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WITT KERNELS OF FUNCTION FIELD EXTENSIONS

ROBERT W. FITZGERALD

Let F be a field of characteristic not 2. For a non-hyperbolic
quadratic form g of dimension at least 2, let F(q) denote the function
field of the projective variety ¢ = 0. We consider the problem, explicitly
raised as problem D by Lam, of determining the kernel of induced map
of Witt rings WF — WF(q). This kernel is the Witt kernel of the field
extension and is denoted by W(F(q)/F). The basic tool is a com-
parison of W(F(q L (x))/F) and W(F(q)/F). The Witt kernels
W(F(q)/F) where q has small dimension or F has small Hasse
number are determined. Applications are made to the question of
when a conservative form is embeddable.

In the case g is a Pfister form, the function fields F(q) have been
widely used (e.g. the Arason-Pfister Hauptsatz). Central to the applica-
tions is that the Witt kernel W(F(q)/F) is gWF for Pfister forms gq.
Elman, Lam and Wadsworth have considered function fields of several
Pfister forms p;, (cf. [8]). Again the basic problem is computing the Witt
kernel W( F(p,, p,,---,p,)/F) and showing it is a Pfister ideal.

Here also the emphasis is on finding conditions to insure Witt kernels
are generated by Pfister forms. In the first section the comparison of
W(F(e¢ L (x))/F) and W(F(p)/F) is made and this is applied in the
second section to forms of small dimension. For example, we show the
Witt kernel W(F(g)/F) is a strong Pfister ideal if ¢ has dimension <5
and a Pfister ideal if dimension 6. This is used to improve several results
of Gentile and Shaprio (in [12]) on their question of when W( F(¢)/F)
contains a non-zero Pfister form.

The last section treats fields F of finite Hasse number. It is shown
that all Witt kernels of function fields are strong Pfister ideals if 4( F) < 8.
And the Witt kernels W( F(¢)/F) are essentially computed for any form
¢ over F with a( F) < 32. Examples of fields with Hasse number < § are
G, fields, global and local fields, and finite fields.

The notation and terminology used are basically those of [15]. Isome-
try of forms a and S8 are denoted by a =~ S, while equality in the Witt ring
is written a = B. The uniquely determined maximal anisotropic subform «
of a form B is termed the kernel of 8 and written as a = ker(8). If xa =~ 8
for some x € F, we say a and 8 are similar. The u-invariant used in the

89



90 ROBERT W. FITZGERALD

last two sections is the generalized u-invariant of Elman and Lam (see e.g.
[4]) and not the one discussed in [15].

The set of all F-Pfister forms is denoted by P(F) and P,(F) denotes
the set of n-fold F-Pfister forms. The set of forms over F similar to
F-Pfister forms [n-fold F-Pfister forms] is denoted by GP(F) [resp.
GP(F)]. If p € GP(F) is anisotropic and ¢ <p then ¢ is a Pfister
neighbor if 2 dim ¢ > dim p and a conjugate neighbor if 2 dim ¢ = dim p.

We use the terms conservative and embeddable forms as defined by
Gentile and Shapiro. Namely, a form g is conservative if W( F(q)/F) # 0,
or equivalently, if ¢ ® L is anisotropic for every field extension L/F with
W(L/F) = 0. A form ¢ is embeddable if it is similar to a subform of an
anisotropic Pfister form.

Following Flman, Lam and Wadsworth, for a subset N C N and % an
ideal of WF we say U is an N-Pfister ideal of U is generated by r-fold
Pfister forms, r € N. U is a strong N-Pfister ideal if each g € U is
isometric to a sum of scalar multiples of r-fold Pfister forms in %, r € N.
We write n-Pfister for {n}-Pfister.

Let X denote the set of orderings on the field F and topologize X by
taking as an open subbasis the Harrison sets:

Hp(a) = {a € X| a>,0},

where a ranges over F. A form g is indefinite at « € X if | sgn, ¢ |< dim g
and indefinite if g is indefinite at all « € X,. The Hasse number of Fis:

#( F) = max{dim ¢| ¢ anisotropic and indefinite over F }

if the maximum exists, otherwise #( F) = oo.

Knebusch’s important paper [13] will be used extensively and nota-
tion and terminology not found in [15] or mentioned above will be taken
from it. In particular, we use the degree of a form g. As shown in [13], for
g # 0 the min{dim(ker(g ® K))| K/F such that ¢ ® K # 0} is a 2-power
29, The degree of g is d (if ¢ = 0, the degree of ¢ is c0). We also use the
ideal J,F = {q € WF|deg q = n}.

1. Witt kernels and strong Pfister ideals. The following basic re-
sults will be used frequently:

(a) If @ is a neighbor to the n-fold Pfister form p, then W( F(¢)/F) is
a strong n-Pfister ideal ([5, 1.4]).

(b) (Cassels-Pfister theorem.) Let ¢ and ¢ be anisotropic forms such
that ¢ ® F(¢) = 0. Then for each x € D(q)- D(¢), there exists a form 7,
over F such that xg ~ ¢ L 7.
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LeEMMA 1.1. Suppose ¢ is a subform of a form ¢. Then W(F(¢)/F) C
W(F(Y)/F).

