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ULTRAFILTERS AND MAPPINGS

TAKESI ISIWATA

We give characterizations of closed, quasi-perfect, d-, Z-, WZ-,
W*-open, N-, WN-, W,N- and other maps using closed or open ultra-
filters and investigate relations between these maps and various proper-
ties as generalizations of realcompactness, i.e., almost-, a-, c- and wa-real
compactness, cb*-ness and weak cb*-ness. Finally we establish several
theorems about the perfect W*-open image of a weak ch* space and its
application to the absolute E(X) of a given space X.

We characterize closed, Z-, WZ-, N- and WN-maps by closed ultra-
filters in §1 and show that ¢ is W*-open iff ¢*9l is an open ultrafilter for
each open ultrafilter U in §2. In §3, introducing the notion of *-open
map, we show that Bo is open iff ¢ is a *-open W, N-map iff there is U”
with *QL? = ' for each g € BY, each V7 and each p € (B¢)'q. In §4,
we discuss invariance concerning CIP of closed or open ultrafilters under
various maps and establish invariances and inverse invariance of various
properties as a generalization of realcompactness under suitable maps in
§5. In §6, we give several theorems about the perfect W*-open image of
weak cb* spaces which contain, as corollaries, known results concerning
the absolute E( X) of X.

Throughout this paper, by a space we mean a completely regular
Hausdorff space and assume familiarity with [3] whose notion and
terminology will be used throughout. We denote by ¢: X — Y a continu-
ous onto map and by BX(vX) the Stone-Cech compactification (real-
compactification) of X and by B the Stone extension over X of ¢. In
the sequel, we use the following notation and abbreviation. N = the set of
positive integers, CIP = countable intersection property, nbd =
neighborhood, 7 = a closed ultrafilter converging to p. We denote by
F(AU) a closed (open) ultrafilter on X and by &(V) a closed (open)
ultrafilter on Y. ¢*F={E C Y; ¢"'E € ¥ and E is closed in Y}. Simi-
larly define ¢*Ql.

1. Closed ultrafilters.

1.1. In the sequel, we use frequently the following results.

() If p € Nclgy 9 '67= N{clyx 9 'E; E € &%), then there is F7
with ¢*%? = &9. For, @= {¢'EN F; E € &% F € N(p)} is a closed
filter base where N( p) is a closed nbd base of p in BX. Obviously & — p.
Thus any %7 containing @ has the property ¢*%? = &9. It is easily seen
that the same method above can be applied to open ultrafilter and
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Z-ultrafilter respectively i.e., if p € Nclgy @' VI(Nclgy @' Z7), there is
UP(ZLP) with *U? = V(¥ Z? = %")

(2) For x € X, a closed ultrafilter &% convergmg to x is unique and
% = {F; x € F and F is closed}. Obviously {x} € ¥. It is easy to see that
X is normal iff for each p € BX, a closed ultrafilter % converging to p is
unique and & = { F; p € clgy F and Fis closed}.

(3) Forp € BX,a Z—ultrafilter Z? is unique and Z7 = {Z; Z is a zero
setand p € clgyZ}.

1.2. Letp: X - Y, (Be)p = q,p € BX and q € BY.

(1) Nely 9" F7 = (g},

) qf‘&sq C P o g P = &9,

(3) Nelgye™'&7 C (Be)™ g

4 ﬂcl px® 6" =clgy @y fory € Y.

(5)(p#67 Colecl(oF) NE+#* @ for FE%? and E € &9.

(6) There is 5* such that *F7? is a closed ultrafilter iff there is &9 with
p € Nclgyp'&°.

Proof. (1) It suffices to show that ﬂclﬂyq)# %7 consists of only one
point. Let g, € Mclyy @*F” (i = 1,2). Then there are disjoint closed
nbd’s ¥, and V, of ¢, and ¢, in BY respectively, so X N (Be)~'V, € §7
(i = 1,2), a contradiction.

(2) Obvious.

(3) If r € Nclyyo 67— (Be)™! g there is §" with ¢ '&67 C ¥ by
1.1(1) and (2) above. This shows ( 8¢)~!g 3 r, a contradiction.

(4) From {y} € &”.

(5) =). From cl(pF) € ¢*F? for F € 7. <). Let K € ¢*%? — &4,
Then ¥ = ¢ 'K € $7?. Since K & &9, there is E € 69 with KN E = &,
ie., cl(pF) N E = ¢, a contradiciton.

(6) =). Let &7 = ¢*F?. Then ¢~ '67 C 7, s0 p € Ncly @ '67%. «).
From 1.1(1).

1.3. DerFINITION. We recall that ¢: X — Y is a Z-map if ¢Z is closed
for every zero set Z and ¢ is a WZ-map if (Be)~'y = clgy@'y for each
y € Y. It is known that a closed map is a Z-map and a Z-map is WZ [12].
Woods [21] introduced the notions of N- and WN-map. ¢ is an N(WN)-
map if (Bo)~! clgy R =cly + 9 'R for every closed set (zero set) R of Y. An
N-map is WN and WZ. In the following, we characterize maps mentioned
above by closed ultrafilters.

THEOREM 1.4. Let ¢: X - Y.

(1) @ is WZ iff there is % with ¢*F? = &” for each y € Y and each
P E(Be)'y.

(2) @ is a Z-map iff there is F¥ such that Z € %7 and ¢o* = & for each
y € Y, eachp € (Bo)~'y and each zero set Z withp € clgyZ.
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(3) The following are equivalent:
(i) @ is closed.
(i) *F is a closed ultrafilter for any .
(iii) There is %? such that F € $? and ¢*%? = &” for each y € Y,
each p € (Bo)™" and each closed set F withp € clgy F.
(4) The following are equivalent:
(i) @ is an N-map.
(i) (Be)'q = Nclyy @ '& for each q € BY and each &°.
(iii) There is F? with o*%F? = &7 for each q € BY, each &7 and each
P €(Bp)'q.
(5) The following are equivalent:
(i) ¢ is a WN-map.
(i) clgy ¢™'Z9 = (Bo)~'q for each q € BY.
(iil) *Z? = Z7 for each q € BY and each p € (Bp)™q.

