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WITT KERNELS OF FUNCTION FIELD EXTENSIONS

ROBERT W. FITZGERALD

Let F be a field of characteristic not 2. For a non-hyperbolic
quadratic form q of dimension at least 2, let F(q) denote the function
field of the projective variety q = 0. We consider the problem, explicitly
raised as problem D by Lam, of determining the kernel of induced map
of Witt rings WF -+ WF(q). This kernel is the Witt kernel of the field
extension and is denoted by W(F(q)/F). The basic tool is a com-
parison of W(F(q ± (x))/F) and W(F(q)/F). The Witt kernels
W(F(q)/F) where q has small dimension or F has small Hasse
number are determined. Applications are made to the question of
when a conservative form is embeddable.

In the case q is a Pfister form, the function fields F(q) have been
widely used (e.g. the Arason-Pfister Hauptsatz). Central to the applica-
tions is that the Witt kernel W(F(q)/F) is qWF for Pfister forms q.
Elman, Lam and Wadsworth have considered function fields of several
Pfister forms pi9 (cf. [8]). Again the basic problem is computing the Witt
kernel W(F(pl9 p 2 , . . . ,p r)/F) and showing it is a Pfister ideal.

Here also the emphasis is on finding conditions to insure Witt kernels
are generated by Pfister forms. In the first section the comparison of
W(F(φ JL (x))/F) and W(F(φ)/F) is made and this is applied in the
second section to forms of small dimension. For example, we show the
Witt kernel W(F(φ)/F) is a strong Pfister ideal if φ has dimension < 5
and a Pfister ideal if dimension 6. This is used to improve several results
of Gentile and Shaprio (in [12]) on their question of when W(F(φ)/F)
contains a non-zero Pfister form.

The last section treats fields F of finite Hasse number. It is shown
that all Witt kernels of function fields are strong Pfister ideals if ύ(F) < 8.
And the Witt kernels W(F(φ)/F) are essentially computed for any form
φ over F with ύ(F) < 32. Examples of fields with Hasse number < 8 are
C3 fields, global and local fields, and finite fields.

The notation and terminology used are basically those of [15]. Isome-
try of forms α and β are denoted by α — β, while equality in the Witt ring
is written a — β. The uniquely determined maximal anisotropic subform a
of a form β is termed the kernel of β and written as a = ker(β). If xa — β
for some x E F, we say a and β are similar. The w-invariant used in the
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last two sections is the generalized w-invariant of Elman and Lam (see e.g.
[4]) and not the one discussed in [15].

The set of all F-Pfister forms is denoted by P(F) and Pn(F) denotes
the set of w-fold jF-Pfister forms. The set of forms over F similar to
F-Pfister forms [tf-fold F-Pfister forms] is denoted by GP(F) [resp.
GPn{F)\. If p E GP(F) is anisotropic and φ < p then φ is a Pfister
neighbor if 2 dim φ > dim p and a conjugate neighbor if 2 dim φ = dim p.

We use the terms conservative and embeddable forms as defined by
Gentile and Shapiro. Namely, a form q is conservative if W(F(q)/F) φ 0,
or equivalently, if q ® L is anisotropic for every field extension L/F with
W{L/F) — 0. A form q is embeddable if it is similar to a subform of an
anisotropic Pfister form.

Following Elman, Lam and Wadsworth, for a subset N C N and 2ί an
ideal of WF we say 21 is an N-Pfister ideal of 21 is generated by r-fold
Pfister forms, r E N. 2ί is a strong N-Pfister ideal if each q E 2ί is
isometric to a sum of scalar multiples of r-f old Pfister forms in 21, r E N.
We write «-Pfister for {n}-Pfister.

Let XF denote the set of orderings on the field F and topologize XF by
taking as an open subbasis the Harrison sets:

HF(a)= { α E X | α > α 0 } ,

where a ranges over F. A form q is indefinite at a E XF if | sgnα q \ < dim q
and indefinite if q is indefinite at all a E XF. The Hasse number of F is:

ύ(F) = max (dim q | q anisotropic and indefinite over F)

if the maximum exists, otherwise ύ(F) — oo.
Knebusch's important paper [13] will be used extensively and nota-

tion and terminology not found in [15] or mentioned above will be taken
from it. In particular, we use the degree of a form q. As shown in [13], for
q φ 0 the min{dim(ker(<3f ® K)) \ K/F such that q ® K φ 0} is a 2-power
2d. The degree of q is d (if q = 0, the degree of q is oo). We also use the
ideal JnF = {q E J*T| deg q > n).

1. Witt kernels and strong Pfister ideals. The following basic re-
sults will be used frequently:

(a) If φ is a neighbor to the /7-fold Pfister form p, then W(F(φ)/F) is
a strong w-Pfister ideal ([5, 1.4]).

(b) (Cassels-Pfister theorem.) Let q and φ be anisotropic forms such
that q ® F(φ) = 0. Then for each c E D(q)-D(φ), there exists a form ηx

over F such that xq — φ _L η^.
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LEMMA 1.1. Suppose ψ is a subform of a form φ. Then W(F(φ)/F) C
W(F(χP)/F).

Proof. Since φ®F(ψ) is isotropic, there is an F-place F(φ) -» F(ψ)
U oo and so W(F(ψ)/F) C W(F(ψ)/F) (cf. [13]).

