only on the Carleson constant of |dw| on I'. This
shows that the conclusion of the lemma is valid for M+ N H*. Since
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linear combinations of the functions K, are dense in M*, M*‘N
H> is dense in M*. A standard argument proves the lemma for
all of M*.

We complete the proof that condition (i) of Theorem 3.1 implies
condition (ii). Since ge H® if and only if g(w) = f(e(w))a'(w)"* for
fe E?, it follows that

[l7@Pdp@ = 90w rdvw) .
If v is a Carleson measure, then from the last equation,

[l7@rap = 7@ llgls = 70) 11 7 e = Yo 1 £

Thus dg is a Carleson measure for M*.

We next show that condition (iii) implies condition (i). Let
s(w) = op(o(w)). Then by the results of §1, s:s7'(4.,) — A, IS
a covering map. Observe that v assigns zero mass off {w:é* =
|s(w)| < 0}. By Theorem 2.1 v is a Carleson measure if and only
if for some ¢ > 0,

SC [s'(w)|dv < ¢

for all C,,c&. (Here, the “¢” of Theorem 2.1 is replaced by “s6”.)
But

Sc 18'(w)|dv=§ )3-|<p'(z)]dp.

o(Cy,

Thus (iii) implies (i).
All that remains is to prove (ii) implies (iii). We must find
some constant ¢ such that

. Ielde=e.

(O, 2)

Recall that g assigns zero mass to KUD, Let N,,=0(,,)N
{£:0 = |9()| =1}). Thus N,, is a component of ¢~'(R), where R is

the intersection of the closed annulus {w:d < |w| =< 1} and the open
ball B(67'z, (1 — €6)/26). It is enough to show that

S lP'lde < c.
Nn.z
We need the following lemma.

LEMMA 3.2. Let C,,€%. Suppose £€N,,, arg @(§) = arg z,,
and |p()| = 0. Then there is a constant c,, independent of C,.,
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such that

1—lef

! < ¢, | K(2) P —12—
Jor all ze N, ,,.

Proof. Let o7 denote the branch of @' for which @;*(®(8)) =
&. Set T, equal to the circle of radius ¢ centered at the origin
and let @ be the radial projection of @(¢) onto 7.. Suppose £ is
the simply connected region bounded by the unit cirecle and the
line tangent to T, at a. Let ¢g:2 — D be a conformal map of Q2
onto the disk such that g(p(&) =0. Then f= @ log™ maps the
disk into itself. By the Schwarz-Pick theorem,

0@ = ||
for ze p;'(2). Thus

1 — |gp@) ) = L =160A — |2[)

|1~ &zP
and
11— (e 1= le@F_ 2  |[1—2@e® [* _1—]|&f
1— @[ 1—[2F “1-06 | 1-% 1— [p@F

for ze p;*(2). If zisrestricted to N, ., then (1—|g(@(2))|?)/A—|2(z)|*)
is bounded away from zero by a constant independent of z,. Since
9" = A — |pR) /1 — |2]), the lemma is proved.

To complete the proof of Theorem 3.1 observe that (ii) implies
that for some constant ¢,

1_|$|2 K 2 <
| T Kl = o

for all £eD. Choose C,, €% and ¢ as in Lemma 3.2. Then

Iy, lP@las@ 5 |, o T Ll K e < =

This completes the proof.
We complete this section by characterizing Carleson measures
for M* in terms of the growth of the function

[ 1—ep
h(g) = SIT_—E—ledp(z) .

THEOREM 3.2. Let @ be an inner function and suppose D, is
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conmected. If pt is a measure on D which assigns zero mass to K,
then the following properties are equivalent:

(i) p is a Carleson measure for M*.

(ii) There is a constant ¢ such that

e < —¢
© =170

for all £€D.
(iii) (a) p, is a Carleson measure for D, where ¢ < 6 <1, and
(b) There is a constant ¢ such that

NI
for all N,,,.

