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ON A NEW TYPE OF L-FUNCTION FOR

ALGEBRAIC CURVES OVER FINITE FIELDS

DAVID GOSS

Recently there has emerged a new theory of curves over a finite
field. This theory is exciting in that it establishes previously unknown
analogies between cyclotomic fields and function fields over a finite field.
An extremely important aspect of this work is a new type of L-series for
these function fields. These L-series bear quite remarkable and exciting
similarities to classical L-series of number fields. The purpose of this
paper is to describe these new L-series in detail.
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Our desire to study such functions arose out of the following fact
(discovered by L. Carlitz and independently, but much later, by the
author): Let / G N + . Then there exists a non-zero constant λ such that
the convergent 1/Γ-adic sum

143
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actually is in Fr(Γ). One is immediately struck with the similarity to
classical results on integer sums due to Euler. Carlitz also proved a von-
Staudt result for these numbers that is close to the classical one, (see [7]).

The proof of these results involves the theory of elliptic modules ([1],
[2], [3], [10], [11]) and their moduli. One is struck here with the analogy to
cyclotomic fields. Because of these remarkable similarities, the author was
•led to search for the "meaning" along standard lines for these results. In
particular, he followed classical ideas and introduced the continuous
functions of ([6]) as the tools needed to accomplish this goal. We stress
that this was a totally new type of undertaking and even involved a new
type of analytic continuation.

The set-up that we use is more general than just polynomial rings: Let
C be a fixed smooth algebraic curve over Fr, r = pn, p GN. Let k be the
function field of C and let oo be a fixed rational point. Finally, let A be
the Dedekind ring of those functions regular outside oo. Then we use A as
the basic "integers" of our theory and define over objects with respect to
A. (One instance is when A = Fr[Γ], as above.) We then study these
objects at all the primes of k.

Historically, zeta-functions contain (at least) two types of informa-
tion: The information contained in their special-values and the informa-
tion contained in their zeroes. Unlike the classical theory of the Riemann
zeta-function, our functions seem to have two distinct theories of special-
values. One of these arises from the above facts, while the other arises
when we give these iunctions their analytic continuation and its meaning
is described in §7. As for the meaning of the zeroes of these functions
there are some general themes running through this work that deserve
special attention. The first is the "two-variable" property of our functions,
(see [7]): Simply put, a two-variable function is a continuous function on a
product of a characteristic-0 space and a characteristic-/? space with
analyticity in the finite characteristic space. All functions, at all primes,
always end up being two-variable; an obvious though not well-under-
stood, key to the theory.

The second concerns the general closeness of the theories at all primes
of k which was not apparent in ([6]). In fact, there is little difference
between the theory at oo and any finite prime; the sole difference being
the above mentioned results on power sums. For instance, at all primes,
our functions are entire (see 2.1), at all primes they have Euler products,
at all primes there are partial zeta-functions, etc. Thus their zero theory
seems to be a curious amalgam: it contains aspects of both the classical
p-adic and complex theories. This closeness is also borne out in the
Γ-functions of ([7]). Finally, we point out that there are trivial zeroes at
the negative integers for our functions in exact accordance with classical
results.
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The third theme involves functional equations. It will become ap-
parent to the reader that our functions are quite similar to classical
L-series, but without their functional equations. So, for instance, one set of
our special-values will contain a von Staudt type result while the other will
contain congruences but no denominators, etc. As there does not appear
to be any simple relationship between these values, we are thus presented
with what appears to be a golden opportunity to obtain insight into
functional equations. In fact, in 5.5 we will present some remarkable
evidence for some sort of a functional equation, but of a radically new
sort.

The fourth, and last, theme concerns the relationship between the
zeroes of our functions at the various primes they are interpolated. In the
case of the Artin zeta-function of a curve, this is trivial as the function is
rational at all primes. But, for the Riemann zeta-function there is no
apparent relationship between the zeroes of the complex and /?-adic
theories. On the other hand, our functions appear to possess a mechanism
for passing between the various primes. Thus, they appear as a sort of
"missing link" between the classical L-series of number fields and func-
tion fields.

In summary, we believe these new L-series are loaded with arithmetic
information, (e.g., see §7). We also believe they offer a new and unique
opportunity for insight into the classical functions. The situation is quite
fluid and a new idea in any one of many areas will tell us much. We hope
the reader will be inspired to probe deeper into the meaning of these
functions and thereby discover the information they seem to so richly
contain.

1. Background. As in the introduction, we have Spec(yί) = C — oo,
k — the function field of A, and K—k^, the completion at oo. We let the
symbol "5β" stand for finite primes of A and "3Γ5 to stand for A -frac-
tional ideals. We let " 21" denote the inverse fractional ideal. Associated to
5̂ , we have the additive valuation υ. We let AΌ be the completion of A at
t>, and kv the associated complete field. Finally, let 0^ C k be the ring of
integers.

Let π be a fixed uniformizer at oo. We use the phrase "τr-adic" to
mean "oo-adic". We also use "t>adic" to mean "^-adic". Thus, A is
discrete π-adically but dense v-adically. We think of A as being analogous
t o Z , ^ to Z^, etc.

For each 31, we let D(9ί) be its degree as a finite divisor. Clearly,
Z>(»oai) = D(%o) + DW\) I f St = (a), we set D(a) = /)(»). It is clear
that D(a) — {order of pole of a at oo}. Finally, if x G K*, we set
D(x) = (order of pole of x at oo}.

Let x G K*.
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DEFINITION. We say x is monic (with respect to π) iff xπD(x) G Ux —
{1-units at oo). If x is monic we set (x) = πDMx.

Any non-zero element differs from a monic by an element of Fr*.
Further, if xl9 x2 are monic with D(xx) = D(x2), then D(xx — x2) <
D(xx). On the other hand, if x is monic andy arbitrary with D(y) < D(x),
then x + y is still monic with D(x + y) = D(x). Finally, if xx, x2 are
monic, then xxx2 is also.

Notice that picking π is the same as giving a splitting K* = Z X U9

where ί/ is the group of units at oo. An interpretation in terms of class
field theory is given in §7.

As a convention, if a lower case English letter denotes an element of
k, then it denotes a monic element. Further if L is a field then we denote a
fixed algebraic closure by L and we denote by La b the abelian closure of L
inL.

Now let L be an arbitrary field over Fr equipped with additive
valuation v. Let W C L be a finite dimensional FΓ-vector space. The
following lemma will be basic to the calculations that follow. Note the
very strong estimates that it gives.

1.2. LEMMA. Let x G L. Then

(1) Σweiv(x + w ) 7 = °f°r ° - * < (r -
(2) Assume v(w) > 0/or all w G W. Let

Wj= {w G ϊF|ϋ(w

wι I > (r — 1)1 2 dim Wj \ for all i G N.

Let {el9...9em} be a basis for W. By the multinomial theorem,

c,,...,cmeFr

where

7 cGFr lO otherwise

Therefore, 1 is immediate.
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Next, pick {e,,...,ew} so that {el9.. ^eάimW) is a basis for WJ9 ally.
Lety0 be such that WJo+λ = {0}, but WJo Φ {0}J. By our choice of basis,
any w E W can be written as

W=P(w) + ( w - P ( w ) ) ,

where P is the projection onto WJQ. Thus

/

By applying (1) to P(w) E H ô and using induction, our sum has valuation
^ (r — l)Σ7>iydim(i^/M^+ 1) = (r — l)Σ7 >i dim Ŵ  , and the lemma is
established.

If υ(w) > 0, then it makes sense to raise (1 + w) to the ith power for
all i E Z,.

1.3. COROLLARY. v(Σw(Ξlv(l +wY)>:(r— 1)(Σ.>X dimWX all ί E

. Note that

/=o

Therefore, we can reduce to integral powers. The result follows from 1.2,
as the estimate there is independent of the power involved.