Proof. Since ¢ ® F(¢) is isotropic, there is an F-place F(¢) — F(¢)
U oo and so W(F(p)/F) C W(F(y)/F) (cf. [13)).

We begin the computations:

PROPOSITION 1.2. Let ¢ and § be anisotropic forms over F with
1 € DY) and ¢ ~ L (x), for some x € F. If W(F({y)/F) is a strong
n-Pfister ideal then:

(1) W(F(e)/F)isa{n, n + 1}-Pfister ideal.

(i) If o € W(F(e)/F) N P(F), with k=n + 1, then there is a
p € W(F(9)/F) N P, (F) such that p| o.

Proof. (1 We have W(F(¢p)/F) C W(F(y)/F) by (1.1). Let g €
W(F(p)/F) be anisotropic; we may assume 1 € D(g). Now ¢q €
W(F(¢y)/F), a strong n-Pfister ideal, so we may write:

(*) g=cp L Lep,

where ¢, € F and p, € W(F(y)/F) N P(F). We use induction on k to
show ¢ equals a sum of multiples of n-fold and (n + 1)-fold Pfister forms
in W(F(¢)/F). The case k = 1 is trivial, so suppose k > 1.

Since 1 € D(q), we may assume ¢, = 1, by [10, 3.1]. By the Cassels-
Pfister theorem, as 1 € D(q) N D(¢p), 1 € D(Y) N D(p,), we have:

g=¢Llg=yLl(x)lg
pp =y Ly

for some forms ¢, and y over F. Cancelling ¢ from the isometry (*) yields
k
x € D(y L J__2 cip,-).
Thus x = a + b, with
k
a €D(y)U{0},b€E D( %cipi) U {0}.

Case 1. b= 0.

Here x € D(y) and so ¢ = L (x)<p,. Hence p, € W(F(¢)/F)
and L¥.,c,0, € W(F(9)/F). By induction L*_, ¢,p, equals a sum of
multiples of n-fold and (n + 1)-fold Pfister forms in W( F(¢)/F). Thus
soisg=~p, LL* cp.
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Case 2. b # 0.

Here we may assume c, = b by [10, 3.10]. Since x € D(y L (b)),
=y L{(x)<p, L{(b)<p, ®(1,b). Now, since W(F(y)/F) is a
strong n-Pfister ideal, p, and p, are linked ([10, 3.1]). Say p, = p ® (1, y;)
(i=1,2),wherep € P,_\(F)andy,, y, € F. Then:

prLbo,=u® (1, y, b, by,)
=u® <<)’1’ b>>lb)’z“® <1a—Y1)’2>'

Note u ® ((y,, b))=p, ®(1,b) € W(F(¢p)/F), since it contains ¢ as a
subform. So:

k
gL -p®((y,0))=byp®(1,-yy,)L —:Li ¢p; € W(F(@)/F).

The left hand side is also in W( F(y)/F), a strong n-Pfister ideal, and thus
its kernel is isometric to a sum of multiples of at most k — 1 n-fold Pfister
forms in W(F(y)/F). Thus by induction, ¢ L —u{{ y,, b)), and hence ¢
is a sum of multiples of n-fold and (n + 1)-fold Pfister forms in
W(F(9)/F).

(1)) Repeat the argument in (i), with o replacing ¢. In Case 1,
0, € W(F(¢)/F) N P(F) and p, is a subform of o. Hence p, | o, by [5,
2.7]. So take any form p € W(F(¢)/F) N P, (F) such that p,| p and
pl .

In Case 2,let p = p, ® (1, b). We know p, L (b) is a neighbor of p
and a subform of 6. Thus F(p) ~rF(p, L (b)) and o ® F(p, L (b)) =0,
by [13, 4.1]. So 6 ® F(p) = 0 and p| o by [5, 1.4]. Also, the argument in
(1) showed ¢ < p, L (b),so ¢ <pand thusp € W(F(9p)/F) N P, (F).

COROLLARY 1.3. Suppose ¢ = L {x) with x € F and W(F({y)/F) a
strong (n — 1)-Pfister ideal. If W(F(¢)/F) N P,_(F) =0 and
W(F(¢)/F) is n-linked, then W( F(¢)/F) is a strong n-Pfister ideal.

Proof. W(F(e)/F) N P,_(F) =0 and (1.2)(1) imply W(F(¢)/F) is
an n-Pfister ideal. Then (1.2)(ii) and the hypothesis on linkage imply the
result by [10, 3.1].

PROPOSITION 1.4. Let { be a neighbor of p € P,(F) and let ¢ =~ L
(x), with x € F, be anisotropic. Then either:

(a) @ is a neighbor of p and W(F(¢)/F) = pWF, a strong n-Pfister
ideal, or

(b) @ is not a neighbor of p and W(F(¢)/F) is a strong (n + 1)-Pfister
ideal.
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Proof. We need only show (b) so assume ¢ is not a neighbor of p. By
scaling if necessary, we may assume ¢, and hence ¢, represent 1.

