CYCLIC GROUPS OF AUTOMORPHISMS OF COMPACT NON-ORIENTABLE KLEIN SURFACES WITHOUT BOUNDARY

Emilio Bujalance

We obtain the minimum genus of the compact non-orientable Klein surfaces of genus $p \ge 3$ without boundary which have a given cyclic group of automorphisms.

1. Introduction. Let X be a compact Klein surface [1]. Singerman [8] showed that the order of a group of automorphisms of a surface X without boundary of algebraic genus $g \ge 2$ is bounded above by 84(g - 1), and May [7] proved that if X has nonempty boundary, this bound is 12(g - 1).

These bounds may be considered as particular cases of the general problem of finding the minimum genus of surfaces for which a given finite group G is a group of automorphisms. The study of cyclic groups is a necessary preliminary to this, since it leads to limitations on the orders of elements within a general group. In this paper we consider the above problem for the case of cyclic groups of automorphisms of compact non-orientable Klein surfaces without boundary. The corresponding problem for compact orientable Klein surfaces without boundary was solved by Harvey [5].

2. Compact non-orientable Klein surfaces without boundary. By a non-Euclidean crystallographic (NEC) group, we shall mean a discrete subgroup Γ of the group of isometries G of the non-Euclidean plane, with compact quotient space, including those which reverse orientation, reflections and glide reflections. We say that Γ is a proper NEC group if it is not a Fuchsian group. We shall denote by Γ^+ the Fuchsian group $\Gamma \cap G^+$, where G^+ is the subgroup of G whose elements are the orientation-preserving isometries.

NEC groups are classified according to their signature. The signature of an NEC group Γ is either of the form

(*)
$$(g; +; [m_1, \ldots, m_{\tau}]; \{(n_{i1}, \ldots, n_{is_t})_{i=1,\ldots,k}\})$$

or

(**)
$$(g; -; [m_1, \ldots, m_{\tau}]; \{(n_{i1}, \ldots, n_{is_i})_{i=1, \ldots, k}\});$$

the numbers m_i are the periods and the brackets $(n_{i1}, \ldots, n_{is_i})$, the period cycles.

A group Γ with signature (*) has the presentation given by generators

$$x_i, \quad i = 1, \dots, \tau, \qquad c_{ij}, \quad i = 1, \dots, k, j = 0, \dots, s_i$$

 $e_i, \quad i = 1, \dots, k, \qquad a_j, \, b_j, \, j = 1, \dots, g,$

and relations

$$x_{i}^{m_{i}} = 1, \quad i = 1, \dots, \tau, \qquad c_{is_{i}} = e_{i}^{-1}c_{i0}e_{i}, \quad i = 1, \dots, k,$$

$$c_{ij-1}^{2} = c_{ij}^{2} = (c_{ij-1} \cdot c_{ij})^{n_{ij}} = 1, \qquad i = 1, \dots, k, j = 1, \dots, s_{i},$$

$$x_{1} \cdots x_{\tau}e_{1} \cdots e_{k} a_{1}b_{1}a_{1}^{-1}b_{1}^{-1} \cdots a_{g}b_{g}a_{g}^{-1}b_{g}^{-1} = 1.$$

A group Γ with signature (**) has the presentation given by generators

$$x_i, \quad i = 1, \dots, \tau, \qquad c_{ij}, \quad i = 1, \dots, k, j = 0, \dots, s_i,$$

 $e_i, \quad i = 1, \dots, k, \qquad d_j, \quad j = 1, \dots, g,$

and relations

$$c_{is_i} = e_i^{-1} c_{i0} e_i, \quad i = 1, \dots, k, \qquad x_i^{m_i} = 1, \quad i = 1, \dots, \tau,$$

$$c_{ij-1}^2 = c_{ij}^2 = (c_{ij-1} \cdot c_{ij})^{n_{ij}} = 1, \qquad i = 1, \dots, k, j = 1, \dots, s_i,$$

$$x_1 \cdots x_\tau e_1 \cdots e_k d_1^2 \cdots d_g^2 = 1.$$

From now on, we will denote by x_i , e_i , c_{ij} , a_i , b_i , d_i the above generators associated to the NEC groups.