Suppose that 77, is another uniformizer at oo. Then 77/77, is a unit at
00. Let 77,/τ7 = ζ(π)9 ζ E Fr*. Then we have the obvious

1.4. LEMMA, n is a monic with respect to π iff ζD(<n)n is monic with
respect to 77,.

Thus, "monicity" carries only a small degree of ambiguity.

Next, we discuss some important abelian groups.

1.5. DEFINITION, (a) Let / QA be an ideal. We set P(/) to be the
group of ideals generated by all (n), with n = \(I), n E A. We let
P = P(A). We set P°(/) to be the group of all (n) with ((/ι), /) = 1.

(b) We set P(τ7m) to be the group generated by all (n) with (n) =
I(τ7w). We set P(Iπm) to be the group generated by all (n) with
(n)= I(τ7w) andn = 1(7).
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1.6. DEFINITION, (a) We set 5 to be the group of all ^-fractional
ideals.

(b) Let C c A be an ideal. We set ί(C) to be the group generated by
all ideals prime to C.

1.7. LEMMA, (a) ί(C)/P(C) is finite.
(b) 5(C)/P(ττmC) is finite.

Proof, (a) is standard. To see (b) note that we have

0 -

and,

0 -> P(τrmC) -> P(C) -> Uλ/Uλ{m) -> 0;

where Uλ(m) — {x G K\x = l (π m )} . The last arrow is surjective by the
Riemann-Roch Theorem. This gives the result.

Note finally that we have

0 -> P°(C)/P(τrmC) -» 5(C)/P(ττwC) -> ί(C)/P°(C) -> 0,

withί(C)/P°(C) s j / ? ,

2. The theory at infinity. Our purpose here is to define the L-series
and discuss their 7r-adic theory. Our method is quite in line with the
classical. We first find a continuous space for which the notion "n~s'\
n E A, makes sense. Then our functions are defined by summation in the
usual fashion. This summation converges on a "half-plane", but may be
extended analytically to the whole space. This leads to the " two-variable"
notion.

2.1. Basic concepts. Let M denote the space of monic elements of K.
Then M — πz X ί / , = Z X Uv Let χ be a continuous ^-valued character
of M. Then, it is clear that χ is determined by a pair (α, E), consisting of
an element a E K* and an element E E Endcont(ί/1); where if n —
π~D(n)(n), then we have

It is easy to see that U{ is isomorphic to an infinite product of copies
of Zp; where End^^L^) is huge. In order to obtain something managea-
ble, we replace the full space of endomorphisms with its subgroup
Zp ~ {closure of integral powers}.
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2.1.1. DEFINITION. We set S^ = K* X Zp. We call S^ the character
space at infinity.

Iis = (s0, sx) E S^, then ns = sgin)(n)s\ by definition.
Note that the integral powers appear in S^ as (TΓ"', i). We refer to

(τr~', i) as "/". These powers are discrete in the product topology on S^.
Further, S^ forms an additive topological group in the obvious fashion.

We now want to make sense out of "3Γ 5 ", s E S^. Let C C Λ( be a
fixed ideal.

2.1.2. DEFINITION. We set §(C) = Urn 5(C)/P(ττmC). We set § =

. From the results of 1.7, we see we have a map

0 ^limP 0 (C)/P(τr w C) -> §(C) -> ί(C)/P°(C) -> 0.

But,

Thus, we view 5(C) as an extension of Ux by $(C)/P°(C) = Ideal class
group of A.

2.1.3. DEFINITION. Let (2ί, C) = 1, we set

( » > = {image 2ί in §(C)}.

Let x be a continuous AΓ-valued character on § (or more generally, a
continuous map into GL(w, AT)). We always assume that χ((n)) — (n)s\
for all n. (The reader can easily construct such objects.) By abusing
notation, we write,

(Si)' 1 forχ((2ί».

We do not, of course, specify χ, but will always assume that one is chosen.
The character χ is thus defined by its action on representatives of the
classes of S(C)/P°(C). In order to keep matters from becoming unneces-
sarily confused, we work only with § in defining the L-series. The case
when C is arbitrary offers no extra difficulties.

2.1.4. DEFINITION. Let s = (s09 sx) E S^. We set

If 21 = («), then we see 2F = ns with the previous definition.
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If 2ί is a principal ideal, then we set 0(2ί) to be its unique monic
generator. Let X— {2ίo,...,2lm} be a collection of representatives of
I/P. If 2ί/2ί, is principal, then we set

Thus, 3ί = θx(W)yLi9 and %s = θx(%)s(%s

r

Let [L: K]< oo.

2.1.5. DEFINITION. We call any series of the form

a formal Dirichlet series. Two such series are said to be equal iff all
coefficients {c(2ί)} are equal.

From our axioms, we can sum L(s) to obtain,

Σ *(*,*>-'W

2.1.6. DEFINITION. We set L(W,, ί) = Σαeac(α2ί,)fl-J. Thus,

L(s)= 2^(9ί,^)9ίΓs= Σ
/=0 ι=0

Further,

L(Xi9s)= Σ
D(a)=jy>-oo

2.1.7. DEFINITION. We say that L(9ίι9s) has half-plane of conver-
gence D(s0) > b iff for each fixed sx E Z^, and for each /, the power
series for £(21,, (SQ, ΛΊ)) converges for all s0 with D(s0) > b and the
resulting function on S^ is continuous. We say L(s) is entire if we may let
ft = -oo.

Note that the half-plane of convergence is obviously independent of
X.

2.1.8. DEFINITION. Fix sλ E Zp. We say L{%r(s0, sλ)) is a Laurent-
polynomial iff it contains only finitely many powers of s0 and SQ\ We say
L(s) is a Laurent-polynomial if L(2I/? s) is one for all /.



ON A NEW TYPE OF L-FUNCTION 151

Finally, if A — Fr[T], we always set X = {̂ 1} and do not necessarily
write in "A~s". For Fr[Γ] the theory obviously is much simpler than for
general^.

2.2. A remark on the values of Dirichlet Series. Let L(s) be a Dirichlet
series. Suppose L(s) has half-plane of convergence D(s0) >: b. Then, for
all (s0, sx) with D(s0) > b, the vanishing of

is independent of 9ίz.
Thus, the zeroes of L(9l/? s) are independent of the choice of 21, in its

ideal class.
Let s G S^.

2.2.1. DEFINITION, (a) We say L(s) — 0 unconditionally iff
£(»,.,*) = 0 all /.

(b) We say L(s) = 0 conditionally iff L(s)j= 0 with the particular
choice of character (or representation to GL(2ί, K)).
Note that a implies b.

2.3. Definitions of the π-adic functions and their analytic continuations.

2.3.1. DEFINITION. We call the function

Π ( l - ^ - T 1 - Σ 9i-5>
δ̂ prime

the zeta-function of A

f(j) obviously converges for all s with D(s0) > 0. Let C C 4̂ be an
ideal.

2.3.2. DEFINITION, (a) Let δ e ί(C)/P(C). We set

, j ) = Σ 2ί-s.

It is called a partial zeta-function.
(b) Let δ, G ί(C)/P°(C). We set

?(«!>•*)= Σ f(δ, ί) ( " - "means "projects").
δ->8,

(Note that Σf(β, s) = ί( ί)Π φ | c ( l - ^" s ).)
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(c) Let/be a unvalued function on %C)/P{C). We set

If/ = X is a character, then

L ( x , s ) = Π ( 1 -
($,C)=1

Let AΓ= {2ίo,...,2ΓJ and let δ be the ideal class of 2ί . It is clear
that

f(δ,*) = f(2ί.,5)2ί-, etc.

Γλέ?«, the components of our functions are essentially partial zeta functions.