W(F(y)/F) = pWF is a strong n-Pfister ideal. We wish to apply
(1.3). Suppose 0 0 € W(F(¢p)/F) N P(F). Since 1 € D(¢p) N D(o),
the Cassels-Pfister theorem implies that ¢ is a subform of ¢ and hence so
is ¢. Since ¢ is a neighbor of the n-fold Pfister form p, dim ¢ > 2"~ '. Thus
¢ 1s a neighbor of ¢ and p =~ o ([13, 7.4]). Thus ¢ is a neighbor of p.
Contradiction.

Thus W(F(¢)/F) N P(F)=20. Since W(F(¢)/F) C W(F(¥{)/F)
= pWF, any two (n + 1)-fold Pfister forms in W( F(¢)/F) are linked by
p. So the result follows from (1.3).

COROLLARY 1.5. Let ¢ be an anisotropic form such that dim ¢ = 4 and
o & GP(F). If W(F(p)/F) # 0, then W(F(¢p)/F) is a strong 3-Pfister
ideal. In particular, @ is conservative if and only if ¢ is a conjugate neighbor.

Proof. By scaling we may assume ¢ = (1, a, b, x), for some a, b,
x € F. The first statement then follows from (1.4) and the second from
the Cassels-Pfister theorem.

2. W(F(¢)/F) for small dimensional ¢.

REMARK. Let p be an n-fold Pfister form over F. Suppose p ~ ¢ L v,
with dim ¢ > dimy, and ¢ =~ L (x) is anistropic. Further suppose ¢ is
not a neighbor of p. Then, W(F(¢)/F) is a strong (n + 1)-Pfister ideal
by (1.4). By examining the proof of (1.2) we see that:

P, (F) N W(F(e)/F)={p®(l,a)|a€D((x)L )}
Now W(F(¢)/F) = pWF and:
pWFN (1, x)WFN P, (F)={p®(l,a)|ace D({x)L )},

where p’ is the pure part of p. Thus:
W(F(¢)/F) C W(F(y)/F) 0 (1, x)WF,

but the inclusion may be strict.
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We wish to examine in detail the structure of W(F(¢)/F) for four
dimensional forms:

ExaMPLE. Let ¢ be conservative and dim ¢ = 4; we may assume
¢ =~ (1, a, b, x). Suppose x #* ab. Then:

W(F(e)/F) N P(F) = {{{a,b,a)) |« € D((x,-ab))}
= {<<a, b, xt*> — abs2>> |s, 1€ F}.

If t =0, then ({a, b, xt* — abs*))=((a, b,-ab))= 0. So we may as-
sume ¢ # 0. Hence:

W(F(g)/F) N P(F) = {{(a,b,x —abs?))|s € F} U {0}.

In particular:

W(F(9)/F) = ({a,b)) X ({(x — abs?)) WF.
SEF
by (1.5).
Comparing with (1.5), we also have:

@ is conservative iff ¢ is a conjugate neighbor

iff D((—x, ab)) ZD({{a, b))).

To treat 5 and 6 dimensional forms, we need:

THEOREM 2.1. Let { be a codimension 1 neighbor of p € P,(F),
o =~y L {x, y) anisotropic and suppose @ is not a Pfister neighbor. Then
W(F(@)/F) is a strong (n + 2)-Pfister ideal.

Proof. By (1.4) W(F(y L (x))/F) is a strong (n + 1)-Pfister ideal,
and so W(F(¢)/F) 1s a {n+ 1, n + 2}-Pfister ideal, by (1.2). Since
dime = 2" + 1 and ¢ is not a Pfister neighbor W(F(¢)/F) N P, (F)
= 0. Thus, by (1.3), we need only show W( F(¢p)/F) is (n + 2)-linked.

Let p,, p, € W(F(9)/F) N P, ,(F). By the Cassels-Pfister theorem,
@ is similar to a subform of each p; and so the Witt index i(p, L —p,) =
2"+ 1. But i(p, L —p,) must be a power of 2, by [5, 4.5]. Thus
i(p, L —p,) =2"*"" and hence p, and p, are linked.

COROLLARY 2.2. Let ¢ be a conservative form of dimension 5. Then
either:

(a) @ is a neighbor to a Pfister form p and W(F(¢p)/F) = pWF is a
strong 3-Pfister ideal, or

(b) ¢ is not a Pfister neighbor and W(F(¢)/F) is a strong 4-Pfister
ideal.
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It is quite possible that a 5 dimensional form ¢ is not a Pfister
neighbor. Indeed ¢ is a Pfister neighbor if and only if d(¢) € D(g¢), by
[13, p. 10].

COROLLARY 2.3. Let ¢ be a conservative form of dimension 6. If @ is not
a Pfister neighbor then W( F()/F) is a {4,5}-Pfister ideal.

ExamPLE. If ¢ has dimension 6, W(F(¢)/F) need not be a strong
Pfister ideal. Since no such example is in the literature, I will work out one
in some (but not complete) detail.

Let F=R(x, y,z), p=(1,1,1, x,y,z), p, ={({1,1,x, y,z)) and
p, = (1,1, x, y — 1,z — x)). By considering an ordering for which z >
y > x > 1, one sees that p, and p, are anisotropic. A simple computation
shows ¢ < p, and ¢ < p,, while a more tedious one shows p, and p, are
not linked. Lety = ker(p, L —p,) € W(F(¢)/F).

