ON THE ZETA FUNCTION
FOR FUNCTION FIELDS OVER F_p

EMERY THOMAS

We consider here the zeta function for a function field defined over a finite field F_p. For each integer j, $\zeta(j)$ is a polynomial over F_p, as is $\zeta'(j)$, the "derivative" of zeta. In this note we compute the degree of these polynomials, determine when they are the constant polynomial and relate them to the polynomial gamma function.

In a recent series of papers D. Goss has introduced the notion of a zeta function $\zeta(j)$ for rational function fields over F_r, where $r = p^k$, with p a rational prime. In particular, for each positive integer i, with $i \equiv 0 \pmod{r - 1}$, $\zeta(-i) \in F_r[t]$. Goss also defines the "derivative" of ζ, ζ', with $\zeta'(-i) \in F_r[t]$ if $i \equiv 0 \pmod{r - 1}$. We combine these special values of ζ and ζ' into a single function $\beta(n)$ (with $n = -i$) defined by:

$$
\beta(0) = 0, \quad \beta(1) = 1,
$$

$$
\beta(n) = 1 - \sum_{i \equiv n(s)}^{n-1} \binom{n}{i} t^i \beta(i), \quad n \geq 2,
$$

where $s = r - 1$. Thus, by (3.9) and (3.10) of [2],

$$
\beta(n) = \begin{cases}
\zeta(-n), & n \equiv 0 \pmod{s} \\
\zeta'(-n), & n \equiv 0 \pmod{s}.
\end{cases}
$$

An important situation where these functions arise is in determining the class numbers of certain extension fields over $F_r[t]$ (modeled on cyclotomic fields). If P is a prime polynomial in $F_r[t]$, Goss defines class numbers $h^+(P)$ and $h^-(P)$ associated to P, in the classical fashion, and shows that their study (à la Kummer) involves the polynomials $\zeta(-i)$ and $\zeta'(-i)$. Thus it is important that we know certain facts about these functions, and hence about $\beta(n)$. Specifically, when is $\beta(n) = 1$? What is the degree of $\beta(n)$? When does $\beta(n)$ factor? In this note we give some answers to these questions, for the case $r = p$.

REMARK. I am indebted to Goss for bringing this material to my attention.
The function $\beta(n)$. Let p be a rational prime, and for each integer $n \geq 0$, let $\beta(n) \in F_p[t]$ be the polynomial defined above. Note that if $0 < n \leq s$ ($= p - 1$), then $\beta(n) = 1$. For $n > s$ we rewrite (1) as follows: set $k = [(n - 1)/s]$. Then (1) becomes:

\begin{equation}
\beta(n) = 1 - \sum_{i=1}^{k} \left(\binom{n}{is} t^{n-is} \beta(n - is) \right).
\end{equation}

Let $n = \sum_i a_i p^i$ be the p-adic representation of n; thus, $0 \leq a_i \leq s$, and almost all a_i are zero. Define

$$ l(n) = \sum_i a_i. $$

Our first result is:

Theorem 1. Let n be a positive integer with $l(n) \leq s$. Then,

$$ \beta(n) = 1. $$

The proof depends upon several simple facts about binomial coefficients mod p. Recall the result of Lucas:

\begin{equation}
\begin{aligned}
\left(\frac{n}{m} \right) &\equiv \prod_i \left(\binom{a_i}{b_i} \right) \mod p.
\end{aligned}
\end{equation}

In particular,

$$ \left(\frac{n}{m} \right) \equiv 0 \mod p \iff 0 \leq b_i \leq a_i, \text{ all } i. $$

As an immediate consequence, we have:

\begin{equation}
\begin{aligned}
\text{If } \left(\frac{n}{m} \right) \equiv 0 \mod p, \text{ then } l(n) = l(m) + l(n - m). \text{ In particular,} \\
\text{if } 1 \leq m < n, \text{ then } l(n) > l(m).
\end{aligned}
\end{equation}

Finally, note that since $p \equiv 1 \mod s$, we have:

\begin{equation}
\begin{aligned}
n \equiv l(n) \mod s.
\end{aligned}
\end{equation}

Proof of Theorem 1. Let j be any positive integer. By (6), since $js \equiv 0 \mod s$, $l(js) \geq s$. Thus, if n is an integer with $js < n$ and $\left(\frac{n}{js} \right) \equiv 0 \mod p$, then by (5), $l(n) > l(js) \geq s$. Therefore, if $l(n) \leq s$, then $\left(\frac{n}{js} \right) \equiv 0 \mod p$. Thus, by (3), $\beta(n) = 1$, as claimed.
We suppose now that \(n \) is an integer with \(l(n) > s \); our goal is to calculate the degree of \(\beta(n) \) — call this simply \(D(n) \).

Define an integer valued function \(\rho(n) \) by:

If \(l(n) \geq s \), set \(\rho(n) = n - m \), where \(m \) is the least positive integer such that

\[
l(m) = s \quad \text{and} \quad \left(\frac{n}{m} \right) \equiv 0 \pmod{p}.
\]

Thus, if \(n \) is written \(p \)-adically in the form

\[
n = \sum_{i=0}^{N} p^{e_i}, \quad \text{with} \quad e_0 \leq \cdots \leq e_N,
\]

and with no more than \(s \) \(e_i \)'s with the same value, then

\[
m = \sum_{i=0}^{s-1} p^{e_i}.
\]

If \(q \) is an integer (\(\geq 0 \)) with \(l(q) < s \), set \(\rho(q) = 0 \).

Set \(\rho^{i+1}(n) = \rho(\rho^i(n)) \), with \(\rho^0(n) = n \). Thus, for large \(i \), \(\rho^i(n) = 0 \).