It is clear all these functions converge for D(s0) > 0. We now show
that they are, in fact, entire.

Thus, let {SI,.,C} = 1, all i, and let δ = β + P{C\ βCA. If
(3ί, C) = 1, then 21 G δ iff 2l/β is principal and generated by a monic
=Ξ 1 (C). Thus,

i = 0

with,

» a / , j ) = Σ

where (n^Ά^β) is principal and generated by a monic = 1 (C). If 21; and
Ŝ are not in the same class, then the condition is vacuous. If {3I/9 >S} are

in the same class, then our condition is the same as

nθx{βγλ = 1 (C),

or

As

(θx(β)) = (β/X,),

we have

(θx(β)C) C &,..
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Summarizing,

n=θx(β)(θx(β)C)

We remark that it is clear how to express L(f, s) as a finite sum of
partial zeta values. Further,

Σ n

Σ«-')

Thus,

Therefore, to show our functions are entire, we are reduced to
showing functions of the following form are entire: Let 21 be a non-zero
fractional ideal and let / be a non-zero ideal. Let λ E 21/721 and let

L(s)= 2 „-;

Then we need to show L(s) is entire.

2.3.3. THEOREM. L(S) is entire.

Proof. It is clear that, upon possibly multiplying L(s) by a~\ some
flG^we may assume 21 is also integral.

Now,

L(s) = Σ (it)"

D(n)=j

Let (n) = 1 + wn. We show first that the set

M

is a principal homogeneous space under a finite dimensional Fr-vector
space.

Let Πj be a fixed element in our set. Let n be an arbitrary such
element. Then,

« = λ = «,.(/2r).
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But {n — rij) is clearly a finite dimensional Fr-vector space and

Consequently, {wn — wn } is a finite dimensional Fr-vector space. Thus, the
set

can be written as

K + w
with w E W(i) and dim W(z) < oo. Consequently,

L(S)= Σvί Σ »
7>0 \ D{n)=j

G/3ί

y>o

— Λ ^n

= ΣV Σ

= ΣV
D{n)=j

λ

Σ Σ Vί)

y > 0 weff(j) c=c

Now the Riemann-Roch Theorem gives us the existence of elements
n = λ(/3ί) with D(n) =j\j > 0. Indeed, fory » 0 these are of the form
λ + h9 h G 1%, D(h) = j . As j = D(h) grows, we can produce elements
wn with arbitrary order of zero at oo, between 1 and N(y) E N. Further,
we may let N(j + l) = N(j)+ 1. So the estimate of 1.2 tells us that the
coefficient of 5^7 is divisible by πfu) with /(/) quadratic iny. The result
easily follows.

2.3.4. COROLLARY. The functions of 23A, 2.3.2 are entire.

We now define, for future use, π-adic functions that have no known
classical counterpart. They can be thought of as partial zeta-functions at
oo, and, in the case m = 1, they reduce to those previously defined.

We use the notation of 1.5. Let 93 be an ideal and let δ be a class of
9(%)/P(πm*8)9 and let δ, be a class of ί(23)/P°(93).
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2.3.5. DEFINITION, (a) We set

(c) Let/be a ϋΓ-valued function on $(»)/P(ίr w g3). We set

Note that

2.3.6. THEOREM. The functions of 23.5 are entire.

Proof. As before, we reduce to handling functions of the form

Let λ E 232ί have degree <j — m and assume that7 > m. Let H E 3ί
have degree7. Then

and

(/I + λ > = («)+7Γm(7Γ^mλ) Ξ(«)(7Γm).

Conversely, if /)(«!) = D(n2) — h n\ = w2(95St), and («!> =
(« 2>(τrm), then nι-n2G »8l and ̂ (/i j - Λ 2 ) E (ττm). Thus, w, -
n2 — λ is as above.

With these observations, we can proceed as before to the results.

2.4. Complements. (1) Let sx E Z^ and let L(s) be a component of one
of the functions discussed in the previous chapter. As L(sθ9 s}) is entire, it
has a factorization

Π (l-*o-»>

where C(J,) is a constant, A:(ΛΊ) E Z, and Z(ΛΊ) is the set of zeroes of
L(s0, sx) counted with multiplicity. We remark that a very similar expres-
sion is also known for classical zeta-functions. On the other hand, whereas
classical functions are essentially entire of order one, ours correspond to
entire functions of order zero.
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In the case of the zeta-function, it would be very interesting to see if
there are any relations between the zero sets of the different components.
We present a result in this direction in 5.2.

(2) It is interesting to compare the situation described above with the
situation of the ^-expansions, as described in ([5]). Indeed, the ^-expan-
sions of Eisenstein series involve sums for each coefficient q\ i E N.
Further, for each non-zero β (a "normalizing factor") the coefficient of q^
is multiplied by β'. This should be contrasted with the fact that our
L-series appear as sums of SQ\ i > -oo, and each coefficient of SQJ

involves sums not unlike those associated to the Eisenstein series.
(3) Finally, let / E Z. As a corollary of our results, we see sums of the

form

Σvί Σ *')
7>0 \ D(n)=j )

n£$ί

are entire as a function of SQ\ Indeed, this particular example is

3. Description of values at positive integer powers. For completeness,
we now summarize the results on values of ζ(s) as described in ([7]).
However, using the results of ([11]), we can simplify the exposition given
there.

3.1. The T-ideal. Let JC be a transcendental element.

3.1.1. DEFINITION. (1) We set [i](x) = xrl - x9 i E N + .
(2) We set D0(x) = 1 and D^x) = [/][/ - l]r [iγ'~\xX for / > 0.

3.1.2. DEFINITION. (1) Let / E N and let 2v

b=0abr
b, be its r-adic

expansion. For a E A, we set

(2) We set

Γ, = (Γ(β,i))β e / ί.

We call Γ(, the ith T-ideal.

3.1.3. PROPOSITION. (Sinnott). Let % C A be a prime and D{%) its
degree. Set a^(i) — ΣeS,{[i/reD(^] (where [ ] means greatest integer).
Then,

Γ. = Π $β« ω.
$ prime
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3.1.4. COROLLARY. Let A = Fr[T], then

The Γ-ideals are our "factorial".

3.2. Special values of zeta-functions at positive integral powers = 0
(r — 1). Let F be a field over k contained in K.

3.2.1. DEFINITION. Let

y=0 y=0

Suppose L(s) has half-plane of convergence D(s0) > b. Let / = (ττ~', i) >
b and let λ e f * . W e say

λ-'L(i) e F

iff

is in F for all 7. (Note that this concept is independent of our choice of

Let Mx be the coarse moduli space of elliptic modules of rank 1. Thus,
Mλ is the spectrum of the ring of A -integers in the Hubert class-field, H,
which is totally-split ("totally-real") at 00. In ([11]), Hayes shows the
existence of a rank one elliptic module, (φ), with coefficients in the ring
0^ of A -integers of H.

Let 21 o λ be the rank-one lattice associated to (φ), where 310 is a
fractional-ideal. By applying Gal(Mx/A) to (φ), we can construct over
Θ^, elliptic modules whose lattice is 21,λ, where {91,.} runs through
representations of the distinct ideal classes. We use the collection X ~
{2ίo,...,2ίw} in our decomposition of ζ{s).

Now let Ϊ G N + , with / = 0(r — 1). Then we have

3.2.2. THEOREM. \~%i) E H.

Proof. We just sketch the procedure for calculation. Let σ G
GsΛ(Mx/A) and let (φ σ) be (σ(φ)). Further, let L = 2ί7λ be the lattice
associated to (φ σ ).