Fix an ordering a on F with x infinitely large positive, y infinitely
small positive and z infinitely larger than x.

Claim. There does not exist 0 € W(F(¢)/F) N P,(F) such that
sgn, o = 16.

We first note that (1,1, 1, x, y) is not a Pfister neighbor — otherwise
xy € D({1,1,1,x, y)) and (1,1,1,x) L y(1,-x) is isotropic, which is
impossible. Thus if there is a o invalidating the claim, the proof of (1.2)
shows we may write o =~ ({1,1, p’x — ¢% r*y — B)), where p, q,r, B €
R[x, y, z]and B € (p?x — ¢*)D({1, 1,1, x)).

We will show z & D(o) and hence ¢ < 6. We need some simple
calculations. For a polynomial g(x, y, z) € R[x, y, z] let deg, g denote
the degree of g as a polynomial in x over R[ y, z]. Define deg, g and deg, g
similarly.

Consider p%x, ¢? and r?y as polynomials in z over R[x, y], with
leading coefficients w,(x, y), w,(x, y) and wy(x, y) respectively. Note that
p*x, q* and r?y have even z-degree. It is easy to check the following:

(a) deg, w, 1s odd and deg w, is even,

(b) deg (w, — w,) is even,

(c) deg, w; is odd.

We thus obtain:
(i) deg.(p’x — ¢?) is even (by (a)),

(i1) deg, B8 is even (by (1)),

(iii) deg_(r?y — B) is even (by (ii), (b) and (c)).

Suppose finally that z € D(o). Then:

(x) z=so+ (p?x = q*)s; + (2 = B)s, + (p°x = ¢?)(r’y = B)s,
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with each s, a sum of four squares in F. Let wy(x, y) be the z-leading
coefficient of 8. Set

V={(a,b) eR*|w(a,b) =0,somei=1,2,3, ord};

V is a closed subvariety of R2. Since sgn, o = 16, p’x — ¢* and r’y — 8
are positive with respect to @ and we may find positive x,, y, ER — V
such that:

) = (p*x — ¢*)(x4, ¥o» 2)
):

=0 forz>0.
(r2y = B)(x,, Yo» Z) }

Pz

P,(z
By the observations (i) and (iii), we see that P, and P, have even degree.
Thus for sufficiently negative z,, at (x,, y,, z,) the left hand side of (x) is
negative while the right hand side is positive. This proves the claim.

To finish the example, suppose W(F(¢)/F) is a strong Pfister ideal.
Then we may write:

v >1au, withy, € W(F(p)/F)N P(F)anda, € F.

Since dim ¢ = 48 we have three cases:

(1) Some p; € Py(F):
Then o is a Pfister neighbor and there exists a 6 € W(F(9)/F) N P,(F)
such that o | p,. Since sgn, p, = 32, sgn, o = 16. Contradiction.

(i1) Some pu, € Py(F):

Then ¢ ~a\p, L a,p,, with p, € Py(F) and p, € P(F). But degy =5
while deg(a,p, L a,p,) = 4, which again is a contradiction.

(iii) All p, € P,(F):

Then ¢ ~ap, La,p, L ayp,, with p, € W(F(e)/F) N P(F). Now
sgn, ¥ = 32, as sgn,p, = 32 and sgn,p, = 0. Thus at least one p; has
a-signature 16, contradicting the claim.

Thus W( F(¢)/F) is not a strong Pfister ideal.

It is worth noting that W(F(¢)/F) does however contain 4-fold
Pfister forms. For example, 0 # ((1,1, x,4xy — (xz — xy — 1)*)) is in
W(F(9)/F).

We can show W(F(¢)/F) is a strong Pfister ideal in some cases.

COROLLARY 2.4. Let @ be a conservative form of dimension 6 which is
not a Pfister neighbor. If ¢ contains a four dimensional subform of determi-
nant 1, then W(F(¢)/F) is a strong 4-Pfister ideal.
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Proof. Write ¢ =y L (a, b), with dimy =4 and d(y) = 1. If c €
D(y), then ¢y € P,(F). So we may assume ¢ ~ p L (x, y), where p €
P, F) and x, y € F. Now p L (x) is a neighbor to p ® (1, x), so
W(F(p)/F) is a strong 4-Pfister ideal by (1.4).

3. Conservative and embeddable forms. In [12], Gentile and Shapiro
raised the question whether a conservative form ¢ over F must be
embeddable. They showed the answer was yes, if dim ¢ < 5 orif u( F) < 24
([12, Corollaries 8 and 19]). The results of Section 2 can be used to
improve these bounds. As an immediate consequence of (2.3) we have:

COROLLARY 3.1.Let dim @ < 6. Then ¢ is conservative iff ¢ is embed-
dable.

PROPOSITION 3.2. Let ¢ be a conservative form over F which is not a
Pfister neighbor and such that dime = 5. Let ¢ € W(F(¢p)/F) be aniso-
tropic. Then:

(a) 16| dim g

(b) ¢ = p mod I°F, where p € P,(F) N W(F(9)/F).