We begin the computations:

PROPOSITION 1.2. Let φ and ψ be anisotropic forms over F with
1 G £>(ψ) and φ - ψ -1 (JC>, /or jo/we x <Ξ F. If W(F(ψ)/F) is a strong
n-Pfister ideal then:

(i) W(F(φ)/F) isa{n,n+ 1}-Pfister ideal.
(ii) // σ G P Γ ( F ( φ ) / F ) Π P * ( F ) , wiίλ k>n+l, then there is a

p G ^(^(φ)// 7 ) Π Pn+ι(F) such that p \ σ.

Proof, (i) We have W(F(<p)/F) C W(F(ψ)/F) by (1.1). Let q G
W(F(φ)/F) be anisotropic; we may assume 1 £ ΰ ( ί ) . Now # G

), a strong w-Pfister ideal, so we may write:

where ci G F and p, G ϊF(F(ψ)/F) Π PΠ(F). We use induction on k to
show q equals a sum of multiples of «-fold and (n + l)-fold Pfister forms
in W(F(φ)/F). The case k — 1 is trivial, so suppose k > 1.

Since 1 G £>(#), we may assume c] = 1, by [10, 3.1]. By the Cassels-
Pfister theorem, as 1 G D(q) Π Z)(φ), 1 G J9(ψ) Π ̂ p j ) , we have:

Pi - ψ J- γ

for some forms qι and γ over F. Cancelling ψ from the isometry (*) yields

Thus x = a + b, with

/ k \
aGD(y) U {0}, b G Z)( ± c^J U {0}.

l . Z ? = 0 .
Here x G Z)(γ) and so φ ^ ψ i. (x)<p}. Hence P! G

and λ-k

iΦ1ciρι G ^(Fίφ)// 7 ) . By induction J_f=2c.p. equals a sum of
multiples of /i-fold and (n + l)-fold Pfister forms in W(F(φ)/F). Thus
so is r̂ — ρα J-J-f=2 cf.pf..
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Case l.b^O.
Here we may assume c2 — b by [10, 3.10]. Since x G D(y _L

φ ^ ψ ± ( x ) < p , ±(Z?)<p 1 ® (l,b). Now, since W(F(ψ)/F) is a
strong w-Pfister ideal, pj and ρ2 are linked ([10, 3.1]). Say pf. = μ ® (1, j>.)
(/ = 1,2), whereμ G Pπ_,(iF) andyl9 y2 G /. Then:

Pι±bp2 = μ® (l,yl9b9by2)

(l,-yιy2).

Note μ ® ((>>„ £ ) ) - Pj ® (1, b) G fF(F(φ)/jp), since it contains φ as a
subform. So:

k

q±-μ® ((yl9 b))= by2μ ® ( l , -yλy2) ± ± ciPi G W(F(φ)/F).
ί = 3

The left hand side is also in W(F(ψ)/F), a strong «-Pfister ideal, and thus
its kernel is isometric to a sum of multiples of at most k — 1 w-fold Pfister
forms in W(F(\p)/F). Thus by induction, q J_ -μ((y{9 b)), and hence q
is a sum of multiples of w-fold and (n + l)-fold Pfister forms in
W(F(ψ)/F).

(ii) Repeat the argument in (i), with σ replacing q. In Case 1,
Pj G W(F(φ)/F) Π Pn(F) and pj is a subform of σ. Hence pj | σ, by [5,
2.7]. So take any form p G W(F(φ)/F) Π i^+^i 7 ) such that pλ \ p and
p | σ.

In Case 2, let p = p ι ® (1, b). We know pj ± (b) is a neighbor of p
and a subform of σ. Thus .F(p) ~FF(px ± ( 6 » a n d σ ® ̂ (p, ± (b)) = 0,
by [13, 4.1]. So σ Θ F(p) - 0 and p | σ by [5, 1.4]. Also, the argument in
(i) showed φ < p1 ± (b)9 so φ < p and thus p G W(.F(φ)/F) Π i^

COROLLARY 1.3. Suppose φ - ψ ± (x> w/YΛ JC G F ^ J W(F(ψ)/F) a
strong (n - \)-Pfister ideal. If W(F(φ)/F) Π Pn-λ{F) = 0

ώ n-linked, then W(F(φ)/F) is a strong n-Pfister ideal.

Proof. W(F(φ)/F) Π Pn-}(F) = 0 and (1.2)(i) imply W(F(φ)/F) is
an «-Pfister ideal. Then (1.2)(ii) and the hypothesis on linkage imply the
result by [10, 3.1].

PROPOSITION 1.4. Let ψ be a neighbor of p G Pn(F) and let φ - ψ JL
(JC), w/ϊΛ x E: F,be anisotropic. Then either:

(a) φ is a neighbor of p and W(F(ψ)/F) = pϊΐKF, a strong n-Pfister
ideal, or

(b) φ is not a neighbor of p and W(F(φ)/F) is a strong (n + lyPfister
ideal.
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Proof. We need only show (b) so assume φ is not a neighbor of p. By

scaling if necessary, we may assume ψ, and hence φ, represent 1.