Let e(z) — z + Σ°Lo

c/zr> be a formal power series with unknown
coefficients, and let α G A. We assume that for α G A — F r, e(z) satisfies
the composition functional equation.
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We may therefore find {c,} by induction. It is a theorem that e(z) is
everywhere convergent and that

e(z)=z Π (l-z/a).
0¥=aGL

As e\z) = 1, ze\z)/e(z) = z/e(z) = zΣ α e L (z + α)"1; whence the
non-zero Taylor coefficients of z/e(z) are of the form

for i = 0(r — 1); 0 otherwise. On the other hand, these can be computed
directly by long division. The result is now easy.

We call λ "the period of (φ)".

3.2.3. Question. For A — ¥r[T]9 it is known that λ is transcendental,
see ([12]). Is it so in general?

It is known that, as σ E Gdλ(Mλ/A) varies, the values

i = 0(r— 1), are conjugate. They therefore generate a Galois stable
fractional ideal over ΘH. It, therefore, descends to an A -fractional ideal
C k, that we denote

3.2.4. DEFINITION. We call Bi = Γ^'ftO, / ΞΞ 0(r - 1), ί G N + , Bt

= (0), i s* 0(r - 1), the ith Bernoulli-Carlitz fractional ideal.

We now state the basic result concerning the denominator of Br For a
proof, see ([7]). In the case A = Fr[Γ], it is due to L. Carlitz, as are the
basic ideas of proof.

Recall r-pn.

3.2.5. THEOREM, (rφl). Let i = 0(r- 1) and let Σv

b=oabr
b, be its

p-adic expansion. We have two conditions on /,

and

(2) 0 * - i ) | / .

If i satisfies both these conditions, then the denominator of Bj

If not, then B, C A.
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3.2.6. THEOREM, (r = 2). We retain the set-up of"3.2.5. /// satisfies the
conditions (1), (2) <?/ 3.2.5 am/ h ¥= 2, then the denominator of Bi is

()
If h = 2, ί even, then the denominator

π *.
3̂ prime

If /z = 2, * odd, then the denominator is

π *.
Z)(^)=lor2

93 prime

If i doesn't satisfy the conditions, then for i even

BtCA,

while for / odd, the denominator is

Π *•

3.2.6. REMARKS. (1) The Γ-values may be interpolated Morita-style at
all primes of k to two-variable functions. For the details, we refer the
reader to ([7]). (In keeping with the present work, it seems natural to
extend the definition of ([7]) at oo as follows: Let a E k*9 then we set for

where the element on the right is defined in ([7]). This definition reflects
the fact that at oo our functions should be defined via TΓ.) It seems clear
that these Γ-functions are intimately related to the L-series, see 5.5.

(2) The proof of 3.2.5 and 3.2.6 is reminiscent of the proof of
Stickelberger's Theorem on Gauss sums.

3.3. Special values of partial zeta-functions at positive integral powers.
Let 0 φ 2ί be a fractional ideal, of k, I an integral ideal and a E 3ί — 731.
By 2.3, it is clear that we may restrict ourselves to studying functions of
the form

For now, let the above sum be denoted L(α, s).
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3.3.1. PROPOSITION. Let i G N + . Then,

2 β'Liβa, i) = 2

Proof. We assume that a is chosen of least degree in its residue class.
Let h E 731; we have three cases:

(1) D(h) > D(a). In this case, a + h is monic, while α + ξh is not for
ξ E F* - {1}. Thus, the sum on the left contributes

Σ (* + β-ιhΓ;

so the result is obvious in this case.
(2) D(h) < D(a). In this case a + ζh is monic iff a is. The left-hand

sum has a non-zero contribution only for those β with βa monic; in which
case it contributes,

Σ (a + β~λζh)~ iίhΦO,
EF;

if A = 0;

again the result is obvious.
(3) D(h) = D(a). In this case, for some ξ E F*, D(a - ζh) < D(a).

Thus we are back in case (1).
Now let (ψ) be an elliptic module of rank one defined over some

affine piece of ΘH, as previously discussed, chosen so that its lattice is
c/2ίλ for some c E k*, and period λ.

3.3.2. THEOREM. A"'^^*/?'£(/?«, /)) e &ab, for all i E N + .

Proof. As before, we present a sketch. Also, as before, we let

e(z) =

Then, e(z) has the functional equation,

for all tf E A.
Let 0 ¥= i E /. It is clear that ia E 791. Thus, from above, we see

e(λα)

is a root of ψ(/)(jc) = 0, i.e., it is an /-division point. Further,

1 _ 1

e(z + λα) e(z) + e(λa)
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Thus, the Taylor coefficients are, on the one hand, in /cab, while, on the
other hand, of the form ±(λc)~/ΣδG/9ί(α: + β)~'. The previous proposi-
tion now finishes the proof.

3.3.3. REMARK. The proof of 3.3.2 shows

— | — = λ-' 2 (α + δΓ^λ-1 2 βL(βa,\).

Now set I = ̂ n, and let 21 = ̂ " " % . Further, let α0, ax E 2ί -
^-(m~l)%x. Then we have just seen

e(λax) = Σ

=

e(λa0) ~ Σβ&F* βL(βal9l)
m

But, in ([7]), it was shown that e(Xax)/e(Xa0) is an invertible function
(unit!) on M^n. Due to the work of Galovich-Rosen, Hayes and the
author, it is now known that these units generate groups of finite index.
There are further deep connections with Stickelberger elements, (see [8]).

4. The relative zeta-functions. In this chapter we introduce the study
of "relative" zeta-functions. These functions play the role classically
played by the Dedekind zeta-function of a number field. In particular,
once the basic questions of analyticity and rationality are settled for these
functions, it appears almost certain that their special values will fit into an
Iwasawa set-up completely similar to that envisioned for totally-real
number fields.

4.1. DEFINITION. Let [L: k] < oo and let Θ be the ring of A -integers
in L. Let N be the norm map on ideals. We set

α , ) = Σ (NSBΓ= Π (l-ίNSΓΓ'
23 C0 ©prime

Vΰ an ideal

We call £θ, the zeta-function of Θ over A. We conjecture it may always be
extended to an entire function.

If L is abelian over k, we can, in certain cases, show this conjecture by
reduction to L-series in a procedure similar to the classical one. We will
not prove the most general case here, but will content ourselves with the
illustrative case of the schemes M^n of ([2]), ("«" here is distinct from
"r = pn"). Recall that M^n is Galois, abelian over k. There is a map
M^n -> Mλ which is totally ramified at all primes above ^ and is etale
elsewhere. The Galois group of this map is isomorphic to (A/%")*/¥?.
The Galois group, G, of M^n/A is, in the notation of 2.3, =

F;, in accordance with class-field theory. Finally M ^
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splits totally at oo. We have an exact sequence

0 -> Fr* -»(A/ψY -> G -» Ga^M,/^) -> 0;

with GalίMj/yί) ss {class group of 4}. Let a - D(φ), t/^w) = {x e
yί* I x = l (φ Λ )} , t^ = 1-units in Λ*, and μr^λ = (rα - l)st roots of 1.
Then,

U / ί Γ ^ j v ^ X Ux/Ux{n)9

with Ux/Uλ(n)2ί finitep-group.
It is clear that any fc-valued multiplicative character of G/(Uλ/Uλ(n))

extends uniquely to G since char(/c) = /?. (The reader should not confuse
these characters with those used to define 2ί~*. )Thus a character χ on G
arises from a primitive character χ 0 on either Gal(M^/04) or Gal(λfx/A).
If it arises from M^ and not Mγ, we say 5jJ is its level, otherwise, we say 5)3°
is its level.

Now #(GsΛ(M^/A)) - ((rnDW - l)/(r - 1))A, with A = class
number of 4̂. Let #G = g0 gl5 with g0 a power of p and (p, gλ) - 1. Let
h — hohλ with the same restrictions.

