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NON-HAUSDORFF CONVERGENCE SPACES

R. J. GAZIK

In this paper we will establish a method of removing the Hausdorff
assumption from certain convergence space theorems. As specific appli-
cations the precise form of the closure of a compact set in a regular
non-Hausdorff space is given and the exact relationship between cl and
cl2 in a non-Hausdorff compact regular space is obtained. Necessary and
sufficient conditions that the transition space for this procedure be
topological or pretopological are found and a few embedding theorems
are obtained.

1. Introduction. Taking a hint from Thompson [6], who used the
"Spiral" relation to investigate properties of topological maps with non-
Hausdorff domains, let us define (x, y) E Sp to mean there exists a filter
which converges to both x and y. Now Sp is an equivalence relation if and
only if the base space is transitive in the sense that if F -> x, y and G ->
y9 z then there exists a filter H -» x9 z. Since we want to take quotients by
Sp our point of view is that only the class of transitive spaces will be
considered. This class is quite broad as the next result shows.

PROPOSITION 1. Regular spaces are transitive, spaces induced by uni-

form convergence structures are transitive, products of transitive spaces are

transitive.

Proof. If F -» x9 y and G -» y9 z then clF <y9 c\G<y so clF V clG
exists and converges to x9 z by regularity.

If the convergence is uniformizable [1] we may assume there is a base
of symmetric filters each of which is coarser than the diagonal filter. Thus,
if F -> x, y and G -»y9 z there is some member Φ of the base such that
each of the filters F X x9 F X y9 G X i is finer than Φ. So if V E Φ then
V(x) Π V(y) φ 0 and V(y) Π V(z) φ 0. A computation now shows
(x, z) E V4 hence Φ4(x) -> x9 and the space is transitive.

If filters converge, in the product, to /, g and g, h then use transitivity
in each component X(λ) to obtain filters which converge to/(λ), h(λ).
Then the product filter converges to/, h. This ends the proof.
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A characterization of transitive spaces or a general method of remov-
ing the Hausdorff assumption from theorems which involve them seems to
be difficult to obtain. In §2 a small subclass of the transitive spaces is
dealt with - namely the regular spaces. In this class we will obtain a
method of trading off regularity for Hausdorffness or, in the case where
regularity is part of the hypotheses, we will be able to remove the
Hausdorff assumption altogether.

Since the space X/Sp is the transition space for this procedure, it is of
interest to know when it is pretopological or topological. Filter conditions
on a regular pretopological (topological) X which are necessary and
sufficient that X/Sp be pretopological (topological) are given in §3. Some
embedding properties are also in this section.

2. Basic result.

PROPOSITION 2. If X is regular, Sp(x) is compact for each x E X.

Proof. Notice first that, when X is regular and F -> x, t then x > cl F
-» t. (Then also t -> x.) Hence, in this case, Sp(x) consists of all t such that
x -* t. Now if U is an ultrafilter on Sp(x) and U E U there exists
x{U) E U such that x -> x(U). Then U Π cl{x} φ 0 for each u E U
thus U ^ U V c l i ^ x and Sp(x) is compact.

PROPOSITION 3. If X is regular, Sp is closed in XXX.

Proof. If A is a filter which converges to (x, y) with Sp E A, then for
each A E A there are points (x(A), y(A)) E A with x(A) -»y(A). (See
the proof of Proposition 2.) Let S(x(A))9 S(y(A)) be the section filters of
the nets x(A)9 y(A) respectively. Notice that if S is a final section of x(A)
and T is the corresponding final section of y(A), then S C cl T because
y(A) -+y(A). Thus x > cl S(x(A)) > cl2S(y(A))-+y since the section
filters converge to x9 y and X is regular. So x -» y and (x, y) E Sp. This
completes the proof.