W(F(ψ)/F) = pWF is a strong «-Pfister ideal. We wish to apply

(1.3). Suppose 0 φ σ G W(F(φ)/F) Π Pn(F). Since 1 E D(φ) Π D(σ),

the Cassels-Pfister theorem implies that φ is a subform of σ and hence so

is ψ. Since ψ is a neighbor of the «-fold Pfister form p, dim ψ > 2n~ K Thus

ψ is a neighbor of σ and p ̂  σ ([13, 7.4]). Thus φ is a neighbor of p.

Contradiction.

Thus W(F(φ)/F) Π PΠ(F) = 0. Since W(F(φ)/F) C W(F(ψ)/F)

= pWF, any two (w + l)-fold Pfister forms in W(F(φ)/F) are linked by

p. So the result follows from (1.3).

COROLLARY 1.5. Let φ be an anisotropic form such that dimφ — 4 and

φ £ GP(F). If W(F(φ)/F) Φ 0, then W(F(φ)/F) is a strong 3-Pfister

ideal. In particular, φ is conservative if and only if φ is a conjugate neighbor.

Proof. By scaling we may assume φ ̂  (1, a, b, x ) , for some a, b,

x E F. The first statement then follows from (1.4) and the second from

the Cassels-Pfister theorem.

2. W(F(φ)/F) for small dimensional φ.

REMARK. Let p be an ̂ -fold Pfister form over F. Suppose p — ψ ± γ,

with dim ψ > dim γ, and φ — ψ _ L ( x ) i s anistropic. Further suppose φ is

not a neighbor of p. Then, W(F(ψ)/F) is a strong (n + 1)-Pfister ideal

by (1.4). By examining the proof of (1.2) we see that:

Pπ+ι(F) Π W(F(φ)/F) = {p ® (1, a) \ a £ Z)((x>± -γ)}.

Now W(F(φ)/F) = pWF and:

where p' is the pure part of p. Thus:

^(F(φ)/F) C W(F(ψ)/F) Γ) (\,x)WF,

but the inclusion may be strict.
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We wish to examine in detail the structure of W(F(φ)/F) for four
dimensional forms:

EXAMPLE. Let φ be conservative and dim φ = 4; we may assume
φ ^ (1, a, b, x). Suppose x Φ ab. Then:

W(F(φ)/F) Π P3(F) = {«*, b, α» I α e />«*, -ab))}

If / = 0, then <(α, 6, xt2 - abs2))- ((a, b,-ab))- 0. So we may as-
sume t Φ 0. Hence:

Π P 3(F) - {«fl, b9x- abs2)) \ s E F) U {0}.

In particular:

by (1.5).
Comparing with (1.5), we also have:

φ is conservative iff φ is a conjugate neighbor

ffiD((-x9ab))&D(((a9b))).

To treat 5 and 6 dimensional forms, we need:

THEOREM 2.1. Let ψ be a codimension 1 neighbor of p E Pn(F),
φ ^ Ψ ± (x, y) anisotropic and suppose φ is not a Pfister neighbor. Then
W(F(φ)/F) is a strong (n + 2yPfister ideal

Proof. By (1.4) W(F(ψ ± (x))/F) is a strong (n + 1)-Pfister ideal,
and so W(F(φ)/F) is a {n + 1, n + 2}-Pfister ideal, by (1.2). Since
dimφ = 2n + 1 and φ is not a Pfister neighbor W(F(φ)/F) Π P/I+1(iΓ)
= 0. Thus, by (1.3), we need only show W(F(φ)/F) is (/ι + 2)-linked.

Let p l 5 p2 E MK(F(φ)/F) Π Pn+2(F). By the Cassels-Pfister theorem,
φ is similar to a subform of each pt and so the Witt index /(p, ± -p2) >
2" + 1. But i(pj ± -p2) must be a power of 2, by [5, 4.5]. Thus
i(px -L -p2) > 2Π + 1 and hence p! and ρ2 are linked.

COROLLARY 2.2. Let φ be a conservative form of dimension 5. Then
either:

(a) φ is a neighbor to a Pfister form p and W(F(φ)/F) = pWF is a
strong 3-Pfister ideal, or

(b) φ is not a Pfister neighbor and W(F(φ)/F) is a strong 4-Pfister
ideal.
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It is quite possible that a 5 dimensional form φ is not a Pfister

neighbor. Indeed φ is a Pfister neighbor if and only if d(φ) E D(φ), by

[13, p. 10].

COROLLARY 2.3. Let ψ be a conservative form of dimension 6. Ifφ is not

a Pfister neighbor then W(F(φ)/F) is a (4,5}-Pfister ideal.

EXAMPLE. If φ has dimension 6, W(F(φ)/F) need not be a strong

Pfister ideal. Since no such example is in the literature, I will work out one

in some (but not complete) detail.

Let F = R O , y, z), φ = (1,1, 1, x, y, z ) , pλ = ((1,1, x9 y9 z ) ) and

p 2 = ((1,1, x, y — 1, z — j t )) . By considering an ordering for which z >

y > x > 1, one sees that ρλ and p2 are anisotropic. A simple computation

shows φ < Pi and φ < p 2, while a more tedious one shows px and p 2 are

not linked. Let ψ = ker(pj JL -p 2) E W(F(φ)/F).

Fix an ordering α o n f with x infinitely large positive, y infinitely

small positive and z infinitely larger than x.

Claim. There does not exist σ E W(F(φ)/F) Γ) P4(F) such that

sgnασ = 16.