For convenience, let lM\ (s) denote the zeta-function of

4.2. THEOREM. ζM^n(A) = (Π χ L(χ 0 , ^) g o)(l - ^-fΎ, * =
j(go/ho — 1); where f — (ord ^ m ίΛe lέ/eα/ c/αsj? growp o/^} απJ/ j = h.

Proof. First, let ^ , be a prime ^ Ŝ of A. The primes above ^3, in
are unramified. Thus, in ^

with 3 V .. ,93M prime and N ^ = = N»u = φf1, and/, r = #G. The
contribution to ζM\J^s) is therefore

Let / = 5β^5; so the contribution is

(1 - r/ )-".
On the other hand, %x generates a subgroup H of order fλ in G. Let

f\ " ΛΛ w i t h Λ I go a n d Λ ( g\- A s ^ ^ ^i» t h e v a I^es of a character χ on
%$ j is the same as that of the induced primitive character. There are f3

characters on //, each extending in gx/{z ways.
Now

( i- ' / 3 )= II (i-fO-



ON A NEW TYPE OF L-FUNCTION 163

Thus,

X

On the other hand, we see

= ( l - * * ) - , α = g l g 0 // 3 .

As the characteristic is p, this in turn equals

But,/3/2 = fx and a/f2 = t/. This completes the result here.
Next let φ 1 = φ . Then, in ^

with N(S3 y) = φ ' all i,/ 7 = Λ and/ 7 <? = #G. Indeed, over M l 5 there
is total ramification. The contribution above ^ is therefore

(1 - φ-'ψ.

Set Z ^ ^ " 5 and let ;f = fofι9 j ' — jojx with the usual restrictions. As
before,

X

with χ running through the characters of Gal(M,/^4). Thus, asjλ — hλ/fl9

( * o = / ( j _ ί / , ) A i / / i ) a ° = (J _ χί

X

The result now follows directly.

4.3. COROLLARY. ζM\ n(s) is entire.

4.4. REMARK. Obviously, for non-abelian extensions of k the above
procedure fails. It is not unreasonable to expect, however, that the
Riemann-Roch theorem, together with results like 1.2, will eventually
establish the results in general.

5. The theory when 5, is a negative integer. Our goal here is to
establish the basic algebraicity of our function at negative integers. The
reader will see that at the negative integers our functions possess rational
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"polynomials" as opposed to just "values". These polynomials are then
interpolated at all primes of k.

5.1. The algebraicity of L-series for s{ = -/. Let a E A, a, b E N,
HC A an ideal, and S(a, H, a, b) — ^n=a(^H^D(<n)=bn

a. As a simple
corollary of 1.2 and the Riemann-Roch theorem, we see that for b
sufficiently large S(a, H, α, b) = 0.

If we multiply S(a, H, a, b) by πf, we have the same sum over
1-units. Thus the following result is immediate.

5.1.1. THEOREM. Let L(s) be one of the functions of 2.3.1 or 2.3.2. Then
L(so,-i) is a Laurent-polynomial for i E N.

Now let 31 be a fractional ideal, nl9 n2 E 3ί and / C A an ideal. Let
nl9n2 E 9 ί w i t h D(nx) = D(n2) =j, nλ =n2(I%) a n d (nx)= (n2)(πm).
Then λ = Λ, - « 2 E 721 and ττ^λ E (ττw), or D(λ) <y - /w. Conversely,
given λ, we can add it to nλ to obtain a n n 2 with the above property. The
set of such λ is an Fr-vector space and if we use 1.2 on each coset, along
with the binomial theorem, we conclude

5.1.2. THEOREM. Let L(s) be one of the functions of 2.3.1 or 2.3.2. Then
L(so,-i) is a Laurent-polynomial for i E N.

5.1.3. COROLLARY. ζM\ n(s0, -i) is a Laurent-polynomial for i E N.

Proof. This is immediate from 5.1.1 and 4.2.
As a corollary of the above, we have the following method of

calculation: Let, for instance, L(s) — ζ(s) and let

Then, we have

D(h) = υ

is a finite sum and it belongs to k.

5.2. Some trivial zeros for zeta and L-functions. We begin with the
zeta-function. Fix a collection X = { 2 ί o , . . . , 2 ί w } . Then we have

ί = 0
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Set

Z(sO9-i) = ζ(πιs0,-ή.

Thus,

= Σ
c = 0

Σ sόJ Σ *'

In particular, the sum in parentheses is a Laurent-polynomial.
Our first result is a non-υanishing result:

5.2.1. LEMMA. Z(3ί c,(l,0)) = £(2Γc,0) = 1 for all c.

Proof. There always exists a unique monic of least degree in %c. The
result is obvious upon taking multiplicities into account.

Let H c A be an ideal. We let 5(0, # , (r - 1), 7) be defined as in 5.1,
withy so large that the sum is 0.

5.2.2. LEMMA.

Proof. Let / be a fixed element of degree N(r — 1) in H. Any other
may be written as/ + α/z, with h E H of smaller degree and α E Fr. Then

Summing over a kills the terms corresponding to / > 0. We are left with
-A^"1*. Summing over h finishes the proof.

5.2.3. COROLLARY. ?(STc,-(rc - 1)) = Z ( 2 ί c , ( l , - ( r - 1))) = 0.

Proof. Upon multiplying by a constant, we reduce to having ^ic — H
be integral. As

we see the result follows from 5.2.2.

5.2.4. THEOREM. ξ(-i) = 0 unconditionally for i = 0(r - 1), / > 0.
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Proof. Of course, we need only check the result for the corresponding
components. But, by induction, this follows as in 5.2.2, 5.2.3.

Thus, in this case, we obtain relations between the zeros of the
different components.

We turn now to the case of L-series associated to characters χ. For
convenience, we work only with characters on

^ prime. However, our arguments easily generalize to the case where % is
replaced by an arbitrary /.

Let X= {9ίo> >2tm}> (8Ϊ, > Φ) = 1 all i. Suppose that for ξ e Fr*,
χ( f ) = V, where we think of F* C 4 ( ^ ) / P ( ^ m ) in the obvious fashion.

5.2.5. THEOREM. // 0 < / < r — 1, then L(χ9-i) — 0 unconditionally,
for i = -l{r- 1).

Proof. As before, we may restrict ourselves to handling only the
components of L. These are of the form

Σ
7>-oo

where χ is extended to % c in the obvious fashion.
Assume first that each residue class of 2ίcmod %m%c has representa-

tive of degree < / , / = rΏin0¥zβG^m^{D(β)}. Our sum becomes

Σ

= Σχ(«) 2 2
y>-oo D(h)=j

2 1 2
D(h)=j t=Q

(
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Let (&c/y>m%c)* be defined as

167

Let {av... ,av] be monic representatives of

Our sum becomes,

«y)( Σ f/2f'«j(;to"I«c.-(/-0))+ Σ
j I J e F ; ί=0 V ' / a mon

Now if (r - 1) I (i - t), (i - t) > 0, then, by 5.3.3,

If Λ ( r - 1)H' - 0 = » ( r - 1)H' + 0 =*Σ?/+/ = 0. If we note that
f($m3l c,0) = 1, and that (r - 1) | (/ + /), by assumption, then we are
left with

«y)Σf(Γ-υ«ί+ Σ x(«K = o.

Next, suppose there exist a with D(a) >/; α smallest in its class. Our
sum becomes

Σ (a + fi)'+ 2 (α + A)'
y<-oo

α monic
D(a)>f

D(h)=j
jD()

Σ
i-monic

2 (« + *)'
Λ non-monic

D(h)=j
\ j>D{ά)

X(α) Σ
7>-oo

D(h)=j
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Now suppose a monic D(ά) > / ; obviously if 1 Φ ξ G Fr*, then ζa is
of the same degree but non-monic. Our sum with respect to these a
becomes

χ(α) 2 (a + h)' + χ(a) Σ (« + *)'

+ Σ x(«)Γ' Σ (f«+ *)'" +(rest).
D(h)=j

But, α"f = f7, so χ(a)ξι = χ(ζoc). Thus, we can express our sum as we did
above and proceed in the same fashion to finish the proof.