Proof. (1) =). Since ¢ is WZ, we have (Bp)'y = clgx¢™'y and
(Be)'y = Nclyy97'6” by 1.2(4). Thus there is 7 with ¢*F? = &” by
1.1(1) «). For each p € (Bp)~'y, we have p € Ncly,e'&” by 1.2(6).
Since Nclgy97'&” = clgy @'y by 1.2(4), (Be)™'y C clgy o'y, so (Be)~'y
= clgy @'y which shows that g is WZ.

(2) =). Let p € (Bp)~'y and Z a zero set with p € clz, Z. Since g is a
Z-map, ¢Z is closed, so y € ¢Z. On the other hand, ¢y = XN
(Nclgx¢'6”) by 1.2(4). If p € X, then there is 7 with ¢*F? = &” by
1.2(6) and since p E X, p € Z so Z € ¥?. Now suppose p & X. Since
y EE for E € &” and ¢Z D y, we have Z N ¢ 'E = @. We shall show
p € Nclgy(Z N ¢7'E) for E € &”. Suppose contrary. There is a zero set
K of BX such thatp Eintgy Kand K Nclg (Z N @ 'E) = 8. Z' =K N
Z# @ and p EclgyZ’, but y & ¢Z’, a contradiction. Thus there is
%7 > {Z N ¢ 'E; E € &”} by 1.1(1). Obviously ¢~'&” C 7, so ¢*F? =
&Y and Z € 7. «). Let Z be a zero set and y € cl pZ — ¢Z. Then we
have p € clgy Z N (Be)~'y, so there is 7 with Z € §7 and ¢*F? = &”.
Since {y} €&%, ¢y €F?,but Z N ¢”'y = @, a contradiction.

(3) (1) = (i1) = (iii). Evident. (iii) = (i). Suppose that there is a closed
set F of X with y € cl(pF) — @F. Then K = clgx F N (Bp)™'y # . Let
p € K. By (iii), there is F € §? with ¢*%? = &”. Since {y} € &’ and
F € 7, we have F N ¢!y * & which is a contradiction.

(4) (i) = (ii). Since ¢ is an N-map and g € clgy E for each E € &7, we
have (Bp)~'q C N(Be)'clgy &= Nclyy97'&9, and hence (Bo)'q =
Mclg » @ '&7 by 1.2(3). (ii) = (iii). From (ii) and 1.2(6). (iii) = (i). Suppose
that there is a closed set E of Y with K = (B¢)™! Clgy E — clBXq)"E *= .
Let p € K and (Bp)p = q. Then g € clzy E. Let E € &9. Take §7 with
¢*F? = &9. Since p & clyy ¢ 'E, we have ¢”'E & F7, a contradiction.

(5) This is proven by the analogous method used in (4) above.
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2. Open ultrafilters.

21. Letg: X » Yand (Bp)p = q,p € BX, q € BY.

(1) Nelgye®AU? = NclgyeU? = {g}.

Qo' VIiCcAU? o ¢*UP = V4.

(3 Nclgye™ VI C Nelgye7(cl V) C (Bp)7'g.

@D e*U? CVisoUNCcVH# D forUEWUP and V € V1.

(5) There is U such that 9*U? is an open ultrafilter iff there is V4
with p € Nclgy @™ V7.

The proof of 2.1 is obtained by the same method used in 1.2. By
1.1(1), “if part” of 2.1(5) implies that there is U2 with *U? = V9. As is
shown by 2.2 below, it is not necessarily true that if there is V7 with
p € Nclgye'(cl V), then there is WP with p*UP = V7.

EXAMPLE 2.2. Let X = [0, 1) ® [1,2] and Y = [0, 2]. Define ¢: X - ¥
by @(x) =x for x € X. Let V93 [0,1), g=1€Y. Then p=1¢€
Nclgy@7'(c1 V) and any AU” contain (1,2] and hence ¢*AU? 7 V7 (cf.
3.1 below).

LEMMA 23. Let *U? CVI, U U =UP, V € VI= Vand let us
put B(U,V) = U N ¢ \(cl V). Then we have

(1) Int B(U, V) € Q.

) Ifcp#"lbg Yand V N oU = @, thenintcl(clV N oU) = &.

(3) If o*U = YV, then intcl(eU) € V.

Proof. (1). By 2.1(4), B(U,V) # @. Suppose S = int B(U,V) = @.
U— B(U,V)isopenin U, soin X. Since (X — clU) U (U — B(U,V)) is
dense in X and 9 is prime, we have U — B(U,V) € A. But ¢”'cl V' N
(U—B(U,V))= &, and hence clV N (U — B(U,V)) = &, a con-
tradiction by 2.1(4). Thus S # @. If S & AL, there is W € Q with W N
S = @. This implies S N W = int(U N o (cl V) N W) =
in(UN WnNel(clV)) =int BWUN W,V) = &, a contradiction.

(2) Since V N U = @ implies V' N cl(pU) = &, we have

cd(eUNclV) CceoUNclV Ccl(eU) N (clV—V),
sointcl(eU N clV) = @.

(3) If intcl U & V, we have Y — cl U € <V, so X — ¢ ' cl(pU) €
AL, a contradiction.

THEOREM 2.4. ¢*QU? is an open ultrafilter iff intcl(@U) % @ for
Uear’.
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Proof. =) Let ¢*QL? = V9. Then this follows from 2.3(3). <). Sup-
pose ¢*qL? - V4 for some g € BY. Put AU = AU? and V= V9. There is
VeYN—o¢*U with VN oU= @ for some U €. By 2.3(1), W=
int BWU,V) €U and oW N V = @, so intcl(eW) = & by 2.3(2), a
contradiction.

2.5. DEFINITION. ¢: X — Y is said to be a W*-open map if cl ¢U is
regular closed (i.e., cl(int(cl pU)) = cl pU) whenever U is open [8]. This is
a generalization of an open map. We use this notion in the following.

THEOREM 2.6. Let ¢: X — Y. The following are equivalent:

(1) @ is W*-open.

(1") Cl @U is regular closed whenever U is a basic open set of X.

(2) Int(cl pU)) #* D for each non-empty open set U of X.

(2") Int(cl U) # B for each non-empty basic open set U of X.

(3) Int(cl ¢”'V) = int ¢~'(cl V') for each open set V of Y.

(4) * QU is an open ultrafilter for any .

(5) There is U? such that *AU7? is an open ultrafilter for each q € BY
and eachp € (Bp)™g.

(6) (Bo)'qg= U{Nclpxo™'V; Vis an open ultrafilter converging to
q} for each q € BY.