We first note that (1,1,1, x, y) is not a Pfister neighbor — otherwise

xy E D((l , 1,1, x9 >>)) and (1,1,1, X ) ± > > ( 1 , -x) is isotropic, which is

impossible. Thus if there is a σ invalidating the claim, the proof of (1.2)

shows we may write σ ^ ((1,1, p2x — q2, r2y — β ) ) , where p, q, r, β E

R[JC, y, z] and β E (/72x - q2)D((l, 1,1, x » .

We will show z & D(σ) and hence φ <ζ σ. We need some simple

calculations. For a polynomial g(x, y, z) E R[x, j , z] let deg x g denote

the degree of g as a polynomial in x over R[y, z\ Define deg^ g and degz g

similarly.

Consider p2x, q2 and r2y as polynomials in z over R[x, jμ], with

leading coefficients wλ{x, y)9 w2(x, y) and w3(x, y) respectively. Note that

p2x, q2 and r2y have even z-degree. It is easy to check the following:

(a) degx vvι is odd and degx w2 is even,

(b) deg^Wj - w2) is even,

(c) degv w3 is odd.

We thus obtain:

(i) degz(p2x - q2) is even (by (a)),

(ii) degz β is even (by (i)),

(iii) degz(r2y — β) is even (by (ii), (b) and (c)).

Suppose finally that z E D(σ). Then:

z = s0
{p2x - qηs, + (r2y - β)s2 + {p2x - q2)(r2y - β)s3
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with each sι a sum of four squares in F. Let w4(x, y) be the z-leading
coefficient of β. Set

V= {{a, 6 ) G R 2 | wf (fl, b) = 0, some/ = 1,2, 3, or 4};

V is a closed sub variety of R2. Since sgnα σ = \6, p2x — q2 and r2y — β
are positive with respect to α and we may find positive xθ9 y0 G R — V
such that:

PM (pχq)(χo,yo,z)\
, , w v >0 fθΓ2»0.

P2(z) = (r2y-β)(xo,yQ,z) j

By the observations (i) and (iii), we see that Pλ and P2 have even degree.
Thus for sufficiently negative z0, at (JC0, y09 z0) the left hand side of (*) is
negative while the right hand side is positive. This proves the claim.

To finish the example, suppose W(F(φ)/F) is a strong Pfister ideal.
Then we may write:

ψ ^± a^i9 with μ, G W( F(φ)/F) Π P(F) and β,. G F.

Since dim ψ = 48 we have three cases:
(i) Some μ / G P 3 ( F ) :

Then φ is a Pfister neighbor and there exists a σ G W(F(φ)/F) Π P4(F)
such that σ | pλ. Since sgnα p! = 32, sgnα σ = 16. Contradiction.

(ii) Some/X; G P5(F):
Then ψ ^ fljjti! ± a2μ2, with μt G P5(F) and μ2 G P4(F). But deg ψ = 5
while deg(α1μ1 ± a2μ2) ~ ^ which again is a contradiction.

Then ψ ^ α ^ ! -L α 2μ 2 -L α3μ3, with μz G PΓ(F(φ)/F) Π P4(F). Now
sgnαψ = 32, as sgnαp! = 32 and sgnαρ2 = 0. Thus at least one μz has
α-signature 16, contradicting the claim.

Thus W(F(φ)/F) is not a strong Pfister ideal.
It is worth noting that W(F(φ)/F) does however contain 4-fold

Pfister forms. For example, 0 τ έ ( ( l , 1, x,4xy — (xz — xy — I) 2 )) is in
W(F(φ)/F).

We can show W(F(φ)/F) is a strong Pfister ideal in some cases.

COROLLARY 2.4. Let φ be a conservative form of dimension 6 which is
not a Pfister neighbor. If φ contains a four dimensional subform of determi-
nant 1, then W(F(φ)/F) is a strong 4-Pfister ideal.
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Proof. Write φ ^ ψ _L (a, b), with dimψ = 4 and έ/(ψ) = 1. If c E
Z>(ψ), then cψ E P2{F). So we may assume φ ^ p l ( x , 3;), where p E
P2(F) and x j G F. Now p_L(;c) is a neighbor to p ® ( l , JC), so
W(F(φ)/F) is a strong 4-Pfister ideal by (1.4).

3. Conservative and embeddable forms. In [12], Gentile and Shapiro
raised the question whether a conservative form φ over F must be
embeddable. They showed the answer was yes, if dim φ < 5 or if u(F) < 24
([12, Corollaries 8 and 19]). The results of Section 2 can be used to
improve these bounds. As an immediate consequence of (2.3) we have:

COROLLARY 3A.Let dimφ < 6. Then φ is conservative iff φ is embed-
dable.

PROPOSITION 3.2. Let φ be a conservative form over F which is not a
Pfister neighbor and such that dimφ > 5. Let q E W(F(φ)/F) be aniso-
tropic. Then:

(a) 16 I dimq
(b)q = p mod / 5 F, where p E P4(F) Π W(F(φ)/F).

Proof. We first note that for (b) we need only show the equation holds
for some σ E GP4(F). Namely then q = ap ± qx, where a E F, p E P4(F)
and qx E I5F. Now ap ® F(φ) = - ^ ® .F(<p) E I5F(φ). By the Arason-
Pfister Hauptsatz ([2]), p ® F(φ) = 0 and so p E W^i^φJ/F). Further
9 = p -L (-1, α) p -L ήf, and so q = p mod / 5 F.