Example. \(p = 5, n = 3 \cdot 1 + 4 \cdot 5 + 2 \cdot 5^3 \). Then,

\[
\rho^1(n) = 3 \cdot 5 + 2 \cdot 5^3,
\]

\[
\rho^2(n) = 5^3,
\]

\[
\rho^3(n) = 0.
\]

Our result is:

Theorem 2. Let \(n \) be an integer with \(l(n) > s \). Then

\[
D(n) = \text{degree } \beta(n) = \sum_{i \geq 1} \rho^i(n).
\]

The proof will be by induction on \(l(n) \). Suppose first that \(l(n) = s + 1 \).

If \(j \) is any positive integer with \(js < n \) and \(\left(\frac{n}{js} \right) \equiv 0 \pmod{p} \), then by (5) and (6), \(l(n - js) = 1 \), and so by Theorem 1, \(\beta(n - js) = 1 \). Therefore, by (2), \(D(n) = n - js \), where \(j \) is the least positive integer such that \(\left(\frac{n}{js} \right) \equiv 0 \pmod{p} \); i.e., \(D(n) = \rho(n) \), as stated in Theorem 2.

We now make the following pair of inductive hypotheses: let \(k \) be an integer \(\geq s + 1 \), and suppose that \(n \) is any integer such that

\[
s + 1 \leq l(n) \leq k.
\]
(A_k) For any such integer n, D(n) is given by Theorem 2.

(B_k) Let n be any integer as above. If c is the least positive integer such that \(\binom{n}{cs} \equiv 0 \pmod{p} \) and d is any integer with \(cs \leq ds \leq n \) and \(\binom{n}{ds} \equiv 0 \pmod{p} \); then \(D(n - cs) \geq D(n - ds) \).

Claim 1. A_k implies B_{k+1}.

Proof. Write n as in (8) so that \(cs = \sum_{i=0}^{e_{r+s}} \sum_{j=0}^{e_s} p^i \), where \(e_r = e_{r+s} \). Similarly, write \(n - ds = \sum_{i=0}^{e_s} p^{s_j} \), where \(M \geq N - s \).

Then, for \(i \leq M \), \(p^i \geq p^{s_j} \), and so \(D(n - cs) \geq D(n - ds) \), either by Theorem 1 or by A_k and Theorem 2, since \(l(n - cs) \) and \(l(n - ds) \) are less than \(l(n) \).

Claim 2. A_k and B_{k+1} imply A_{k+1}.

Proof. Let n be an integer with \(l(n) = k + 1 \). Write n as in (8) and define cs as above, so that \(\rho(n) = n - cs \). By (3) and B_{k+1},

\[
D(n) = n - cs + D(n - cs) = \rho(n) + D(\rho(n))
\]

Since \(l(\rho(n)) < l(n) = k + 1 \), by A_k

\[
D(\rho(n)) = \sum_{i=1}^{\rho(n)} \rho'(\rho(n)) = \sum_{i=1}^{\rho(n) + 1}(n).
\]

Therefore, \(D(n) = \sum_{i=1}^{\rho(n)} \rho'(n) \), which proves A_{k+1}.

Proof of Theorem 2. We showed above that A_{s+1} holds, and so by Claims 1 and 2, A_k holds for all \(k > s \). This proves the theorem.

Note that (trivially) if \(n \) is positive, then \(\beta(n) \neq 0 \). Combining Theorems 1 and 2 we have:

Corollary 1. If \(n \) is a positive integer, then \(\beta(n) = 1 \) if, and only if, \(l(n) \leq s \).

For certain values of \(n \), \(D(n) \) can be written out explicitly.

Corollary 2. Let \(k \) and \(m \) be positive integers, with \(m \leq s \). Then

\[
D((m + 1)p^k - 1) = s \cdot \sum_{i=1}^{k-1} ip^i + kmp^k.
\]
Relation to the gamma function. We are interested in comparing the function \(\beta(n) \) with the Gamma function \(\Gamma_n \) (see [I]). Combining Corollary 2 with (3.1.1) of [I], we find:

Corollary 3. Let \(n = (m+1)p^k - 1 \), where \(k \) and \(m \) are positive integers with \(m \leq s \). Then,

\[
\deg \beta(n) = \deg \Gamma_n.
\]

For certain values of \(n \) we have a stronger result.

Theorem 3. Suppose that \(n = (m+1)p - 1 \), with \(1 \leq m \leq s \). Then,

\[
\beta(n) = 1 - \Gamma_n.
\]

We are especially interested in divisibility properties of \(\beta(n) \). Thus, we have:

Corollary 4. For \(1 \leq k \leq s/2 \) and \(p \) an odd prime,

\[
\beta((2k+1)p - 1) = (1 - \Gamma_{kp})(1 + \Gamma_{kp}).
\]

In particular,

\[
\beta(p^2 - 1) = (1 - \Gamma_{sp/2})(1 + \Gamma_{sp/2}).
\]

Proof of Theorem 3. We will need the following (easily proved) fact:

If \(0 \leq i \leq s \), then \(\binom{s}{i} \equiv (-1)^i \mod p \).

Suppose that \(n = (m+1)p - 1 \), as above. Thus, \(n = s \cdot 1 + mp \), and so by (3) and Theorem 1,

\[
\beta(n) = 1 - \sum_{i=0}^{m} \binom{s}{i} \left(\frac{n}{m} \right)^{t_i} \cdot t^{(m-i)p}.
\]

Then,

\[
\beta(n) = 1 - \sum_{i=0}^{m} (-1)^i \binom{m}{i} \cdot t^{(m-i)p} \quad \text{by (4)}
\]

\[
= 1 - (t^p - t)^m = 1 - \Gamma_n
\]

by (3.1.1) of [I].
REFERENCES

Received May 22, 1981. Research supported by a grant from the National Science Foundation.

UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720