Proof. We first note that for (b) we need only show the equation holds
for some 0 € GP,(F). Namely then ¢ = ap L q,, where « € F, p € P,(F)
and g, € I°F. Now ap ® F(p) = —q, ® F(p) € I°F(p). By the Arason-
Pfister Hauptsatz ([2]), p ® F(¢) = 0 and so p € W(F(¢p)/F). Further
g=pLl{(-1,a)p L g, and so g = p mod I°F.

Let ¢ be a 5-dimensional subform of ¢. By (1.1), ¢ € W(F(y)/F).

Case 1. Y is not a Pfister neighbor:
Here we may write ¢ ~17., a,0;,, with each a;E F and o¢; €

171

W(F({)/F) N P, F), by (2.2). In particular, (a) holds. Now write:
qg= __Ll a,p, mod I°F

with a; € F, p, € W(F(y)/F) N P,(F) and n minimal. Suppose n > 1.
Since W(F(¢y)/F) is a strong 4-Pfister ideal, p, and p, are linked. Thus
there is an a,,, € F and Poi1 € W(F(Y)/F) N P(F) such that



98 ROBERT W. FITZGERALD
ax(py L -p)) = a,4 1P, We have:

g=ap,Layp, L -ap,Layp, L 1;]1_3 a;p; mod I°F

=(a, a)py L a, 10,1 J-i—:rI‘-SaiPi mod I°F
Ej:j_:a,.pi mod I°F.

This contradicts the minimality of n and proves (b) for this case.

Case 2.y is a Pfister neighbor:

Let ¢ be a neighbor to the (3-fold) Pfister form o. Then ¢ ~ o ®
(by,...,b,) by [5, 14]. To prove (a), we need only show m is even.
Suppose m is odd. Since ¢ ® F(¢) =0, (¢ ® F(9)) ® ({(b,,...,b,)®
F(¢)) =0. If 0 ® F(9) # 0, then (b,,...,5,,)® F(¢) is an odd dimen-
sional zero advisor, which is impossible ([15, VIII 6.7]). Thus ¢ ® F(¢) =
0. Since deg 0 = 3 and dim ¢ > 5, the Cassels-Pfister theorem implies ¢ is
a neighbor to o, contrary to hypothesis. Thus m is even and (a) holds.

Now write (b,,...,b, Y= (1, x) mod I’F for some x € F. Then
g = {1, x)o mod I°F as desired.

COROLLARY 3.3. If F is 5-linked then for all conservative ¢ over F,
W(F(p)/F) is a Pfister ideal.

Proof. Let ¢ € W(F(¢)/F); we may write ¢ = a,p, L g, witha, € F,
p € W(F()/F) N P(F) and q, € W(F(p)/F) N I’F, by (3.2). By
[10, 5.1, W(F(9)/F) N I°F is a Pfister ideal, hence ¢,, and ¢, lie in
W(F(9)/F)y,.

COROLLARY 3.4. Suppose @ is a conservative form over F that is not
embeddable. Then W( F(¢)/F) C I°F.

Proof. Clearly ¢ is not a Pfister neighbor, and dim ¢ = 7 by (3.1). The
result then follows from (3.2) since W( F(¢)/F) N P(F) = 0.

In [9] it was shown thatif g € W(F(@)/F) then2"q € W(F(¢)/F)p;,
where n = dim ¢q. Thus if ¢ is conservative but not embeddable then
W(F(9)/F) C W,F (see also [12]). Hence we have:

COROLLARY 3.5. Suppose I°F is torsion-free. Then a form ¢ over F is
conservative if and only if it is embeddable.
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In particular, if tr.d.g( F) < 4, then ¢ is conservative if and only if it
is embeddable.

COROLLARY 3.6. Suppose @ is a conservative form over F that is not
embeddable. If g € W(F(@)/F) is non-zero, then dim q = 48.

In particular, if u( F) < 48, then a form over F is conservative if and
only if it is embeddable.

Proof. We may assume ¢ is anisotropic. By (3.4), ¢ € I°F and so by
the Arason-Pfister Hauptsatz ([2]), dim g = 32. If dimgq = 32, then g €
GP(F) and ¢ is embeddable; thus dim ¢ > 32. By (3.2), 16|dimg, so
dim g = 48.

4. Witt kernels over fields of finite Hasse number. As was done in
[11], for an anisotropic form g we define N(g) to be dim ¢ — ¢4 7.

LemMA 4.1. Suppose ¢ & GP(F) and q is an anisotropic form with
q € W(F(¢)/F). Then,

(i) 297 > dim ¢;

(i) if N(q) <2-dim @ then q € GP(F).

Proof. (i) follows from [12, Prop. 13] and (ii) follows from [11, 1.6].

REMARK. A stronger inequality than (1) is shown in [12], namely that
2489 > dim ¢ + 29°¢% It would be interesting to know if this can be
improved to 2989 =2-dim ¢ for non-Pfister neighbors ¢. Note that if
there exists a ¢ € W(F(¢)/F) such that 2 dim ¢ = 297 and ¢ is not a
Pfister neighbor then W(F(¢p)/F) is not a Pfister ideal. Namely, suppose
g =17, x,p, with p, € W(F(¢)/F) 0 P(F). Then for some i, deg p, <
deg g and the Cassels-Pfister theorem then implies ¢ is a Pfister neighbor.