Let ψ be a 5-dimensional subform of φ. By (1.1), q E

1. ψ is not a Pfister neighbor:
Here we may write q^A.ΊLιaiσi9 with each a^F and σz E

Π P4(F), by (2.2). In particular, (a) holds. Now write:

n

q = -L α|.pj. mod / 5 F
1 = 1

with ΛZ E F, ρt E H^(F(ψ)/F) Π P4(F) and A2 minimal. Suppose n>\.
Since ^(^(ψ)//1 7) is a strong 4-Pfister ideal, ρ1 and p2 are linked. Thus
there is an an+x E F and p n + 1 E JF(F(ψ)/f) Π P4(F) such that
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a2(p2 ± - P l ) = flB+1pπ+l. We have:
n

q = axpλ ± a2p\ -L -a2pλ -L a2p2 -I—L β, P, mod I5F
i = 3

Ξ ( α , , f l 2 > p , ± α n + , p M + 1 -L -L α,p, mod/ 5 i^
/ = 3

_τ
= _L fl.p. mod I5F.

i = 3

This contradicts the minimality of n and proves (b) for this case.

Case 2. ψ is a Pfister neighbor:

Let ψ be a neighbor to the (3-fold) Pfister form σ. Then q — σ ®

(bx,...,bm) by [5, 1.4]. To prove (a), we need only show m is even.

S u p p o s e m is o d d . S i n c e q <8> F(φ) = 0, (σ ® F(φ)) ® ((bl9...,bm)®

F(φ)) = 0. If σ<8> F(φ) ^ 0 , then ( 6 l 5 . . . ,fem>® ^ ( φ ) is an odd dimen-

sional zero advisor, which is impossible ([15, VIII 6.7]). Thus σ ® ̂ (φ) =

0. Since deg σ = 3 and dimφ > 5, the Cassels-Pfister theorem implies φ is

a neighbor to σ, contrary to hypothesis. Thus m is even and (a) holds.

Now write (&,,.. ,9bm)= (1, x) mod I2F for some x E F. Then

ςr = (1, JC) σ mod / 5 F as desired.

COROLLARY 3.3. // F is 5-linked then for all conservative φ over i%

W(F(φ)/F) is a Pfister ideal.

Proof. Let q E W(F(φ)/F); we may write q = aλpx -L ̂ j with «j E F,

P l E ^ ( F ( φ ) / F ) Π P 4 (F) and ? 1 E W(F(φ)/F) Π / 5 F , by (3.2). By

[10, 5.1], W(F(φ)/F) Π I5F is a Pfister ideal, hence ql9 and ήr, lie in

W(F(φ)/F)Pf.

COROLLARY 3.4. Suppose φ is a conservative form over F that is not

embeddable. Then W(F(φ)/F) C I5F.

Proof. Clearly φ is not a Pfister neighbor, and dim φ > 7 by (3.1). The

result then follows from (3.2) since W(F(φ)/F) Π P4(F) = 0.

In [9] it was shown that if q E W(F(φ)/F) then 2nq E W(F(φ)/F)Pf,

where n — dim q. Thus if φ is conservative but not embeddable then

W(F(ψ)/F) C WtF(see also [12]). Hence we have:

COROLLARY 3.5. Suppose I5F is torsion-free. Then a form φ over F is

conservative if and only if it is embeddable.



WITT KERNELS OF FUNCTION FIELD EXTENSIONS 99

In particular, if tr.d.R(F) < 4, then φ is conservative if and only if it
is embeddable.

COROLLARY 3.6. Suppose ψ is a conservative form over F that is not
embeddable. If q E W(F(φ)/F) is non-zero, then dim q > 48.

In particular, if u(F) < 48, then a form over F is conservative if and
only if it is embeddable.

Proof. We may assume q is anisotropic. By (3.4), q E I5F and so by
the Arason-Pfister Hauptsatz ([2]), dim q > 32. If dim q - 32, then q E
GP(F) and φ is embeddable; thus dimg>32. By (3.2), 16 | dim 4, so
dim q > 48.

4. Witt kernels over fields of finite Hasse number. As was done in
[11], for an anisotropic form q we define N(q) to be dim q — qάcgq.

LEMMA 4.1. Suppose φ £ GP(F) and q is an anisotropic form with
q E W(F(φ)/F). Then,

(i)2deg«>dimφ;
(ii) ifN(q)<2 dimφ then q E GP(F).

Proof, (i) follows from [12, Prop. 13] and (ii) follows from [11, 1.6].

REMARK. A stronger inequality than (i) is shown in [12], namely that
2deg^>dim<p + 2d e g φ. It would be interesting to know if this can be
improved to 2d e § q >: 2 dim φ for non-Pfister neighbors φ. Note that if
there exists a q E W(F(φ)/F) such that 2 dimφ > 2deg<? and φ is not a
Pfister neighbor then W(F(φ)/F) is not a Pfister ideal. Namely, suppose
q = _L"=1 χiPi with pz E W(F(φ)/F) Π P(F). Then for some /, deg pf. <
deg q and the Cassels-Pfister theorem then implies φ is a Pfister neighbor.