5.3. Some additional results with A = ¥r[T]

When A = Fr[T], we can say much more.

5.3.1. LEMMA.

b=o
(r-\)\(i-b)

for i G N + .

Proof. Write n = Th + ξ with D(h) + 1 = D(n), f G F r ? and expand
out the additive formula for Z( J 0 , -/) . Upon noticing

j = JO if (r - 1) tyl t h e r e s u l t f o l l o w s

-1 otherwise J

If we put s0 — 1, we obtain a formula for £(-/). If we apply d/ds0, we
obtain a formula for (d/dso)Z(so, -i).

5.3.2. DEFINITION. We set β(0), /3(1) = 1 and for / > 1

j - l

n ( - \ 1 ^

P\ι) — A ~ ^

(r-l)|(i-δ)

5.3.3. LEMMA. Le^ ι G N + . Γ/ze«
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Proof. This follows from the above and 5.2.4.

Clearly β{i)(ϋ) = 1 for i > 0. Thus, we have for i = 0(r - 1),

5.3.4. PROPOSITION. The zero of Z(so,-i) at s0 — 1 is simple.

This is exactly as for the Riemann zeta-function.

Let now r — p.

5.3.5. DEFINITION. (1) Let j G N + be written as Σ^o^/Λ ° - ci <P-
We set 5(y) = Σc,..

(2) Let j be written as Σpe', eλ<e2< , and suppose £(7) >
(/? — 1), with each ei occurring at most (p — 1) times. Set

p-\

PU)
 =J ~ Σ />% p2 = po p, etc.

1 = 1

Using formula on congruences of binomial coefficients, Emory
Thomas has shown the following:

5.3.6. THEOREM. (1) Let i G N + with S(i) </> - 1. 7%e/i /3(/) = 1.
(2) Let S(i) >p - 1 W fe/ 5(/) = c(p - 1) + d, with 0< c and

\<d<p-\.Then

The reader should compare the above with 3.2.5.

5.4. The v-adic theory and interpolation. We now discuss the interpola-
tion of our functions at the finite primes. The reader will note the
remarkable similarity to the τr-adic theory. In particular, the t>adic
functions will also turn out to be entire in a sense similar to the ττ-adic
sense.

Let ^ be a finite prime of degree a and let υ be the associated plane.

5.4.1. DEFINITION. We set

Sv = Z / ( r β - 1) X Zp = lim Z / ( ( r β - l)p').
i

We call Sv the character-space at v. The integer powers are dense in S .̂

5.4.2. PROPOSITION. Let iv i2 G N with ix — i2 G (ra — \)pe. Let n G k
be a v-adic unit. Then

Λ1'' - «/2 G $ * ' .
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5.4.3. COROLLARY. The function i -» nι interpolates to a continuous
function Sυ -> A*.

Note the extremely strong congruences given by 5.4.2.

Sv is the exact t>-adic analogue of S^ and of the classical /?-adic
character space. What is surprising about the present situation is that our
functions naturally occur on a much larger two-variable space.

5.4.4. DEFINITION. We set Xv = k* X SΌ.

Let C be a fixed integral ideal and let 21 be prime to $β. We now
define 2P1, the ϋ-adic version of 915l. Let

We have an exact sequence,

0 ->limP0($C)/P(πma$J) -> §(Cττw)t; ^ ί(C5β)/P°(φC) -* 0.

But,

limP°(%C)/P(%JCπm) s Ϊ7= units in

Thus, we think of ^(CTΓ 1")^ as being an extension of
As in the 7r-adic case, for simplicity of exposition, we now set C — A,

5 5
We now consider only those continuous /^-valued characters (or,

more generally, maps to G L ( H , kv)) that induce nXχ on the units, etc.
Let X = (3ί 0 , . . . , 2 ί J , (ST,., 5|J) = 1 all /, be a collection of ideal class

representatives.

5.4.5. DEFINITION. Let x — (JC0, xλ) E X^.
(1) We set

93 pnme 3t c/4

ζυ(x) converges for all x with v(x0) > 0, (υ considered additively).
(2) Let i) be an ideal divisible by $.
(a) Let δ G $(D)/P(πmD). We set

U β ^ ) = Σ x
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(b) Let δ, G ζ(D)/P°(D). We set

. , * ) = Σ S(S,x).

171

(c) Let/be a ^-valued function on %D)/P(Dπm).We set

Note that L o (/, x) can easily be expressed in terms of partial zeta-func-
tions. All functions clearly converge for v(x0) > 0.

It is clear, for instance, that

U*)=
ι = 0

where

= Σ = Σ V

D{n)=j

From now on, we use the symbol Σr to mean that we sum over the
elements prime to ξJS. We always sum by using cosets mod 3̂ with
generators prime to 5JS. So, we can use previous vanishing results to
conclude that if L(x) is one of the above functions, then for xx = -/,
/ E N, L(x) is a Laurent polynomial.

Before discussing analyticity, we want to make the connection with
the 77-adic functions explicit. We need only do so in the illustrative case of
the zeta-function: Let x = (x0, x{) with x{ = -/, / E N, and x0 E k*. Let
s = (TΓ^Q, sλ), s0 = x0 and sx = xx — -i. Then, we have an equality of
Laurent-polynomials.

5.4.6.

c=0

Ϊ~J

7>-oo n(E%c

D(n)=j

sir;
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where we have equated 7r"Z ) ( 2 ί c )(9ίc)
/ with 2ΓC; one symbol considered

77-adically and one ϋ-adically. (We leave it to the reader to make this a
rigorous statement concerning characters.) For instance, when A = Fr[T],

Therefore, we see that for xλ — -i, / E N, our υ-adic functions are, up to
a possible Euler factor, special values of our π-adic functions for x0 E k.

5.4.7. THEOREM. The functions of 5.4.5 interpolate to entire functions on

xυ.
Proof. As in the ττ-adic case, we reduce to handling sums of the

following form: Let 2ί C k be prime to % and let a E 21 - ^2ί . Then, we
need only show sums of the form

Σ
j>-oo

x0

^^

D(n)=j

1

converge for all x0 Φ 0. We can, as before, consider 21 as being integral.
Now let n — ω(n)(n)v, with (n)v a 1-unit, and ω(n) — the

Teichmύller representative. Then,

with

a0 E Z/ (ra - 1) and aλ GZp.

Asn = α($β2t), we have ω(n) = ω(a). Further, if D{n) > D(a), then

n — a + h,

with/z E ΐβ2ί. Also, ify = D(nλ) = D(n2), and Πj Ξ « = n2, then

^•(πI-/i2)ε(ff'").

If we let (n)v = 1 + (wn)Ό, then the coefficient of XQJ becomes

The set {(ww)l;} is not an Fr-vector space. But, as before, it is a
principal homogeneous space over one. Also as before, we can now use
the Riemann-Roch theorem and 1.2., t -adically, to finish the proof.

Thus, we've obtained the υ-adic interpolation of the polynomials of the
type given in 5.4.6.
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5.4.8. REMARKS. (1) By using the Teichmϋller representatives, and
congruences at oo, it is clear now how to extend our theory to the most
general situation where oo is not necessarily rational. It would be interest-
ing to have such results to compare with.

(2) The same remarks that we made at oo about values also are valid
in the f-adic theory. Thus, the υ-adic valuation of the components is
independent of the ideal class representative prime to 5β.