Proof. (1) =>(1")=(2) ©(2) and (4) = (5) are evident. (2) < (4).
From 2.4 (5) & (6). From 2.1(3, 5).

(2) = (3). It suffices to show int ¢ 'cl¥V C cl(¢~'V). Suppose x €
int ¢7!(c1¥) — cl(¢~'V). There is an open set W S x such that W N
c(¢'V)= @ and W Cint ¢ '(clV). Then V N oW = &, s0 V' N cl oW
= . On the other hand, oW C clV, so int(cl W) C cl ¥V — V and hence
intcl(pW) = @, a contradiction.

(5) = (2). Let U C X be open and x € U. Then any open ultrafilter QU
converging to x contains U. There is AU such that ¢#*dQ* is an open
ultrafilter by (5). Thus intcl U #* & by 2.4.

(3) = (2). Suppose that there is an open set U with intcl oU = . Let
us put V=Y —cloU. Then cl¥ =Y and inte'(cl1¥V)= X. But
int(cl ”'V) N U = @, a contradiction.

(2) = (1). Let U be open and put K = clint(cl pU). Suppose y € U
— K. Then there is an open set W >y with KN clW = J. Since
T=UN¢'W+# @ and cloT CclW N cloU, intcl(¢T) C int(cl W)
N int(cl pU) = @, a contradiction. Thus U C K and hence cl pU C K,
ie., cloU = K.



376 TAKESI ISIWATA
3. *-open mappings.

3.1. DEFINITION. ¢: X — Y is said to be *-open if int(cl pU) D @U for
each open set U of X. An open map is *-open but a *-open map is not
necessarily open by 3.2 below. A *-open map is W*-open by 2.6 but a
W*-open map is not necessarily *-open by 2.2 in which it is easy to see
that ¢ is W*-open. Let U=[1,2] C X. Then U is open in X and
int(cl pU) = (1,2] 2 U =[1,2], so ¢ is not *-open (cf. 5.6 below). We
say that ¢ is a W,N-map if clgy@ 'R = (Be)' clgyR for every regular
closed set R of Y [10]. X is almost normal [17] (k-normal [16]) if each
regular closed set is completely separated from each closed (regular
closed) set disjoint from it.

ExaMmpPLE 3.2. Let P be the set of rational numbers in [0,1], X =
[0,11® P, Y=1[0,1] and ¢(x) = x € Y for each x € X. Then ¢ is not
open. To show that ¢ is *-open, it suffices to prove that int(cl pU) D U
for each open set U of P. Let U C P be open. There is an open set
W C[0,1] with P N W = U. W is the union of countably many disjoint
open interval W, = (a,, b,). Put P,=P N W,. Obviously cleP, =
[a,, b,] and int(cl P,) D P,, so int(cl pU) D @U, i.e., ¢ is *-open.

THEOREM 3.3. Let ¢: X — Y. The following are equivalent:

(1) @ is *-open.

(2) Clo™'V = ¢ ' cl V for each open set V of Y.

(3) Nclgy @' V? D clgy @'y for each y € Y and each V.

(4) There is WP with 9*UP =V for each y € Y, each p € clgy 'y
and each V.

Proof. (1) = (2). Suppose that there is an open set V of Y with
x €EplclV —clo'V. Take an open set W 3 x disjoint from cl o'V,
Since V' N cl oW = @ and ¢ is *-open, we have int(clpW) NclV = &
and int(cl W) D oW 3 ¢(x), a contradiction.

(2) = (3). Take V. Since clgy @'V = clgy¢~'(c1¥) and y € clV for
VeV, wehave 7'y C Nclgy @'V, soclgy @™y C Nelgy ™' V7.

(3) = (4). From 2.1(5).

(4) = (1). Suppose that there is an open set U with x € U and
y = @(x) € pU — int(cl pU). Let W 3 y be open. Then V=W N (Y —
cloU)# &,y & Vand y € clV. Take V” 3 V. Any U* contains U. If
o*U* = VY for some AU*, then ¢ 'V € AU*, but o'V N U= &, a con-
tradiction.

In general the equality in 3.3(3) does not hold by 3.8 below. From the
definition of a WZ-map, 2.1(3) and 3.3(3) we have
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COROLLARY 34. If ¢: X—> Y is *-open WZ, then (Bp)'y=
Nclgy @'V for each y € Y and each V.

ExaMPLE 3.5. We give an example which shows that the converse of
3.4 is not necessarily true. Let X =[0, w,] ® [0, w,), Y =[0, w,] and
¢(x) = x € Y for each x € X where w, is the first uncountable ordinal.
Then g is open but not WZ. It is easy to see (Bp)~'y = Mclgx ™'V for
each y € Y and each V7.

THEOREM 3.6. @: X - Y is W,N iff (Be)'q= Nclgxo'cl VI for
each q € BY and each V9.

Proof. =). Since clgy (@' c1 V) = (Bo)~'clgy V for V E V9, (Bp)'q
C ﬂclﬁxq)" cl V9 so we have the equality by 2.1(3). «<). Let p €
(Bp)'clgy V — clgy @' clV for some open set ¥ of Y. Then p € (Bp)~'q
for some g € clgy, V. Take V7 with ¥ € V7 Then clg, @™ c1V 2(Be)7'q,
a contradiction.

THEOREM 3.7. (1) The following are equivalent ([10], Theorems 1
and 6):
(i) Y is almost normal.
(ii) Any WZ-map onto Y is W,N.
(iii) Any perfect map onto Y is W,N.
(2) The following are equivalent:
(i) Y is k-normal.
(ii) Any W*-open WZ-map onto Y is W,N.
(iii) Any W*-open perfect map onto Y is W,N.

Proof. (2) (i) = (il). Let ¢: X - Y be W*-open and WZ. Suppose
P E(Be) ' clgy V —clgye c1V for some open set ¥ of Y. Then (B¢)p
=g Eclgy V and take an open set W of BX such that p € W and
clgxy WNclgy@' clV = 2. Since ¢ is W*-open and WZ, we have that
(Bp)clgy WNeclV=@ and cle(XN W) is regular closed. Thus
clo(XN W) NclV= g, and hence clgyp(X N W) Nclgy V= & be-
cause Y is k-normal. On the other hand, clgx(X N W) =clyy W3 p, so
q € clgye(X N W) N clgy V, a contradiction. (ii) = (iii). Evident.