We next recall a definition due to Knebusch, Rosenberg and Ware
(cf. [14, 1.2]) which will be used frequently in this section:

DEFINITION. We say F satisfies the Strong Approximation Property
(SAP) if for every clopen S C X, there exists an e € F such that e > 0 on
S and e < 0 outside of S.

The following lemma is well-known.

LeMMA 4.2. If 4(F) < 2", then F is n-linked. In particular, F is SAP.



100 ROBERT W. FITZGERALD

Proof. Let p,,p, € P,(F). Then for any ordering « on F,
| sgn,(p; L —p,) |= dimp, or 0.

In particular, p, L —p, is indefinite. Hence dim(ker(p, L —p,)) < 2" and
the Witt index i(p, L —p,) = 2""'. Then, p, and p, are linked, by [5, 4.4].

For the second statement, F is n-linked, so stably linked (cf. [6]) and
hence F is SAP by [6, 3.5].

LEMMA 4.3. Let g € W(F(@)/F). If @ is indefinite at a € X, then
sgn,q = 0.

Proof. Since ¢ is indefinite at a, a extends to F(¢) ([9, 3.5]). Since
q® F(p) =0, sgn,q=0.

PROPOSITION 4.4. Suppose u( F) < 2", and ¢ is a conservative indefi-
nite form over F. Then:
() If 2" ' < dim @ < 2", then ¢ is a Pfister neighbor. In particular,
W( F(p)/F) is a strong n-Pfister ideal.
(i) If 2" % < dim @ < 2"\, then either:
(a) @ is a Pfister neighbor and W(F(¢)/F) is a strong (n — 1)-Pfister
ideal, or
(b) ¢ is not a Pfister neighbor and every non-zero anistropic q €
W(F(@)/F) is in GP(F). In particular, W(F(¢)/F) is a strong n-Pfister
ideal.

Proof. Let 0 #+ q € W(F(¢p)/F) be anistropic. By (4.3) sgn,, g = 0 for
all @ € X, so by Pfister’s Local-Global Principle ¢ is torsion. Thus
dim g < 2".

(i) Here dim g < 2dim ¢ and so ¢ € GP,(F) by (4.1). In particular, ¢
is a Pfister neighbor.

(i1) Part (a) is known so suppose ¢ is not a Pfister neighbor. By (4.1),
2987 > dim@ > 2""2 thus degg=n—1 and N(g)<2"—2""'<
2dim¢. (4.1) then implies ¢ € GP(F). If degg=n — 1, then ¢ is a
Pfister neighbor, contrary to the assumption of (b). Hence ¢ € GP,(F)
and W(F(g)/F) is a strong n-Pfister ideal.

Both the statement and the proof of the following lemma are similar
to the Pfister neighbor criterion of Elman, Lam and Wadsworth [8, 4.6]:

LEMMA 4.5. Let F be formally real with @( F) < 2". Let ¢ be a form over
F, definite at some a € Xy, with 1 € D(¢) and dim ¢ >2""2.
(i) Let m be the least integer such that n < m and dim ¢ < 2™. Let S be
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a non-empty clopen subset of Xy such that S C {a| @ is ( positive) definite at
a}. Then there exists p € W(F(¢)/F) N P, (F) such that p is definite at
aiffa € S.

(ii) If dim@ = 2" + 1, m = n, then @ is a Pfister neighbor.

Proof. In part (ii) let S = {«| ¢ is definite at «}. S is clopen since
S = ¢'({dim ¢}), where ¢: X.— Z is the continuous function a+>
5gn ,()- _

For both parts (i) and (ii) there is an e € F such thate >,0iffa € S,
since F is SAP. Set p = 2" (1, e). For a € X, then:

—sgn, ¢, ife <,0

1 — =
sgn(p ?) {dim p—dme ife>,0.

In (i), |sgn, ¢ |< dime < 2" < dim p — dim . In (ii), if e <, 0, | sgn, @ |
<dimgp — 2 =2" — 1 = dim p — dim ¢. Thus in both cases

|sgn (p L —¢@)|<dimp — dime, foralla € X;.

Set ¢ = ker(p L —o).

Suppose dim ¢y > dim p — dimg. Then ¢ is indefinite. In (i), this
forces dim ¢y < 2” < 2" < dim p — dim ¢, and in (i), since dim ¢ is odd,
dimy =< 2" — 1 < dim p — dim ¢. In both cases we get a contradiction.

So dim ¥ < dim p — dim ¢. In particular, the Witt index i(p L —¢) =
dim ¢@. Thus @ is a subform of p.

THEOREM 4.6. Suppose #( F) < 2" and @ is a conservative form over F.
If2" ' < dim ¢ < 2", with m = n, then either:
(1) @ is a Pfister neighbor and W(F(@)/F) is a strong m-Pfister ideal,
or
(ii) ¢ is not a Pfister neighbor and W(F(p)/F) is a strong (m + 1)-
Pfister ideal.

Proof. We may assume 1 € D(¢). We may also assume ¢ is not
indefinite and, in particular, that F is formally real, by (4.4). Case (i) is
known so assume ¢ is not a Pfister neighbor.