We next recall a definition due to Knebusch, Rosenberg and Ware
(cf. [14, 1.2]) which will be used frequently in this section:

DEFINITION. We say F satisfies the Strong Approximation Property
(SAP) if for every clopen S C XF there exists a n e 6 F such that e > 0 on
S and e < 0 outside of S.

The following lemma is well-known.

LEMMA 4.2. // ύ(F) < 2", then F is n-linked. In particular, F is SAP.
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Proof. Let pλ,p2E: Pn{F). Then for any ordering a on F9

|sgnα(p, JL - p 2 ) | = dimp, orO.

In particular, px _L — p2 is indefinite. Hence dim(ker(p] ± -p2)) — 2Λ and
the Witt index /(pj ± -p2) > 2"""1. Then, p1 and p2 are linked, by [5, 4.4].

For the second statement, F is ^-linked, so stably linked (cf. [6]) and
hence F is SAP by [6, 3.5].

LEMMA 4.3. Let q E W(F(φ)/F). If φ is indefinite at a E XF9 then

α # = 0.

Proof. Since φ is indefinite at α, a extends to F(φ) ([9, 3.5]). Since

PROPOSITION 4.4. Suppose u(F) <2n, and φ w α conservative indefi-
nite form over F. Then:

(i) // 2ή~λ < dimφ < 2", /Ae« φ w tf Pfister neighbor. In particular,
W(F(φ)/F) is a strong n-Pfister ideal.

(ii) If2n~2 < dimφ < 2""1, /Â /i eiϊΛer:
(a) φ is a Pfister neighbor and W(F(φ)/F) is a strong (n — \)-Pfister

ideal, or
(b) φ is not a Pfister neighbor and every non-zero anistropίc q E

W(F(φ)/F) is in GPn(F). In particular, W(F(φ)/F) is a strong n-Pfister
ideal.

Proof. Let 0 Φ q E W(F(φ)/F) be anistropic. By (4.3) sgnα q = 0 for
all a E XF9 so by Pfister's Local-Global Principle q is torsion. Thus
dim q < 2\

(i) Here dim q < 2 dim φ and so q E GPn(F) by (4.1). In particular, φ
is a Pfister neighbor.

(ii) Part (a) is known so suppose φ is not a Pfister neighbor. By (4.1),
2 d e ^ > d i m φ > 2 " - 2 thus deg q > n - 1 and N(q) < 2" - 2""1 <
2dimφ. (4.1) then implies g E GP(F). If degg = w — 1, then φ is a
Pfister neighbor, contrary to the assumption of (b). Hence q E GPn(F)
and W(F(φ)/F) is a strong «-Pfister ideal.

Both the statement and the proof of the following lemma are similar
to the Pfister neighbor criterion of Elman, Lam and Wadsworth [8, 4.6]:

LEMMA 4.5. Let F be formally real with ύ(F) < 2n. Let φ be a form over
F, definite at some a E XF9 with 1 E D(φ) and dim φ > 2n~2.

(i) Let m be the least integer such that n <m and dim φ < 2m. Let S be
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a non-empty clopen subset of XFsuch that S C {a | φ is (positive) definite at
a). Then there exists p G W(F(φ)/F) Π P m + 1 ( F ) such that p is definite at
a iff a G S.

(ii) // dim φ — 2m + 1, m > « , then φ is a Pfister neighbor.

Proof. In part (ii) let S — {a | φ is definite at a}. S is clopen since
S — Φ^({dimφ}), where φ: XF-*Z is the continuous function α ^
sgnα(φ).

For both parts (i) and (ii) there is an e G F such that e >a 0 iff a G S,
since Fis SAP. Set p = 2W(1, e>. For α G XF then:

φ, i fe<«0

In (i), I sgnα φ | < dim φ < 2m < dim p — dim φ. In (ii), if e <a 0, | sgnα φ |
< dim φ — 2 = 2m — 1 = dim p — dim φ. Thus in both cases

I sgnα(p J- —φ) | < dim p — dimφ, for all a G XF.

Set ψ = ker(p ± -φ).
Suppose dim ψ > dim p — dim φ. Then ψ is indefinite. In (i), this

forces dim ψ < 2n < 2W < dim p — dim φ, and in (ii), since dim ψ is odd,
dim ψ < 2n — 1 < dim p — dim φ. In both cases we get a contradiction.

So dim ψ < dim p — dim φ. In particular, the Witt index i(p _L -φ) >:
dim ψ. Thus φ is a subform of p.

THEOREM 4.6. Suppose ύ(F) < 2" α«J φ ώ # conservative form over F.
If2m~x < dimφ < 2", w/ϊ/z m > π, /Λe« eiϊΛer:

(i) φ w (2 Pfister neighbor and W{F(ψ)/F) is a strong m-Pfister ideal,
or

(ii) φ is not a Pfister neighbor and W(F(φ)/F) is a strong (m + 1)-
Pfister ideal.

Proof. We may assume 1 G D(φ). We may also assume φ is not
indefinite and, in particular, that F is formally real, by (4.4). Case (i) is
known so assume φ is not a Pfister neighbor.

Let 0 Φ q G W(F(φ)/F) be anisotropic. We will show q is isometric
to a sum of multiples of (m + l)-fold Pfister forms in W(F(φ)/F) by
induction on dim q.