The zeroes are also invariant. And, as τr-adically, the components of
our entire functions have infinite products over their zero sets, counted
with multiplicity.

(3) We stress that each time x0 is chosen, we obtain a continuous
function from Sυ -» kΌ\ each function is similar to the classical />-adic
L-series. In particular\ if xQ= I, we obtain the interpolation of our functions
at negative integral powers.

Next we discuss some corollaries. Let 3ί be a fractional ideal and let
α 0 , a} E ^'m% - ^- ( m ~ 1 } 3l. Then in 3.3.3, we showed that τr-adic series
of the form

Σ K + /0-1/ Σ («> \-l

are units in the schemes M^m. But we've just shown that if we sum these
series by grouping according to degree that they also converge ^-adically.
The obvious question is, do these series also converge t>adically to the
same unit?

Finally we return to the relative zeta-functions of §4. Theorem 4.2
tells us that, upon removing the ^3-factor,

&#;.)>) =

Thus, as we move up the ^n-tower the %-adic functions differ by powers of p.
In particular, they have the same zeroes.

5.5. A remark on functional equations. It is not known whether or not
the 77-adic functions satisfy functional equations. However, it seems highly
doubtful that if they do satisfy functional equations, that they will be of
the classical s h-» 1 — s form. The point is the following: A classical
Dirichlet-series is determined, as a Dirichlet series, by its values at an
infinite subset of those positive integers for which it converges. On the
other hand, they are not determined by their values at negative integers
(e.g., ζQ(2s)). But, via the functional equation, ζQ(s) is determined by its
values at the negative integers; and, thus by its interpolation at the finite
primes.
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Our zeta-function has a whole polynomial at each negative integer and
this polynomial is determined by its rational values that are interpolated
at the finite primes. Further, these polynomials also determine by continu-
ity the 7r-adic function. Thus, from this point of view, a functional
equation along the classical lines is not needed!

On the other hand, there is some rather remarkable evidence linking
β(i) and Γ(Γ, /), that seems to represent a functional equation of some
sort. Let r = p, and 1 < c <p — 1 and i(c, j) — cpJ + (pJ — 1). Then it
is easy to use Thomas's formula to show that for i — i(c, j), D(β(i)) =
D(T(T9i))9 and, in fact, there is a fascinating degree of agreement
between these functions as the following tables will attest, when r — 3. We
begin with c—\ and we let β(i) = /?(/)/£, where ζ is the highest
coefficient of β(i).

i

1

5

17

53

161

485

•

a = D(β(i))

0

3

24

123

528

2067

b = D{T(T,i)-β(i))

0

0

15

96

447

1824

a-b

0

3

3
2

3
3

3
4

3
5

But when c = 2we obtain

i

2

8

26

80

a = D(β(i))

0

6

42

204

b = D(T(T, i)-β(i))

0

0

24

150

a-b

0

2-3

2 3
2

2 3
3

Any explanation for these facts would explain much. It should be noted
that it even took a large computer over an hour to grind them out, so a
computational explanation is probably ruled out. It is quite remarkable
that, unlike the classical situation, we seem to have a deep connection
between the values at the negative integers of the zeta-function and the
values of the gamma function! (See note at end of paper.)
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6. The connection with distribution theory. The whole of the preceding
theory becomes better understood when it is interpreted from the view-
point of distribution theory. (See 4.4.)

6.1. Distributions and measures. We begin by presenting a very rapid
review of distributions and measures. Let X be a compact totally dis-
connected space, let L be a finite extension of kw, w a, place of k, and let
0 C L be the ring of integers.

6.1.1. DEFINITION. An L-valued distribution is a finitely additive
L-valued function on the compact open subsets of X. It is a measure iff
the set of values on compact opens is bounded.

Let μ be such a measure and let /: X -» L be continuous. As X is
compact, / is uniformly continuous. It is now simple to see that the
Riemann sums associated to/converge. The limit is denoted as fxfdμ.

If μ is just a distribution, it is clear we may integrate locally constant
functions.

6.1.2. PROPOSITION. Let Xl9 X2 be two compact totally disconnected
spaces. Let μbe a distribution on Xλ and let P: Xλ -» X2 be continuous. Then
there exists a distribution P*μ on X2 defined by j x fdP*μ — j x f ° P dμ,
for any locally constant f.

Note that an 0-valued distribution is automatically a measure.
Suppose now that G — X is also a topological abelian group. Then, in

the usual way, both the distributions and the measures form an L-algebra
under convolution. For the moment, call these algebras D( X) and M(X).
Let Dλ(X) be the Θ-algebra of Θ-valued distributions. So M(X) = L ®
Dλ{X).

As G is a group, it has a neighborhood basis of the identity consisting
of open subgroups, {GJ, Gi D Gi+X. Thus, G/Gi is finite. It is clear, upon
a moment's reflection, that the algebra of distributions on G/Gt is
precisely the group ring L[G/GJ. If j > i, then we obtain a map L[G/Gj]
-> L[G/Gi]. We call the inverse limit ring, L[[G]]. It is the completed group
ring of G. The ring 0[[G]] is defined in the obvious fashion.

As measures push forward, the following proposition is obvious.

6.1.3. PROPOSITION, (a) β[[G]] Z-DX(X).

Next let Ux C L be the 1-units and let R be either a field over Fr or a
d.v.r. over Fr. Then, we form i?[[t/j]] in the obvious fashion. Recall, that,
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Uλ is an infinite product of copies of Zp. Let U C Ux be an open
subgroup, so G' = U/Ux is a finite /?-group.

6.1.4. LEMMA. R[G'] is a local ring.

Proof. Let G' be written as a product of prime power subgroups and

let tl9...,tj be chosen generators of these subgroups. Then R[G'] =

*[/ ! , . . . , / , - ]/(#" ~ 1). Let*, = 1 + /,. Then

R[G']=R[xl9...,xJ]/(xf* = 0).

The result is therefore obvious.

6.1.5. PROPOSITION. i?[[t/J] is a local ring.

Proof. This is clear from 6.1.4 and the decomposition of Ux.

6.1.6. THEOREM, (a) An L-dίstributίon is on Ux inυertible iff its total
mass is non-zero.

(b) An Q-υalued distribution on Ux is inυertible iff its total mass is a unit
in Θ.

Proof. Let μ be a distribution of Gf. By the above, it corresponds to a
" polynomial"

But /(0,...,0) = total mass of μ. Upon passing to the limit, the result
follows.

As an example of a measure, we have the Dirac measure, δχ9 x E X.
This is defined by

ffdδx=f(x).

Finally, one can talk about measures and distributions with values in
M(n, L) — {n X n matrices}. We leave the details to the reader.

6.3. The π-adic theory. We now show how our ττ-adic functions arise
out of 77-adic distributions and measures. Fix s = (s0, sx) G S^, and let
X— {3ίo,...,3lm} be a collection of ideal class representatives. We use
the notation of 2.3.

Let C be an integral ideal and ί (C), ί (C), be as defined earlier, i.e.,
§(C) = lim %C)/P{πmC). We begin by considering §(C) as a discrete
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group. The notion of a distribution on §(C) is obvious, if we agree to
integrate only bounded locally constant functions.

Let s = (s0, sλ) E S^ with D(s0) > 0.

6.2.1. DEFINITION. We set μs = Σ ( 9 l ? c ) = 1 ; 2 ί c^3ί" 5δ9 ί; where δ% is the
Dirac measure at 21.

It is clear that μs is a distribution in the above sense.

Now ί(C) (or rather its image) is dense inβ(C). Therefore, we can
push this distribution forward to obtain one on §(C). We still denote this
distribution by μs.

6.2.2. PROPOSITION. Let 8 be a class of §(C)/P(ττmC) =
$(C)/P(πmC). Then,

μs(δ)=ϊ(δ,s).