Let 0 # g € W(F(¢)/F) be anisotropic. We will show ¢ is isometric
to a sum of multiples of (m + 1)-fold Pfister forms in W(F(¢)/F) by
induction on dim q.

Case 1. dim g < 2™ ,
By (4.1), 299 > dim ¢ > 2""". So deg ¢ = m and N(gq) < 2"*' — 2"
= 2™ < 2 dim ¢. This implies ¢ € GP(F) by (4.1). If deg ¢ = m, then ¢ is
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a Pfister neighbor, contrary to our assumption. Thus degg=m + 1.
Since dim ¢ < 2™"! we obtain ¢ € GP,,, ,(F).

Case 2. dim g > 2"+

Set S, = {a € X;|sgn,q# 0} and S, = {a € S, |sgn, ¢ > 0}. Both
S, and S, are clopen, S, is non-empty (as dim g > #(F)) and S, C {a]| ¢
is (positive) definite at o} by (4.3). Thus there is an e, such that e, >, 0 iff
a € 8,,since Fis SAP (sete, = -1if S, # &), andap € W(F(¢9)/F) N
P, (F) such that p is definite at « iff a € S, by (4.5).

Set g, = ker(e,q L —p). Let @« € X,. Then:

0, ifa &S,
sgn,q, = {-S8n,q — dimp,sgn, ¢ <0, ifa €S —S,,
sgn,q — dimp,sgn,¢>0, ifa€S,.

Thus for each a« € Xz, 2 — dim p < sgn_ g, < dim ¢ — dim p that is:
|sgn, ¢,| = max{dimq — 2"*', 27" — 2},

Thus, since 4( F') < 2",

(*) dim ¢, < max{dimq — 27", 2! — 2 2"},

Now since ¢q, p € W(F(¢9)/F), q, € W(F(¢p)/F). Applying the argu-
ment in Case 1 to g, (instead of g) we see that dimgq, =2"*'>2".
Hence, the largest term on the right in (*) must be dimg — 2""'. So
dim g, = dimgq — 2™,

Since g, = e,q L —p, dimgq, = dimq — dim p = dimg — 2™"". So
dimg, = dimq — 2""', e,g ~p L q, and q = e,p L e,q,. Lastly, e,q, €
W(F(9)/F) and dim g, < dim g, so we are done by induction.

REMARK. Case (i1) of Theorem 4.6 can occur. Consider ¢ =
(1,1,1,1,1,7) over F = Q. Since ¢ is not indefinite, ¢ is conservative —
namely ((1,1,1,1,1,7)) € W(F(9)/F). If ¢ were a Pfister neighbor of
some p € P(F), then since 5(1)<¢ <p, p=8-(1) ([5, 2.7]). Thus
7 € D({(1,1,1)), a contradiction. Hence ¢ is a conservative non-Pfister
neighbor while #( F') = 4 and dim ¢ = 6. However we do have:

PrOPOSITION 4.7. Suppose i( F) < 2" and @ is an anisotropic form over
F. Then:

(1) If dimo = 2™ + 1, m = n, then @ is a Pfister neighbor.

(1) If dim@ = 2™, m = n and @ is not indefinite, then ¢ is a conjugate
neighbor.
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Proof. We may assume 1 € D(¢). Only (ii) is new and here ¢ L (1)
1s anisotropic since ¢ is not indefinite. Part (i) implies ¢ L (1) is a Pfister
neighbor, and hence ¢ is a conjugate neighbor.

We now consider the forms ¢ over F with ii(F) <2" and 2" % <
dim ¢ < 2"~ !. This requires two lemmas, the first of which is well-known:

LEMMA 4.8. If a(F) < 2", then J, F = I*F for k = n.

Proof. We may assume F is real. Let s = st(F) be the reduced
stability index as defined by Brocker in [3]. SAP fields have s = 1 ([7]) so:

JF=IF + (J,F),

for each k by [1, Lemma 2], where (J, F'), denotes the torsion part of J, F.
Since k = n, (J,F), C I*F and J, F = I*F.

Lemma 4.9. Suppose 4(F) < 2" and ¢ is an anisotropic form over F
with 2"~ % < dim @ < 2"~ ', Suppose also that there exists a g € W(F(p)/F)
of degree n — 1. Then o is a Pfister neighbor.

Proof. We may assume q is anisotropic, 1 € D(q) and, by (4.4), that ¢
is not indefinite. We induct on dim ¢. If dim ¢ < 2", then N(gq) < 2" —
2""!'<2dimg. (4.1) then implies ¢ € GP,_(F) and so ¢ is a Pfister
neighbor by the Cassels-Pfister theorem.

Now suppose dim g > 2"; g is thus not indefinite. Set S = {a € X| ¢
is (positive) definite at «}. S is non-empty and clopen in X,. Using (4.3)
and (4.5) we obtain a p € W(F(¢)/F) N P, ,(F) such that p is definite
atpiffa € S.

Fora € X:

dimg —2"*!, ifa €S

1 — =
sen.(4 2 {sgnaq, ifa &S.