(iii) = (i). This follows from the same method used in 1.5 of [21].
Suppose that there are disjoint regular closed sets £ and K such that
clgyENclgy K> q. Let X =Y ® E. Define ¢: X > Y by ¢(x) = x for
x € X. It is evident that ¢ is W*-open perfect. On the other hand,
clex9 'K =clgy K and (Be)'clyyK N BE # @, so (Be)'clgy K+
clgxy 'K which shows that ¢ is not W,N.



378 TAKESI ISIWATA

ExaMpLE 3.8. In 3.7(2,1i), “WZ-ness of ¢” is necessary as shown by
the following. Let Y = [0, 3], X = [0,2) © (1,3] and ¢(x) = x for x € X.
Then g is open and Y is metrizable. ™'(1) = 1 and (Be)™'1 # clzx@7'(1)
=1 and hence ¢ is not WZ. Let Y2 y =1 and ”? 3 [0, 1). Then it is
obvious Nclgy@™cl V> = {1} - (Be)~'y. Thus ¢ is not W,N by 3.6 and
hence Bo is not open by 3.10 below. But B¢ is W*-open by Theorem 4 of
[7). Let Y 3 z = 2 and V* D [0, 2). Then it is easy to see that M clﬁxtp“"\fz
2 clgx @'z = {2} (cf. Remark of 3.3).

THEOREM 3.9. If o: X — Y is a *-open Z-map, then it is open.

Proof. Let U be open in X and x € U. Then there is a zero set Z with
x€EintZ=WCZCU and U D ¢Z =cl¢Z D cl p(int Z) D
int(cl ¢(int Z)) D oW 3 ¢(x), and hence ¢ is open.

THEOREM 3.10. Let @: X — Y. Then the following are equivalent:

(1) B is open.

(2) @ is *-open and W,N.

(3) Clyx 97'V = (Bo)~' clgy V for each open set V of Y.

@ (Be)'q = Nclgy @'V for each g € BY and each V.

(5) There is WP with ¢* WP = V1 for each q € BY, each V? and each
P E(Be)q.

Proof. (1) = (2). Let Ube open in X and put W = BX — clgy(X — U).
Then U= W N X and clgy W =clgy U. Since B¢ is closed, we have
(Bo)clgy W= clgy(Be)U = clgyoU D (Be)W D @U and cloU =Y N
cley@eU D Y N (B)W D @U. Since Bo is open, int(cl pU) D @U, ie., @
is *-open. We shall show that ¢ is W.N. Let Vbe openin Y. T = BY —
clgy(Y — V) is open and V=Y N T. Since clgy T = clgy V and Bo is
*-open, clgx(Be)™'T = (Be)~' clgy T = (Bp)~' clgy V. Thus it suffices to
show clgx(Bp)'T = clgy ™' clV. Suppose p € (Bp)™'T — clgyo™' clV.
Let g € T and (Bo)p = q. Take an open set S of BX such that S 3 p and
clgxS Nclyy@ ' clV = @. Let us put K = intgy((Bp)clzyS). Then K =
intgy(clgy(Be)S) D (Bp)SSq and KNV =&, so KNcly V=0.
This is a contradiction because g € clgy V. (2) = (3). From 3.3(2). (3) =
(4). From 2.1(3) and the fact that g € clg, V for each V € V7. (4) = (5).
From 2.1(5).

(5) = (1). We first show that B¢ is *-open. Let p € (Be)~! clgy W —
clgx( Bo)~'W for some open set W of BY. Then there is an open set U of
BX with p € intgycly, Uand clgy U N clgy(Be)'W = . Let (Bp)p =
g and take V¢ with W € V9. Then any AL? contains U. If ¢*U? = V1
for some A7, then o'W € AU?, but UN ¢ 'V = &, a contradiction.
Thus By is *-open by 3.3, so open by 3.9.
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If p: X > Y is open WZ, then Bo is open by Theorem 4.4(1) of [12].
Let XCZ CBXand { = (B¢)|Z. Then {: Z — {Z has the Stone exten-
sion B¢ = B¢, so B¢ is open, and hence { is *-open W, N by 3.10. Thus we
have

THEOREM 3.11. Let ¢: X —> Y be open WZ. Then for any space
Z,XCZCPBX,§ Z—-{ZCBYis *-open W,N where { = (Bo) | Z.

4. Countable intersection property.

4.1. DerFINITION. We denote by {F,} & ({F,},.19 or {F,},. |9
resp.) a decreasing sequence of closed sets (zero sets or regular closed sets
resp.) with empty intersection. ¢: X — Y is said to be a d (d’ or d*
resp.)-map if NcloF, = @ for each {F,} 12 ({F,},. 1@ or {F}, 12
resp.) [S, 8, 11]. Obviously a d-map is d’ and a d’-map is d* ([8], Theorem
7). We say that ¢ is hyper-real if (Be)(8X — vX) C BY — vY. A hyper-real
map is d* [11] (cf. the diagram of 5.4 below). Let us put X* = fX — X.

F(X; 0) = { p € X*; any %7 has CIP}.

F(X; 0,A) = { p € X*; there is ¥ with CIP and ¥} without CIP}.

F(X, A) = {p € X*; any %7 does not have CIP}.

F(X; v, A) = (vX — X) N F(X; A).

Similarly we define U(X; 0), U(X; 0, A), U(X; A) and U(X; v, A) using
free open ultrafilters. It is known that 8X — vX C U(X; A), U(X; A) C
F(X; A) and F(X; 0) C U(X;, 0) [13]. Concerning invariance of CIP under
a map, we note the following. Let ¢: X - Y.

(1) If QL has CIP, then any VD ¢*Q has CIP by 2.3(1) where “Q has
CIP” means “MNcl U, # @ for U, € A”. Thus, in general, for ¢: X - Y,
we have U(Y; A) N (Be)U(X; 0)U U(X; 0,A)) = I and hence
(Be) 'U(Y; A) C U(X; A).

(2) If ¥ has CIP and ¢*% = &, then & has CIP. This follows from
o 'EEFforE € 6.

(3) The following (a) and (b) are not necessarily true as is shown by
4.2 below.

(a) o*U = YV does not have CIP for 9 without CIP.

(b) 9*F = & does not have CIP for ¥ without CIP.

Problem. Does & O ¢*% have CIP whenever % has CIP?