Case 1. dim # <
By (4.1), 2 d e ^ > dimφ > 2m'\ So deg q ^ m and N(q) < 2m+x - 2m

= 2m < 2 dim φ. This implies q G GP(i^) by (4.1). If deg q = m, then φ is
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a Pfister neighbor, contrary to our assumption. Thus degq>m+ 1.
Since dim q < 2 m + 1 we obtain q G GPm+λ{F).

Case 2. aim q>2m+λ\
Set Sι = {a G JTF| sgnα # ^ 0} and 5 2 = {α G 5, | sgnα # > 0}. Both

Sx and S2 are clopen, Sλ is non-empty (as dim q> u(F)) and 5Ί C (α | φ

is (positive) definite at a] by (4.3). Thus there is an e2 such that e2 >« 0 iff

a G S29 since F i s SAP (set e2 = -1 if S2 φ 0 ) , and a p G WFίi^φJ/F) Π

P m + 1 ( F ) such that p is definite at a iff α G Sl9 by (4.5).

Set ^ = ker(e2q _L -p). Let a G A^. Then:

α qx =

0, ifαίSp

-sgnα q - dim p, sgnα q < 0, if α E S, - S2,

sgnα 0 - dim p, sgnα q > 0, if α G S 2.

Thus for each a G Λ^, 2 — dim p < sgnα qλ < dim ^ — dim p that is:

| s g n α ? 1 | < m a x { d i m ί - 2 m + 1 , 2 w + 1 - 2 } .

Thus, since fi(F) < 2W,

(*) d i m ^ < m a x { d i m ^ - 2 w + 1 , 2 m + 1 - 2,2"}.

Now since q, p ^ W(F(φ)/F)9 qλ G ^ ( ^ ( φ ) / / 7 ) . Applying the argu-

ment in Case 1 to q} (instead of q) we see that dim^j > 2 m + 1 > 2".

Hence, the largest term on the right in (*) must be dimg — 2 W + 1 . So

d i m ^ < d i m ^ - 2 m + 1 .

Since qλ — e2q J_ -p, dimqλ > dim q — dim p = dim q — 2m+x. So

dim qλ — dim q — 2 m + 1 , ^ 2 ^ ^ p ± ήf, and ήr ̂  ^ 2 p ± ^ ή ^ . Lastly, e2q] G

and dim qx < dim ^, so we are done by induction.

REMARK. Case (ii) of Theorem 4.6 can occur. Consider φ =

(1,1,1,1,1,7) over F = Q. Since φ is not indefinite, φ is conservative —

namely ((1,1,1,1,1,7)) G W(F(φ)/F). If φ were a Pfister neighbor of

some p E P(F), then since 5 ( l ) < φ < p , ρ - 8 ( l ) ([5, 2.7]). Thus

7 G D{{\, 1,1)), a contradiction. Hence φ is a conservative non-Pfister

neighbor while ύ(F) = 4 and dimφ = 6. However we do have:

PROPOSITION 4.7. Suppose ύ(F) < 2" Â2ί/ φ w α« anisotropic form over

F. Then:

(i) //dim φ = 2m + \,m>n, then φ is a Pfister neighbor.

(ii) // dim φ = 2m, m >: « <z«d φ w «o/ indefinite, then φ is a conjugate

neighbor.
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Proof. We may assume 1 G ΰ ( φ ) . Only (ii) is new and here φ _L (1)

is anisotropic since <p is not indefinite. Part (i) implies φ _L (1) is a Pfister

neighbor, and hence φ is a conjugate neighbor.

We now consider the forms φ over F with ύ(F) < 2" and 2n~2 <

dim φ < 2n'x. This requires two lemmas, the first of which is well-known:

LEMMA 4.8. Ifu(F) < 2\ then JkF = IkF for k>n.

Proof. We may assume F is real. Let s = st(F) be the reduced

stability index as defined by Brδcker in [3]. SAP fields have s — 1 ([7]) so:

JkF=IkF+(JkF),

for each k by [1, Lemma 2], where (JkF)t denotes the torsion part of JkF.

Since k > n, (JkF)t C IkF and / ^ = J*F.

LEMMA 4.9. Suppose ύ(F) < 2" α«d φ w α« anisotropic form over F

with 2n~2 < dim φ < 2n~\ Suppose also that there exists a q G

o/ degree n — 1. 77ze« φ w α Pfister neighbor.

Proof. We may assume # is anisotropic, 1 G D(q) and, by (4.4), that φ

is not indefinite. We induct on dimg. If dimg < 2", then Λ^(^) < 2n —

2n~] < 2dimφ. (4.1) then implies q G GPn_λ(F) and so φ is a Pfister

neighbor by the Cassels-Pfister theorem.

Now suppose dim q > 2n\ q is thus not indefinite. Set S — [a E XF\ q

is (positive) definite at a}. S is non-empty and clopen in XF. Using (4.3)

and (4.5) we obtain a p G W(F(φ)/F) Π Pn+λ(F) such that p is definite

at p iff α E 5.

For a G XF:

λ , Λ \dimq-2n+\ i f α G 5( ± ) i
If dim ? < 2 W + ! , then | dim q - 2n+1 | < 2" < dim <?. If dim ^ > 2" + ! , then

I dim q — 2n+1 | < dim q. And if a ξ£ 5, then | sgnft ^, | < dim q for all

α G XF.