In what follows π: X -> X/Sp is the canonical map and X/Sp carries
the quotient structure [2]. The symbol [x] is the equivalence class Sp(x).
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PROPOSITION 4. Ifp is a regular convergence structure on X and q is the

quotient structure on X/Sp then

(1) for A C X/Sp,clgA = irclpir~ιA9

(2) q is Hausdorff and regular,

(3) Sp is the smallest equivalence relation r on X for which X/r is

Hausdorff.

Proof. For part (1) let [x] E πcl π~ιA so that [x] = [t], t E cl π~ιA.

Then π~xA E U -» t for some ultrafilter U. Hence A = ππ~ιA E πU -»t

so [/] E [x] E cl̂ ΛL This means that πclπ~ιA C clΛL For the reverse

inequality let A -> [JC], 4̂ E A, so that, according to the definition of q,

A > 77F for some F -> / E [JC]. Now π " U E π~[A > TΓ^TΓF > clF -> / so

t ^ c\pir~λA. This completes the proof of (1).

The proof of (2) is from Proposition 1.1 of [4], Proposition 3 and part

(1).

For part (3) if r is any equivalence relation on X which makes X/r

Hausdorff consider (JC, jθ E Sp. Then F -> JC, y so, since X/r is Haus-

dorff and the canonical map is continuous, the equivalence classes de-

termined by x, y are equal. Thus (x, y) G r or Sp G r and the proof is

finished.

Let us now give a few specific examples of how to remove the

Hausdorff assumption from certain theorems by means of the quotient

space X/Sp. Define, for B C X9 5 * = {x \ b -> x for some b E B}. It is

well known that a compact, regular, Hausdorff space has an idempotent

closure operator. The non-Hausdorff form of this is

PROPOSITION 5. If X is a compact regular space and B C X then

cl2 B = (cl B)*.

Proof. JΓ/Sp is compact, regular and Hausdorff by Proposition 4 so

c\2

q πB = clqπB. Then using Proposition 4 and the continuity of TΓ,

TΓCI2 B C cl2 πB = cl^ πB = ττcl τ r V # = πά 5*. However, cl 5 * C cl B

for if x E cl 5 * there is an ultrafilter U -> x, β* G U and then there are

points 6(17) Gί , jc ( [/ )G{/ with 6(t/) -» χ([/) for all ί/GU. So, as in

the proof of Proposition 3, S(b(U)) > cl S(x(U)) -> JC hence JC E cl 5

because any ultrafilter finer than S(b(U)) contains 5. Then, also, cl B* =

cl 5 for 5 C 5*. Combining this with ττcl2 B C 77 cl 5* we get τrcl2 B =
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Now, assuming the result of the last paragraph let x G cl2 B. Then
π(x) = π(t), t E cl B, so t -> x9 t E cl B or x E (cl 5)* hence cl2 5 C
(cl By. The reverse inequality is clear since B* C cl B and the proof is
finished.

REMARK. The reader should note that, on a compact regular space,
cl4i? = cl2 B. (See [3].) Moreover, by Proposition 3.1 of [3] and the result
above, ωX closure is given by the convergence in X.

Next, it is known that a compact subset of a Hausdorff space is
closed. Interchanging the Hausdorff and regular properties we get

PROPOSITION 6. IfXis regular and B C X, B compact, then cl B — B*.
Moreover, the latter set is closed.

Proof. ̂ Γ/Sp is Hausdorff and πB is compact so clqπB — πB. By
Proposition 4 π cl π~λπB = πB so cl B C π cl π'λπB = πB and π cl B = πB
follows from this. The result now follows as in Proposition 5 and B* is
closed for, again as in Proposition 5, clB* = clB = B*. This completes
the proof.

It is known that if/, g are continuous functions with Hausdorff range,
then the set on which they agree is closed.

PROPOSITION 7. If f, g: X -* Y are continuous and Y is regular then
{x I f(x) -> g(x)} is closed.

Proof. Apply the known result to /*, g*: X-* Γ/Sp defined by
f*(x) — π/O), g*(x) = πg( c), noticing that they are well defined and
continuous.