4.2. ExampPLE. Let Y = {y}. In (1) and (2) below, define ¢(x) = y.
Then ¢ is open, closed, RC-preserving, Z-preserving and an N-map where
@ is RC(Z)-preserving if pE is regular closed (a zero) set whenever E is a
regular closed set (a zero set).
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(1) Let X be pseudocompact but not countably compact. Then ¢ is a
d’-map but not a d-map. Evidently there is & without CIP but ¢*% = { y}
has CIP.

(2) Let X be a non-pseudocompact space. Then ¢ is not a d*-map.
Evidently there is U without CIP but ¢*Q, = {y} has CIP. It is easy to
construct an N-map which is not a d*-map by taking a suitable space X.

THEOREM 4.3. Let ¢: X — Y. The following are equivalent:
(1) ¢ is a d-map.

(2) If ¥ does not have CIP, so neither does any & D ¢*%.
3) (Be) (Y U F(Y; 0)) C X U F(X,0).

4) (Be)'Y C X U F(X; 0).

Proof (1) = (2). From the fact that NcloF, = @ for {(F, €5} @
and cl ¢F, € b.

(2) = (3). There is %? without CIP for p € F(X; A) U F(X; 0, A), so
every & D ¢*%? does not have CIP by (2) and hence (Bo)p & Y U
F(Y,0), s0 (Be)"(Y U F(Y; 0)) C X U F(X: 0).

(3) = (4). Evident.

(4) = (). Let {F,}4 1 @ and y € Ncl gF,. Then clg, F, N (Bp)'y #
@ for n € N. Take p € (NclgyF,) N (Bp)~'y and F? with F, € 52,
n € N. Then p € F(X; 0) by (4) but $” does not have CIP, a contradic-
tion.

REMARK. In general, the equality of 4.3(3) does not hold as shown by
5.6 below. An analogous theorem concerning a 4*- and d’-map was
obtained respectively (see, 4.4(2,3) below). A closed d-map is precisely
quasi-perfect (= closed and each fiber is countably compact), so we have
the following 4.4(1) using 1.4(3) and 4.3.

4.4. Let : X - Y. (1) @ is quasi-perfect iff 9* % is a closed ultrafilter for
each % and ¢*F does not have CIP for each F without CIP.

(2) @ is a d*-map iff (Be)™'Y C WX [11].

(3) @ is a d’-map iff (Be)~'Y C X U U(X; 0) [5].

45. Let: X - Y.

(1) Let ¢ be a d’-map and ¢*U = V. If A does not have CIP, then
neither does V.

(2) If ¢ is not a d’-map, there is AU without CIP such that every
VD ¢*A has CIP.

(3) If @ is W*-open, then @ is a d’-map iff * does not have CIP for
each AU without CIP (ct., 4.6(2)).
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Proof. (1) Since QU does not have CIP, there is {U, € A} | with
Ncll, = @.1f Vhas CIP, Y — cl U, € Vfor some n. ¥ = Vimplies
(Y —cloU) = X — ¢ !(cl pU,) € A, a contradiction.

(2) Since ¢ is not d’, there is {U,} ., | @ With y € Mcl U, for some
y € Y. This implies (Bp)~'y N clyy U, # @ for n € N. By 1.1(2), there is
Q? without CIP and U, € AU where p € (Nclgy U,) N (Byp)~'y. Obvi-
ously any VD ¢*qL? converges to y, i.e., Vhas CIP.

(3) =). From (1) and 2.6 <). From (2) and 2.6.

4.6. Definitions and some properties. Let ¢: X — Y. ¢ is said to be an
sd-map if & does not have CIP iff no & D ¢#% has CIP. We say that ¢ is
an sd’-map if some VD ¢* does not have CIP for U without CIP.

(1) A quasi-perfect map is sd by 4.4 and an sd-map is d by 4.3.

(2) Any W*-open d’-map is sd’ by 4.5(3) and an sd’-map is d’ by
4.5(2).

(3) If @ is sd, then we have that (8¢)"'(Y U F(Y; 0)) C X U F(X; 0),
(Be)F(X;0,A) C F(Y;0,A) and (Be)F(X; A) C F(Y; A) U F(Y; 0, A).

(4) If ¢ is sd’, then we have that (B¢) (YU U(Y; 0) C XU
U(X; 0), (Bp)U(X; 0,4) C U(Y; 0,4) and (Be)U(X; A) C U(Y; A) U
U(Y; 0, A).

(5) If ¢ is *-open W,N, then (Bo) 'U(Y; 0,A) C(X; 0,A),
(Be) 'U(Y; A) C U(X, A) and (Be)U(X; 0) C Y U U(Y; 0) by 3.10 and
4.1(1).

(6) If @ is a *-open W,N d’-map, then (B¢)~'U(Y; A) = U(X; A) by
3.10. (Be)'U(Y; 0,A) = U(X; 0,A) and (Be) (YU U(Y; 0)=X U
U(X; 0).

(7) If @ is closed, then (B¢)(F(X; 0) U F(X; 0,A) N K(Y; A)= @
by 1.4(3) and 4.1(2).

(8) If ¢ is an N-map, then we have (Be)F(X; 0) N (F(Y; 0,A) U
F(Y; A)) = @ by 1.1(1) and 1.4(4).

It is not necessarily true that a perfect map is sd” as shown by 4.7
below. X is said to be nd — cp if for a decreasing sequence {F,} of
nowhere dense closed sets with N F, = &, there is {U, },pen | With F, C U,
and NclU, = @. It is easy to see the following

(9) If X is countably paracompact, then X is nd — cp.
(10) If X is pseudocompact, then X is countably compact iff X is
nd — cp.

4.7. If Y is pseudocompact but not countably compact, then there is a
space X and a perfect map ¢: X — Y which is neither sd’ nor W*-open.
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Proof. Let A = {a,; n € N} be a discrete closed set of Y and put
X =Y ©® A. Define p(x) = x. Obviously ¢ is perfect but not W*-open.
Let us put U, = {a,; m=n} C A C X and take QU with U, € AU, n € N.
Then U does not have CIP but any VD ¢*Q has CIP because Y is
pesudocompact.

THEOREM 4.8. Let p: X — Y.
(1) If Y is countably compact, then X is countably compact iff ¢ is sd.
(2) If Y is pseudocompact, then X is pseudocompact iff ¢ is sd’.

4.8(2) is a generalization of 4.3 of [12] and Theorem 12 of [8].