If dimg <2""" then |dimg — 2"""|<2" < dim¢. If dim ¢ > 2""", then
|dimg — 2""'|<dimgq. And if a &€ S, then |sgn, g, |<dimg for all
a € Xg.

If dim ¢, = dim g, then g, is indefinite and of dimension greater than
2", which is impossible. So dimg, < dimg. By [13, 64], ¢g=p L g,
implies deg g, = n — 1. Thus by induction ¢ is a Pfister neighbor.

REMARK. Lemma 4.9 says the first inequality of (4.1) can be strengthed
to 2 dim ¢ < 299 for non-Pfister neighbors ¢ provided dim ¢ > 2""2 and
a(F)=2".
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THEOREM 4.10. Suppose i( F) < 2" and ¢ is a conservative form over F.
If2" 2 < dimg < 2", then either:

(1) @ is a Pfister neighbor and W( F(@)/F) is a strong (n — 1)-Pfister
ideal

(i1) @ is not a Pfister neighbor and W(F(¢)/F) is a {n, n + 1}-Pfister
ideal.

Proof. (1) is known so we may assume ¢ is not a Pfister neighbor. Let
0 # q € W(F(¢)/F) be anisotropic. Then by (4.1), 29°¢9 > dim ¢ > 2" 2
and so deg g = n — 1. By (4.9) deg ¢ = n, and so ¢ € I"F by (4.8). Thus
W(F(p)/F) C I"F. Since F is n-linked [10, 5.1] implies W( F(¢)/F) is a
N-Pfister ideal, where N = {n, n + 1,...}.

To finish then, we need only show any form in W( F(¢)/F) N P(F),
with i =n + 2, is divisible by a form in W(F(g)/F) N P, (F). Let
o € W(F(p)/F) N P(F)withi=n+ 2. We may assume ¢ is not indef-
inite and, in particular, that F is real, by (4.3). We may also assume
1 € D(¢). Let S = {a € X,| ¢ is (positive) definite at a}. S is non-empty
and clopen in X,. There is then a (n + 1) = fold Pfister form p €
W(F(g)/F) such that p 1s definite at « iff « € S. Using (4.3) we see that
foralla € X,

__~An+l :
sgn (o L —p) = {sgnuo 27 fa €S
O, lf 44 % S.
So|sgn (o L —p)|=dimo — dim p. For all « € X,.. Since dimo — dim p
> 2", dim(ker(o L —p)) < dim o — dim p. Thus p <o and p | o by [5, 2.7].

REMARK. The result of (4.4)(i1) for non-real fields is stronger than the
corresponding result (4.10) for real fields, namely for real fields we no
longer have that W(F(¢)/F) is a strong Pfister ideal. To see why this
occurs we observe that W( F(g)/F) is a strong n-Pfister ideal iff there
exists a p € W(F(¢)/F) N P(F) such that sgn, p = 0 precisely when ¢
is indefinite at «. This condition holds trivially if F is non-real (take
p=2""(1,-1)).

To verify the observation, we first note that by (4.2) and [10, 3.1],
W(F(p)/F) is a strong n-Pfister ideal iff for each 0 € W(F(g)/F) N
P, (F) there exists a p € W(F(¢)/F) 0 P,(F) such that p| 0. Suppose
W{(F(¢p)/F) is a strong n-Pfister ideal. Then, since F is SAP, we may find
aoc€ W(F(e)/F)N P, (F) such that o is definite at « iff ¢ is. Let
p E W(F(p)/F) N P(F) be such that p|o. Then sgn,p = 0 iff ¢ is
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indefinite at a«. On the other hand, suppose we have such a p €
W(F(e¢)/F)N P(F)andleto € W(F(¢p)/F) N P, (F).By(4.3),

{a € X¢|sgn,p =0} C {a € X;|sgn,0 =0},
so |sgn (o L —p)|=2" for each a € X; and p|o ([5, 2.7]). Thus
W(F(¢)/F) is a strong n Pfister ideal.

COROLLARY 4.11. If 4(F) < 8, then W(F(9)/F) is a strong k-Pfister
ideal, for some k, for every conservative ¢ over F. In particular, this holds
for C,; fields, global fields and fields of transcendence degree < 1 over R.

Proof. The first statement follows from (1.5) and (4.6). For the second
statement see [4].

Lastly we can imporve (3.3).

COROLLARY 4.12. Let #i( F) < 32 and ¢ a conservative form over F
which is not a Pfister neighbor. Then W( F(¢)/F) is a:

(1) 3-Pfister ideal ifdimp =4

(2) 4-Pfister ideal ifdimop =75

(3) {4, 5}-Pfister ideal ifdimp =6

(4) {4,5,6}-Pfister ideal ifdime =7 or8

(5) {5, 6}-Pfister ideal if9 <dimgp < 16

(6) (n + 2)-Pfister ideal  if 2" < dimg <2"*', n = 4.

Proof. All but (4) have been done previously, so assume dim ¢ = 7 or
8. The proof of (3.3) shows W(F(¢)/F)is a {4,5,...}-Pfister ideal, while
the second paragraph of the proof of (4.10) shows W(F(¢)/F) is a
{4, 5, 6}-Pfister ideal.
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