3. When Jf/Sp is pretopological (topological). The reader is re-
ferred to [5] for information on diagonal theorems and their relation to
topologies and to [2] and [4] for a general discussion of quotient spaces.

In this section we shall investigate conditions on X such that -X/Sp is
pretopological (topological). For a pretopological (topological) regular X
necessary and sufficient conditions are found.

In -X/Sp define A -> [x] if and only if π~ιA -> y for some y E \x\.
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Notice that this convergence, call it #*, is not even a convergence

structure in general. But in case X is regular q* is a convergence structure

which is actually the quotient structure q. This fact will enable us to

obtain the results of this section.

q* = q

PROPOSITION 8. // X is regular then q* is a convergence structure and

Proof. If p — [x] then π'Xp) = clx-*x so p-*p relative to q*.

If A -> p relative to q* then there exists y in [x] such that π~ιA -»y in

X. Then

m"\A Λp) >π~ιA Aπ~ι(p) >π~ιA Ac\y>c\(π'ιA Ay).

Since π~ιA A y -* y and X is regular, π~ι(A A p) -* y9 and so A Λ /?->/?

relative to q*.

Thus q* is a convergence structure and, since yl = ππ~ιA9 q* > #.

Suppose A# converges to [x]. Then A > 77F, F -> 7 E [x] so, by regularity,
! V : clF -> j . Therefore q* = q and the proof is complete.

PROPOSITION 9. // X ώ regular, then AySp is pseudo-topological if and

only if X has the following property: If F is a filter on X such that each

ultra)filter finer than F converges to an element of[x], then F converges to

some element of[x].

Proof. Suppose that the condition holds and assume that each ultra-

filter finer than Aq converges to p — [x]. By Proposition 8, π~]B con-

verges to some point of [x] for each ultrafilter B > A and, using the

condition above, it is not hard to see that π~ιA converges to some point of

[x]. Then Aq converges to p by another application of Proposition 8 so

X/Sp is pseudo-topological.

For the converse notice that if A/Sp is pseudo-topological and each

ultraf ilter finer than F converges to some point of [x], then each ultraf ilter

finer than πF converges to the point [x] and then 77F -> x. Hence

F > π~ιπF converges to some point of [x] by Proposition 8. Therefore,

the condition holds.

In what follows xry means (x, y) E Sp and X is the quotient space

A/Sp.
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PROPOSITION 10. // X is regular then X is pretopological if and only if

for each class of filters F(Z>), b G B, such that F(b) -> x(b) with x(b)rx it

follows that AF(b) -* y for some yrx.

Proof. Suppose X is pretopological and consider a class of filters as

given in Proposition 10. Then πF(b) -* [x] for each b G B so TΓ A F(b) —

ΛFτrF(Z>) -> \x\ Hence AF(b) 7> m~xm A F(b) ^ j G [x].

Now assume that the condition holds and consider A -»[x]. From

this TΓ^A -> j(^4) G [x] so, applying the condition to the class of all π~ιA

where A -> JC, we get ττ~ι Λ (A | A -> [x]) = Λ(τ7~1A -» A -»[x]) -» / for

some / G [x]. Thus Λ(A | A -> [x]) -> [x] and X* is pretopological.

Below N(x) is the neighborhood filter at x.

PROPOSITION II. If X is regular and pretopological, then X is pretopo-

logical if and only if for each x G X there is az G [x] such that N(y) > N(z)

for each y G [x].

Proof. The neighborhood filters N(j>) -»j for each ^ G [x] hence

N( j>) -»z G [x] by the previous proposition so, if X is pretopological,

N(y) > N(z) for some z G [x]. The conclusion follows from this.

Conversely, if the condition holds, consider any class F(b) of filters

with ¥(b) -* χ(b\ x(b)rx. Then F(6) > N(x(6)) > N(z) for some fixed

z G [x]. Thus ΛF(Z?) >: iV(z) and X is pretopological by Proposition 10.