Proof. (1) =). Evident. «<). If X is not countably compact, there is
{F,}q i 9. Take ¥ D F, for each n. Then % does not have CIP and hence
there is & without CIP containing ¢*% because ¢ is sd. But this is a
contradiction because Y is countably compact.

(2) is obtained by the same method used in the proof of (1).

THEOREM 4.9. Let ¢: X — Y and Y be nd — cp.
() Ifpisd’, then @ is sd’.
(2) If pisd, then ¢ is sd.

Proof. (1). Suppose that there is Q without CIP such that each
D ¢*q has CIP. If ¢*Q = V, then V' does not have CIP by 4.5(1), and
hence we may assume that ¢#QU 7 < for each VD ¢*9L. Since U does
not have CIP, there is {U, € U}|{Z with NclU, = F. ¢ being d’,
NcloU, = &. Let V € V— ¢*A. Then there is U € A with U N ¢V
= @ and hence we may assume U, C U for each n. Now ¢B(U,, V) C
eU, N clV, so by 2.3(2) K, = cl p(int B(U,, V')) is nowhere dense and
MK, = @. Since Y is nd — cp, there is {V,},en | & such that K, C V,
and NclV, = @. Obviously ¢~ 'V, D int B(U,, V), so V, € V by 2.3(1)
which shows that “V'does not CIP, a contradiction.

(2) By 4.3, it suffices to show that if 4 has CIP, then any & D ¢*% has
CIP. Suppose that F has CIP and some & D ¢*% does not have CIP. We
may assume & # ¢*%. There is {E, € & — ¢*%}| &. Then there is
F €Y% with E, N oF = @, and hence E, N oF = @ for each n. Since
b3 K, =E, NcloF # & and K, is nowhere dense, there is {V, },pen | 8
such that K, C ¥V, and NclV, = @. If clV, & ¢*F, then thereis D € F
with clV, N oD = @. V, being open, V, N cloD = & and hence K, N
cl 9D = @ which contradicts & D ¢*%. This shows cl V, C ¢*F for each
n, so F does not have CIP, a contradiction.
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5. Spaces and mappings.
5.1. We recall the following [13].
(1) X is almost realcompact iff U(X; 0) U U(X; 0,A) = &.
(2) X is c-realcompact iff U( X; 0) = &.
(3) X is a-realcompact iff F(X; 0) U F(X;0,A) = &.
(4) X is wa-realcompact iff F(X; 0) = &.
(5) X is weak cb* iff U(X; v, A) U U(X;0,A) = @.
(6) X is pseudocompact iff U(X; A) U U(X; 0,A) = 2.
(7) Xis cb* iff F(X; v, A) U F(X;0,A) = @.
(8) X is countably compact iff F(X; A) U F(X; 0,A) = @.
Dykes and Frolik proved the following respectively.
(9) Let ¢: X — Y be perfect. Then
(i) X is almost realcompact iff Y is almost realcompact [2].
(ii) X is a-realcompact iff Y is a-realcompact [1].
From (1) ~ (8), we have the following diagram.

countably compact = pseudocompact

\/ !
realcompact = c¢b* = weak cb*
y
almost realcompact = a-realcompact
y !/
c-realcompact = wa-realcompact

52.Letp € X*, Z= XU {p} C BX and Y the space obtained from
Z by identifying p and a fixed point x, of X. It is easy to see that the
identifying map ¢ is W*-open but not *-open. In this case we have

() Ifp € VX — X, then @ is d* [11].

(2) If p € U(X; 0), then @ is d’ [5].

THEOREM 5.3. (1) The following are equivalent:
(1) X is wa-realcompact.

(ii) Any d-map defined on X is perfect.

(iii) Any W*-open sd-map defined on X is perfect.

(2) The following are equivalent ([S], Theorem 1 and [8], Theorem 13):
(1) X is c-realcompact.

(ii) Any d’-map defined on X is perfect.

(iii) Any W*-open d’-map defined on X is perfect.

(3) The following are equivalent ([11], Theorem 6.3):
(i) Y is cb*.

(ii) Any d*-map onto Y is hyper-real.

(iii) Any perfect map onto Y is hyper-real.
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(4) The following are equivalent:
(i) Y is weak cb*.
(ii) Any sd’-map onto Y is hyper-real.
(iii) Any W*-open d’-map onto Y is hyper-real.
(iv) Any W*-open perfect map onto Y is hyper-real.

Proof. (1) (i) = (ii). From 4.3(2, 3) and wa-realcompactness. (ii) = (iii).
Evident. (iii) = (i). If X is not wa-realcompact, take p € F( X; 0) in 5.2.
Obviously ¢ is W*-open sd-map but ¢~'(x,) = x, and (B8X)'x, 3 p, so
@ is not perfect.

(4) (1) =(i1). Since ¢ is sd’, (Be)(BX — vX) C(Bp)U(X; A)U
U(Y; A) U U(Y; 0, A) = BY — vY because Y is weak cb*, i.e., ¢ is hyper-
real. (i) = (iii). From 4.6(2). (iii) = (iv). Evident. (iv) = (i). Suppose that
there is Q” without CIP and p € vY — Y. There is {U, € A%} | & with
NclU,= @. Let us put X =Y @ 3 &cl U, and define ¢(x) = x. Obvi-
ously ¢ is W*-open perfect. On the other hand, vX = vY @ 3 @u(cl U,)
and vp is onto vY, but (vp)~!p (p € vY)is not compact where vy =
(Bo) | (vX), and hence ¢ is not hyper-real.

5.4. NOTE AND PROBLEM. We define that ¢: X — Y is a d\(d,)-map if
(Be)'YC XU UX; 0) UUX; 0,A)(CXUF(X; 0)UFX; 0,A)).
Then we have the following:

(1) X is almost realcompact iff any d,-map defined on X is perfect.

(2) X is a-realcompact iff any d,-map defined on X is perfect.

“only if” part of (1) and (2) are obvious and “if” part of (1) and (2) are
obtained by the method used in 5.2 taking p € U(X; 0, A) U U(X; 0) and
p € F(X; 0, A) U F(X; 0) respectively. But these definitions of d,- and
d,-map are affected.

Problem. What is the intrinsic definition of a d, (or d,)-map? Con-
cerning various maps in this paper, we have the following:

open = *-open = WH*-open < WH*-openandd’

!
perfect open WZ = W,N « N=WN sd’ hyper-real
{ d l il
quasi-perfect = closed = Z = WZ d’ d*
3 7 Ny
closed and d = sd = d =>d, = d,.