Proof. We have already shown that (i) and (iii) are equivalent.
That (i) implies (ii) follows easily from the inequality

: 1= e@F
1K@ rape) < o - L12ZDL

We turn to the proof that (i) implies (iii) (a).
Let I be an arc on T of length |I|. We must find ¢ such that

HKEBI)ND,) £ clIf.

For e D, ¢ # 0, define I, to be the arc on T with center &/|&|
and length 2(1 — |£]). There is a constant v such that

1— P ep
(2) T 2D

for all ze R([,), and all ¢e D.

Let S, = R(I) N D; and set a, = max,.;, (1 —|&]). Choose g€,
such that 1 — |g|=17/8 a,. Proceeding inductively, suppose S,
S, -+, 8, and &, &, ---, &, have been chosen. Let S,,, = S\R(,)
and set a,,, = max..,,, (1 — |£]). Choose &,,, such that

1 - i§n+1' .Z 7/8an+1 .
In this fashion we obtain a sequence {£,} such that
8, = URW.)
=1
and

S1-l6l<alll,

n=1
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where ¢, is a constant independent of I.
Condition (ii) and inequality (2) yield
1

15[ A-laly
[,t(Sl) = ; #(R(IE”)) = 29 = 2 SR(Q ) |1 - E’n |2 ,J(Z)

C < c- e
s Z51-lal = 22,

Thus p; is a Carleson measure.
To show that (ii) implies (iii) (b), observe that with ¢ and N, .,
related as in Lemma 3.2,

1— &P

|1 — &z
for all ze N, .. Thus (iii) (b) is an easy consequence of property

(ii). This completes the proof.

Sc-|9'(2)]

4. DPerhaps the most representative example occurs when p(z)=
exp(— (1 + 2)/(1 — 2)). In this case, D, is a disk tangent to T at
the point 1, and Theorems 3.1 and 3.2 are in force.

One calculates that

2|p@)|

lP'(R)| = 1 f

Suppose ¢ is a measure on 7 which assigns zero mass to {1}. It
follows from Theorem 3.2 that p is a Carleson measure for M* if
and only if

Slﬂlgo’ld#éc

for all ares I, of the form
= (¢"/n + 1, €"/n) ,

where n = +1, +2, ---.
Simple estimates show that this is the case if and only if

R
I, 7],
This leads to the following result. For fe M*,

S max]| f(2)[* - ——<c AL

n=-—c0 ze€l,

This may be regarded as a generalization of a theorem of Clark;
see [3], pages 176-177.
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More generally, let E be a closed compact subset of D with
zero capacity. Let @: D— D\E be an analytic universal covering
map. Then ¢ is an inner function; see [6]. If E < {z:|z]| <¢g},
then it is not hard to show that D, is connected. Thus Theorems
3.1 and 3.2 apply to this clags of inner functions.

Now suppose that @(z) = 2. Then M*' is the span of the funec-
tions 1, 2, 2% ---,2"". Let we LYT),u = 0, and suppose u has the
Fourier expansion 3>, c.e™. If f(z) = X2 a,2™, then fe M* and

|, 7@ Fu@]dz| = 3w an

The expression on the right is a finite section Toeplitz operator.
If we take the supremum over all {a,, a,, -- -, a,_,} such that >,|a,[*=
1, then we obtain the largest eigenvalue of the form. On the
other hand,

su
fEM—L,fBlI2=ISTl S Pudf

is the “Carleson constant” for the Carleson measure for M*, udd.
Observe that for any ¢,0 < e <1, {2:|2]|" < ¢} is connected. If we
choose ¢ = 1/4 and 6 = 1/2, then applying Theorem 3.1 we see that
if .~ is the collection of ares I,

I — (eiﬂn" eiﬂn-l—iz/n)

then for a constant ¢, independent of =,

S | flPudd £ ¢ -7,
T

where v, = sup,e/ng u-ndf and f ranges over all (z"H?)* functions
I

with norm less than 1.

Thus we obtain order of magnitude estimates for the largest
eigenvalue of finite section Toeplitz operators. These results can
be compared with the asymptotic estimates, in the case where u
satisfies more restricted hypotheses, found on page 72 of Grenander
and Szego, [7].
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