PROPOSITION 12. // X w a regular pretopology then a necessary and

sufficient condition that X be a topology is that (1) and (2) hold:

(1) // η(y) -+y for each y G X and F -» x, /Ae« ί/zere w 5ome /, /rx,

Λ wcΛ ^α/ VΛΛ(?)(z) I zry, j G F , F 6 F ) - ^ / .

(2) Whenever filters F(b) -> x(b), x(b)rx, then there is some trx such

that F(b) -> t.

Proof. Suppose (1) and (2) hold. Then X is pretopological by

Proposition 11. so, by Theorem 1.4 of [5], X is topological if and only if

it is diagonal. But condition (1) is precisely the diagonal condition in X

translated back to X using Proposition 8.

Conversely if X* is topological it is pretopological and diagonal and

(1), (2) are exactly these conditions in X* translated back to X.

In [3] a space is said to be symmetric if it is regular and if whenever

F -» x and x -> y then F -> y. It is then proved that a convergence space is

completely regular if and only if it has a symmetric compactification.
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In the current case note that if X is pretopological and z G [x] (so

that z -* x) then, since N(z) -» z, N(z) > N(JC). Thus X is pretopological

by Proposition 11. We have proved

PROPOSITION 13. // X is pretopological and symmetric then Jf/Sp is

pretopological.

With respect to the next result the reader should note that a regular

topological space is already symmetric.

PROPOSITION 14. If X is a regular topological space, then X/Sp is

topological.

Proof. By using Proposition 8 we see from Definition 2.1 of [4] that m

is an open map. For if A -» [x], A an ultrafilter, then π~λA converges to a

point of [x] and maps on A. The if y G [x] symmetry shows π~ιA -> y.

Then ^ / S p is topological by Corollary 2.6 of [4].

PROPOSITION 15. If X is regular, Y is Tx and /: X -» Y has these

properties:

(1)/(F) -*f(x) if and only if¥ -> x

(2) f(x) = f(y) implies x -> y.

Then ^ / S p is homeomorphic to the range off.

Proof. Define g: X/Sp -> j by g?τ = /. Then g is well defined by the

continuity of/; it is 1-1 by (2). Then property (1) makes g a homeomor-

phism.

PROPOSITION 16. If X, Y are symmetric and Sp l 9 Sp2, Sp3 are spirals in

X, 7, X X Yrespectively then X/Spx X 7/Sp 2 = I

Proof. The mapping F defined by F(x, y) = (TΓ^X), TΓ2(J;)), where ττ1?

τr2? are the natural maps satisfies all conditions of Proposition 15. For the

only non-obvious part of this consider F(G) -* F(x9 y). Then / ^ ( G ) ->

πx(x), p2F(G) -» π2(x) hence ^ ^ ( G ) = ^ ( x ) . This means πxpxF(G) >

TΓ^H), H -> / G ̂ ( x ) . By regularity, ^ ^ ( G ) > ί r f V ^ ^ ί G ) > TJTV^H) >

clH -> /. Using symmetry ^ ^ ( G ) -> x and a similar argument shows

/ ? 2 F ( G ) ^ j so C->(*,>>).

A space X is ω-regular if clωA^F -> x whenever F -> x. Here clωX^4

means the closure of 4̂ in the finest completely regular topology coarser
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than X. Spaces which are ω-regular are of much interest in various

questions involving embeddings. See [3] and [7] and their references.

PROPOSITION 17. If X is ω-regular so is Jf/Sp.

Proof. By Theorem 3.2 of [3] it is sufficient to show that X/Sp has a

regular compactification. But another application of Proposition 15 proves

that R(X)/Sp is a regular compactification of X/Sp whenever R(X) is a

regular compactification of X.

For background information on oembedded spaces see [7].

PROPOSITION 18. If X is ω-regular, symmetric and pseudo-top^logical

then ^ / S p is c-embedded.

Proof. This follows from Proposition 17 and the fact that, whenever X

is symmetric and pseudo-topological so is ΛySp by Proposition 9.
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