THEOREM 5.5. Let p: X = Y.

(1) Suppose that ¢ is a d-map. Then we have
(i) If X is wa-realcompact, so is Y.

(i) If X is a-realcompact, so is Y.
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(2) Let ¢ be an sd’-map. Then if X is c-realcompact, so is Y (this is a
generalization of Theorem 1.3 of [T] by 4.6(2)).

(3) Let @ be a d’-map. Then if X is almost realcompact, so is Y.

(4) Let ¢ be hyper-real. Then if X is weak cb*, sois Y.

(5) Let @ be hyper-real. Then if X is cb*, so is Y ([11], Theorem 5.7(2)).

Proof. (1) (i). From 5.1(4), 5.3(1) and 4.3(3) (note that a perfect map is
sd). (ii). From the diagram of 5.1, 5.3, (i) above and 5.1(9(ii)).

(2) From U(Y; 0) = @ by 4.6(4) and U(X; 0) = &, or from 4.6(4),
Theorem 2 of [4] and the fact that uX = X U U(X; 0).

(3) From the diagram of 5.1, 5.3(2) and 5.1(9(3)).

(4) Suppose that there is V¢ without CIP for ¢ € vY — Y. Then
(Bp)~lg C U(X; 0). Take p € (Bp)~!g and U? D ¢ V9. Since AU’ has
CIP, so does o¢*U? = V9 a contradiction. Thus U(Y; v, A) U
U(Y; 0,A) = &, so Y is weak cb*.

Since a compact space is realcompact, by 4.2(1,2), it is easily seen
that almost-, c-, a- and wa-realcompactness, cb*-ness and weak cb*-ness
are not inverse invariant under an open, closed, Z-preserving, N-map.
Moreover, by the following Example 5.6, we have that (1) c-realcompact-
ness is not inverse invariant under a W*-open perfect map and (2)
cb*-ness and weak cb*-ness are not invariant under a W*-open perfect
map.

5.6. ExampLE. K. Morita [15] constructed an M-space, non c-real-
compact space X and a perfect map ¢ such that the perfect image Y [14]
of X by ¢ is not an M space. It is easy to see that ¢ is W*-open but not
*-open. An M-space is cb* and hence weak cb*. On the other hand, Y is
c-realcompact [6] but neither a-realcompact [22] nor weak cb* [11] and
vY — Y= U(Y; 0,A) = F(Y; 0, A) consists of only one point (see [12,
15]). We note that (Be) (Y U F(Y; 0)) = (Be)'Y # X U F(X; 0) (cf.
Remark of 4.3 and Remark 6.4 below).

THEOREM 5.7. Let p: X - Y.

(1) Let @ be an sd’-map. Then if Y is weak cb*, so is X.

(2) Let ¢ be a d-map. Then if Y is cb*, so is X ([11], Theorem 5.5).

(3) Let @ be a d’-map and Y almost realcompact. Then we have
O UX;0,A)= 2.

(it) If X is c-realcompact, then X is almost realcompact.

(ii1) If @ is perfect, then X is almost realcompact (5.1(9)).

(4) Let ¢ be an sd-map and Y a-realcompact. Then we have
(1) F(X;0,A) = @.

(i1) If X is wa-realcompact, then X is a-realcompact.

(iii) If @ is perfect, then X is a-realcompact (5.1(9)).
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(5) Let @ be a perfect open map. If Y is a c-realcompact, so is X ([5],
Theorem 4).
(6) Let @ be a perfect N-map. Then if Y is wa-realcompact, so is X.

Proof. (1) @ being hyper-real, by 5.3(4)BX — vX = (Be) (BY — vY)
and U(X; v, A) U U(X; 0, A) = & by 4.6(4) and 5.1(5), and hence X is
weak ch*.

(3) (). By 4.1(1) and 4.4(3), (Be)U(X; 0, A) C U(Y; 0, A) and hence
we have U(X; 0, A) = & because Y is almost realcompact. (ii). From (i)
and 5.1(1,2). (iii). (New proof) Let p € U(X; 0). Then any VD ¢*U”
has CIP and converges to a point ¢ € vY — Y by 4.1(1) and X = (B¢)"'Y.
Since Y is almost realcompact, v¥ — Y = U(Y; v, A), a contradiction.
Our assertion follows from (1) and 5.1(1).

(4) (1). By 4.6(3), (Be)F(X; 0,A) C F(Y; 0,A), so F(X; 0,A)= @&
and hence X is a-realcompact because Y is a-realcompact. (ii). From (i)
and 5.1(3,4). (iii)). (New proof) Let p € F(X; 0). Since ¢ is sd, some
& D ¢*F has CIP and converges to a point g € vY — Y by X = (B¢)7'Y.
Since Y is c-realcompact, vY — Y = F(Y; v, A), a contradiction. Our
assertion follows from (i) and 5.1(3).

(5) (New proof) From 4.6(6) and X = (B¢)"'Y.

(6) Since g is N(Bo)F(X;0) C Y U F(Y; 0) = Y by 4.6(8), and since
@ is perfect (B9)~'Y = X and F(Y; 0) = & because Y is wa-realcompact
and hence X is wa-realcompact.

6. Weak cb*-ness and absolute. Using preceding results we give new
proofs of several theorems concerning the absolute E( X) of X which are
obtained as corollaries of theorems about perfect W*-open images of
weak cb* spaces.

THEOREM 6.1. Let @ be a perfect W*-open map of a weak cb* space X
onto Y. Then we have

(1) @ is hyper-real iff Y is weak cb*.

2) (BpvX =Y U U(Y; 0) U U(Y; 0, A).

(3) X is realcompact iff Y is almost realcompact.

(4 vX = (Bp)™'T for some Twith Y CT C BY iff T=Y U U(Y; 0)
and U(Y; 0,A) = &.

Proof. (1) From 5.3(4) and 5.5(4).

(2) Suppose (Be)'q C BX — vX for some point ¢ € U(Y; 0) U
U(Y; 0, A). Then there is V¢ with CIP and U? with ¢*U? = V4 for
P € (Bp)7'q. Since A” does not have CIP and ¢ is sd’, V7 does not have
CIP, a contradiction.
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(3) =). Since ¢ is perfect and X =vX, we have U(Y, 0) U
U(Y; 0, A) = @ by (2), so Y is almost realcompact <). Since Y is almost
realcompact (Be)vX = Y by (2). On the other hand, (B8¢)”'Y = X, and
hence vX = X, i.e., X is realcompact.