Proof. This follows immediately from the definition of the puUback of
a distribution.

It is not hard to see μs(δ) is a Laurent-polynomial, for s = (s0, -/).
It is clear that we can now extend the definition of μs on ί(C) to all

s E S^. It is easy to see that μs is a measure for all s E S^, with
/ ) ( s o ) > 0 .

Let D(s0) > 0.

6.2.3. LEMMA. Let f be continuous on §(C). 77*e«,

/ f dμs is analytic in s^x.
J\C)

Proof. The integral is a uniform limit of analytic functions.

Recall now that inour set-up, (%)Sλ is thought of as being identified
by some character on §(C), which induces (n)Sχ on Ux. If x E §(C), we
abuse notation and write xSι for the value of this character. Then, we have

6.2.4. THEOREM. Let D(s0) > 0. Then, ifs2 E Zp9

Proof. By our description of μs in terms of Dirac measures, this is
obvious for D(s0) > 0. Thus, by analytic continuation, the result is
immediate.
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In the same fashion, one can show

6.2.5. THEOREM. Let f be a function on $(C)/P(πmC). Then, in the
obvious meaning,

f fχ-s*dμs = L(f,y); y = (s09 sx + s2).

6.2.6. Question. Does there exist a method by which we can extend the
integration to all (s0, sx) with D(s0) > -i, i E N arbitrary?

6.3. Group theoretic interpretation of zeros. 6.1.6 allows us to give a
distribution theoretic integration of the zeroes of our functions. We show
how via an example: Let C C A be an integral ideal and let L(s) =
(Π,p|C(l - $-'))«*)- Let J f={2 l o , . . . ,δ ί J , (»,,C) = 1, all/.

We have just seen that

By using X, we can push our distribution onto Ux C $(C); it is defined
over -£"($()). Then 6.1.6 implies

6.3.1. PROPOSITION. μ5, considered on Uv is not invertible as K(so)-dis-
tribution iff L(s) = 0 conditionally.

6.4. The υ-adic theory. We now mention the i>adic theory. As the
proofs are exactly the same as for the τr-adic case, we omit them.

Let C be a fixed integral ideal, ^ a prime, etc. We view ?(C)O as a
discrete group and, for v(x0) > 0, we construct the distribution

(3l,C)=l

As before, μx descends to a distribution ${C)V, which is still denoted μx

6.4.1. LEMMA. In the notation of 5.5.5, if 8 E $(φC)/P(φJC), then

μx(8) = ζ(8,x).

Thus, we can extend μx to all x E Xv. It is a measure for v(x0) > 0.
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6.5.1. THEOREM. Let x2 e δ .̂ Then, ifv(x0) > 0,

ί z-χ^dμx = ζΌ(y) Π 0 - » - " ) , y=(xo>xι+xi)

©prime

We leave the corresponding result on characters to the reader.

One can also obtain distributions and measures on §(Cτrm)ϋ in the
above fashion. We also leave the (easy) details to the reader.

7. Galois group interpretation via class-field theory. We begin with a
simple example. Let A = Fr[T] and let (Q),f e ¥*, be the rank one
elliptic module given by

C r(Γ) = TF° - ζF.

Let 77 = \/T\ so "monicity" has its usual meaning. Let / = (z) be an ideal
and let α̂  be a primitive /th division point in k. It is an exercise to show
that k(aζ)/k is Galois with group isomorphic to (A/I)* in the natural
fashion and that A[aζ] is the ring of integers.

Let Ŝ = (P) be a prime not dividing / and let P be monic. It is trivial
to see that

q ( P ) = (-ξ)D(P)FD(P) + {lower terms whose coefficients are in (P)}.

Thus, the Frobenius at $ is given by the image of (-ξ)~D(P)P in

Let π now be -ζ/T. Then, via class-field theory, we see the Galois
group of k(as)/k is ί(I)/P(I); where we use monies with respect to our
n e w 77.

We can now express ζA[(Xj;](s) in terms of L-series as in §4. From 5.4.5,
we have

7.1. THEOREM. ξA[aξ](-i) = 0 for all i e N.

As A[aζ] is not "totally-real" (i.e., totally split at oo) this result is in
line with classical results.

We also obtain the fact that the ramification degree at oo is (r — 1).
As k(a[~λ) is the function field of M) and this splits totally at oo, we see
that k(aζ)/k(arfλ) is totally and tamely ramified above oo. Thus, we
have an explicit "cyclotomic" construction for the group ί(/)/P(7). This
is due to D. Hayes following L. Carlitz; see ([1], [10]). It is the analog of
the classical full cyclotomic field.
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Now let A be general. It is easy to see that, via class-field theory, all
groups of the form ί(C)/P(7rmC) occur as Galois groups of abelian
extensions of A:. A construction of the A -integers may be given in the same
fashion as above, when m = 0, by using the elliptic modules constructed
in ([11]). Therefore, these extensions may also be thought of as being
"cyclotomic". Further, the act of picking π corresponds to choosing a
totally ramified tower at oo.

To finish, we now summarize what is known (see [8]), when A — Fr[Γ],
r — pn. Let %$ C A be a prime and k(^m) be the field corresponding to
5 ( ^ ) / ( ^ m ) . Let D(^) = d. Let A ^ be the class number of this field and
let A Jm be the class number of the subfield fixed by Fr*. It it known that
h^m I fly*, Slid WQ Sβt A^m = A^m/A Jm.

7.2. THEOREM, (a) p \ h^m if and only if^\ Π[ll?(r_ w i8(i)
(b)p I Λ+. if and only if% \ Π^ ;

2

( r _ 1 ) μ A0.

Now let M <ΞA, with (M, φ) = 1 and D(M) < di.

7.3. DEFINITION, (a) We set

_ Ϊ2 + (p) ifMismonic j
μx(M+ψ) = | Ϊ + ( / | ) ifMisnon-monicJ *

(b) We set

\-D(M) + di + (p) ifMismonic 1
u (M + yβι) \ \

2 \-D(ψ) + (p) if Misnon-monic.J

Both measures have values in Fp C A. The measure μλ arises from §6.4
with X — (1,0), and the measure μ2 arises by applying d/dx0.

It is easy to use 6.5.1 and the vanishing of £(-/), i = 0(r — 1), to
show the following

7.4. THEOREM, (a) Let i E N + with i¥=0(r- 1). Then

(b)Leti = 0(r- I). Then

(\-ψ)β(i)=ί χidμ2(x).
JΛ%

Now let P be the continuous function from Alfc to A^ given by taking
x-^χ-\ Let fij = P^i9 i = 1,2. Let β ^ " 1 ) , 6 E ( ^ m ) + be the class-
groups i.e., Jac(Fr), of k(^m), k(^m)+ respectively. It then follows from
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the work of Tate and Gross that μx annihilates ei{%m)/pQi{%m) and β2

annihilates e
Next, let ζ be a primitive (rd - l)-st root of 1 and let B = Zp[ξ].

Clearly B is unramified over 2,p and B/pB — A/%. If we fix one such
isomorphism we obtain a character ω: A/ty* -> B*. All characters are
powers of ω and, upon tensoring with 2?, we can form isotopic compo-
nents Qi(%m)(col), in the usual cyclotomic fashion. Putting all this to-
gether we finally have

7.5. THEOREM. Let 0 < i < rd - 1. Then (ίl{%m\(J) φ 0 implies that
%\β(rd- l - i ) .

As it is trivial to see, from its additive expansion, that β(pi) — β{i)p,
the result is invariant of the choice of ω.

7.6. Question. What is the meaning of the Bernoulli-Carlitz numbers?

(NOTE: This pattern also seems to hold with r — 2 and r = 4. With
r — 4 the numbers differ by powers of 4!)
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