If dim (7, > dim ^, then ^j is indefinite and of dimension greater than

T\ which is impossible. So d i m g j < d i m g . By [13, 6.4], q — p _L q]

implies deg qλ — n — 1. Thus by induction φ is a Pfister neighbor.

REMARK. Lemma 4.9 says the first inequality of (4.1) can be strengthed

to 2 dim φ < 2 d e g q for non-Pfister neighbors φ provided dim φ > 2n~2 and

ύ(F) <2\
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THEOREM 4.10. Suppose ύ(F) < 2n and ψ is a conservative form over F.
If2n~2 < dimφ < 2n'\ then either.

(i) φ is a Pfister neighbor and W(F(φ)/F) is a strong (n — \)-Pfister
ideal,

(ii) φ is not a Pfister neighbor and W(F(φ)/F) is a {n,n + 1}-Pfister
ideal.

Proof, (i) is known so we may assume φ is not a Pfister neighbor. Let
O^ήfG W(F(φ)/F) be anisotropic. Then by (4.1), 2d e g ί ? > dimφ > 2n~2

and so deg q > n - 1. By (4.9) deg q > w, and so ^ G J T by (4.8). Thus
W(jF(φ)/F) C ΓF. Since F is blinked [10, 5.1] implies W(F(φ)/F) is a
7V-Pfister ideal, where N = [n, n + \,...}.

To finish then, we need only show any form in W(F(φ)/F) Π P,(F),
with i > n + 2, is divisible by a form in W(F(φ)/F) Π P r t + 1(F). Let
σ E W(F(φ)/F) Π Pt(F) with / > « + 2. We may assume φ is not indef-
inite and, in particular, that F is real, by (4.3). We may also assume
1 E D(φ). Let S = {a E XF\ φ is (positive) definite at a). S is non-empty
and clopen in XF. There is then a (n + I) = fold Pfister form p E
W^i^φ)//7) such that p is definite at a iff α E 5. Using (4.3) we see that
for all a E XF:

0, if α ξ£ S.

So I sgnft(σ _L -p) | < dim σ — dim p. For all a E A .̂ Since dim σ — dim p
> 2", dim(ker(σ _L -p)) < dim σ — dim p. Thus p < σ and p | σ by [5, 2.7].

REMARK. The result of (4.4)(ii) for non-real fields is stronger than the
corresponding result (4.10) for real fields, namely for real fields we no
longer have that W(F(φ)/F) is a strong Pfister ideal. To see why this
occurs we observe that W(F(φ)/F) is a strong rc-Pfister ideal iff there
exists a p E W(F(φ)/F) Π Pn(F) such that sgnαp = 0 precisely when φ
is indefinite at α. This condition holds trivially if F is non-real (take
p = 2"- 1 <l,-l».

To verify the observation, we first note that by (4.2) and [10, 3.1],
W(F(φ)/F) is a strong n-Pfister ideal iff for each σ (Ξ W(F(φ)/F) Π
Pn+λ(F) there exists a p E W(F(φ)/F) Π Pn(F) such that p | σ. Suppose
W(F(φ)/F) is a strong π-Pfister ideal. Then, since F is SAP, we may find
a σ E W(F(φ)/F) Π Pn+}(F) such that σ is definite at a iff φ is. Let
p G W(F(φ)/F) Π Pn(F) be such that p\ σ. Then sgnαp = 0 iff φ is



WITT KERNELS OF FUNCTION FIELD EXTENSIONS 105

indefinite at a. On the other hand, suppose we have such a p E

W(F(ψ)/F) Π Pn(F) and let σ G W(F(φ)/F) Π Pn+X(F). By (4.3),

p = 0} C {α E XF\ sgnασ = 0},

so | sgn α (σ J L - p ) | < 2 " for each a E XF and p | σ ([5, 2.7]). Thus

W(F(φ)/F) is a strong n Pfister ideal.

COROLLARY 4.11. If u(F) < 8, ίλe« fF(F(φ)/F) is a strong k-Pfister

ideal, for some k, for every conservative φ over F. In particular, this holds

for C3 fields, global fields and fields of transcendence degree < 1 over R.

Proof. The first statement follows from (1.5) and (4.6). For the second

statement see [4].

Lastly we can imporve (3.3).

COROLLARY 4.12. Let ύ(F) < 32 and φ a conservative form over F

which is not a Pfister neighbor. Then W(F(φ)/F) is a:

(1)

(2)

(3)

(4)

(5)

(6)

3-Pfister ideal

A-Pfister ideal

[A, 5}-Pfister ideal

{4,5,6} -Pfister ideal

{5,6} -Pfister ideal

(n + 2)-Pfister ideal

if dimφ = 4

// dim φ = 5

if d imφ = 6

// dim φ = Ίor$

if 9 < dimφ < 16

*/2"<dimφ:<2
n+ , π > 4 .

Proof. All but (4) have been done previously, so assume dim φ = 7 or

8. The proof of (3.3) shows W(F(φ)/F) is a (4,5,...}-Pfister ideal, while

the second paragraph of the proof of (4.10) shows W(F(φ)/F) is a

(4,5,6}-Pfisterideal.
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