(4) =). By (2), we have (Bp)vX=T=Y U U(Y; 0) U U(Y; 0, A).
Since ¢ is perfect and W*-open, ¢ is sd’ and (B8¢) (Y U U(Y; 0)) C X U
U(X; 0) =vX by 4.6(4). We shall show U(Y; 0,A) = @. Let g €
U(Y; 0, A). Then (Bp)~'q C U(X; 0) and there is V7 without CIP but any
QL? has CIP for each p € (Bp)~'q. Since ¢ is W*-open, ¢*AU? = V7 for
some p € (Bp)~'q and some AU’ and hence V7 has CIP by 4.1(1), a
contradiction «<). By (2), (Be) UX =Y U U(Y; 0) U U(Y;0,A) =Y U
U(Y; 0). Since g is sd’, (Be)U(X; A) C U(Y; A) U U(Y;0,A) = U(Y, A)
by 4.6(4). Thus (Bp)™'T = vX where T= Y U U(Y; 0).

Let E(X) be the set of all fixed open ultrafilters on X topologized by
using {U®; U is open in X} as a basis where U? = {QU; U € U}. E(X) is
called the absolute of X and it is a Hausdorff extremally disconnected
space. Define n: U = MNcl Q. Then it is known that n is a perfect
irreducible map and BE(X) = E(BX). Since nU° = cl U [18], n is W*-
open by 2.6(2). We note that an extremally disconnected space is weak
cb*.

COROLLARY 6.2. (1) vE(X) = (B7)'vX (= E(vX)) iff uX = vX ([7],
Theorem 2.4 and [8], Theorem 4.2) iff X is weak cb*.

(2) (Bn)vE(X) = a, X ([22], Lemma 2.1).

(3) E(X) is realcompact iff X is almost realcompact [1].

(4) vE(X) = (Bn)"'T for some T with XCTCBX iff T=XU
U(X; 0) and U(X; 0, A) = & ([20], p. 330 and [22], Theorem 3.3).

(5) E(X) is pseudocompact iff X is pseudocompact ([20], Proposition
2.5).

Proof. We note that E(X) is weak cb* and 7 is perfect W*-open. (1)
Since uX = { p € BX; each A7 has CIP} ([7], Lemma 2.5) and uX = X U
U( X; 0) by 4.4, we have that vX = uX iff X is weak cb*. Thus (1) follows
from 6.1(1). (2) From 6.1(2) and a, X = X U U(X; 0) U U(X; 0, A) ([22],
Theorem 2.3). (3) From 6.1(3). (4) From 6.1(4). (5) From 4.6(2) and 4.8(2).

THEOREM 6.3. Let ¢ be a perfect W*-open map of a non-realcompact
cb* space X onto Y. Then we have

(1) Y is cb* iff @ is hyper-real.

(2) If Y is weak cb* then Y is cb*.

(3) If vY = Y U {q}, then Y is not weak cb* iff Y is c-realcompact but
not a-realcompact.
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Proof. (1) From 5.3(3) and 5.5(5). (2) Since Y is weak cb*, ¢ is
hyper-real by 5.3(4), so Y is cb* by 5.5(5) because X is cb*.

(3) =). By 5.1(5) and vY = Y U {gq}, we have U(Y; 0) = &, so Y is
c-realcompact by 5.1(2). On the other hand, (B¢)F(X; 0) C F(Y; 0) U
F(Y; 0, A) = F(Y; 0, A) because F(Y; 0) C U(Y; 0) = &. Thus Y is not
a-realcompact «<). From realcompactness = (weak cb*-ness) + (c-
realcompactness).

6.4. REMARK. The space X in Example 5.6 is not weak cb* [11] and Y
is a perfect W*-open image of an M-space (we note that an M-space is
cb*). Thus Y is c-realcompact but not a-realcompact by 6.5(3). On the
other hand, this assertion follows also from the following Corollary 6.7
since ¢: X — Y in 5.6 is irreducible [5].

COROLLARY 6.5. Let ¢ be a perfect irreducible map of a non-real-
compact cb* space X onto Y with vY = Y U {q}. Then Y is not weak cb* iff
Y is c-realcompact but not a-realcompact.

Proof. By Proposition 1.9 of [19], X and Y are co-absolute, so E( X)
and E(Y) are homeomorphic. Since X is c¢b*, E(X) is cb* by 5.6(2), so
E(Y) is also. Since the canonical map: E(Y) — Y is perfect and W*-open,
we have our assertion by 6.3(3).

THEOREM 6.6. (1) If V is an open set of Y with pseudocompact closure,
then any V! 2 V has CIP.

(2) Let : X > Y be W*-open and d'. Then S = BX — (Bo) 'vY is
dense in BX — vX and BY — (B@)clgxyS C Y U U(Y; 0) (this is a gener-
alization of Theorem 2.8 of [20]).

(3) Let vY be locally compact. Then we have

(1) Y is weak cb* [4].
(ii) If o: X = Y is sd’, then @ is hyper-real.
(iii) E(vY) = vE(Y) ([20), Proposition 2.10).

Proof. (1) Suppose that there is {V, € V9} | with NclV, = @. Then
we have {cl(¥' N V,)} @ which contradicts the pseudocompactness of cl V.

(2) Suppose p € (BX — vX) — clgyS. Then any A? does not have
CIP, so ¢*U? = V7 for some V9, g € vY — Y and hence V7 does not
have CIP by 4.5(1). There is U € QL7 and an open set W of BX such that
W N X=Uandclgy WNclpyS = . By 2.3(3), int(cl pU) € V4. Since
(BY — vY) N clgy(Bp)W = @ and clgy(int(cl pU)) is compact and con-
tained in vY, cl U is a regular closed by 2.6 and pseudocompact [4]. Thus
V¥ has CIP by (1), a contradiction. Let us put R = BY — (Be)clgyS. R
is locally compact and X N R € V7 for any point ¢ € R and any V7.
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Thus V7 has a member whose closure is pseudocompact, so has CIP by
(1) and hence R C Y U U(Y; 0).
(3) (1) From (1). (ii). From (i) and 5.3(4). (iii). From (i) and 6.2(1).
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