(2.1) DEFINITION. We shall say that an NEC group Γ_g is the group of an orientable surface if Γ_g has the signature $(g; +; [-]; \{-\})$ where [-] indicates that the signature has no periods and $\{-\}$ indicates that the signature has no period cycles.

(2.2) DEFINITION. An NEC group Γ_p is the group of a non-orientable surface if Γ_p has the following signature $(p; -; [-]; \{-\})$.

For a given Γ_p we have that the orbit space D/Γ_p (where $D = C^+$) is a non-orientable surface of genus p. The canonical projection $\pi: D \to D/\Gamma_p$ induces an analytic and anti-analytic structure on D/Γ_p , which establishes a structure of compact non-orientable Klein surface without boundary of genus p in D/Γ_p .

280

From now on, Klein surfaces appearing in this paper are supposed to be compact without boundary.

Singerman has shown in [8] the following

(2.3) PROPOSITION. If G is a group of automorphisms of a non-orientable Klein surface of genus $p \ge 3$, then G is finite.

(2.4) THEOREM. A necessary and sufficient condition for a finite group G to be a group of automorphisms of a non-orientable Klein surface of genus $p \ge 3$ is that there exist a proper NEC group Γ and a homomorphism θ : $\Gamma \rightarrow G$ such that the kernel of θ is a surface group and $\theta(\Gamma^+) = G$.

As a consequence of this theorem, we have that if G is a finite group of automorphisms of a non-orientable Klein surface of genus $p \ge 3$ then $G \simeq \Gamma/\Gamma_p$, where Γ is a proper NEC group and Γ_p is the group of a non-orientable surface; thus

order(G) =
$$|\Gamma_p|/|\Gamma| = 2\pi(p-2)/|\Gamma|$$
,

where || denotes the non-Euclidean area of a fundamental region of the group.

(2.5) THEOREM. If G is a finite group, G is a group of automorphisms of a non-orientable Klein surface of genus $p \ge 3$.

Proof. Let us suppose that G has n generators g_1, g_2, \ldots, g_n . There exists a proper NEC group Γ_{2n+1} that is the group of a non-orientable surface, and therefore it has the following generators and relations:

$$\{a_1, a_2, \dots, a_{2n+1} | a_1^2 \cdot a_2^2 \cdots a_{2n+1}^2 = 1\}$$

We establish a homomorphism θ : $\Gamma_{2n+1} \rightarrow G$, by defining

$$\theta(a_1) = g_1, \quad \theta(a_3) = g_2 \cdots \theta(a_{2n-1}) = g_n, \quad \theta(a_{2n+1}) = 1,$$

$$\theta(a_2) = g_1^{-1}, \quad \theta(a_4) = g_2^{-1}, \quad \theta(a_{2n}) = g_n^{-1}.$$

 θ is an epimorphism. ker θ is a normal subgroup of Γ_{2n+1} with finite index, and therefore, ker θ is an NEC group.

As Γ_{2n+1} has neither periods nor period-cycles, and ker θ is a normal subgroup of Γ_{2n+1} , by [2] and [3], ker θ has neither periods nor period-cycles, and thus it is a surface group.

Moreover, as $a_1 \cdot a_{2n+1}$, $a_3 \cdot a_{2n+1}$, ..., $a_{2n-1} \cdot a_{2n+1}$ belong to Γ_{2n+1}^+ and $\theta(a_1 \cdot a_{2n+1}) = g_1$, $\theta(a_3 \cdot a_{2n+1}) = g_2$, ..., $\theta(a_{2n-1} \cdot a_{2n+1}) = g_n$, then $\theta(\Gamma_{2n+1}^+) = G$.

By (2.4) G is a group of automorphisms of a non-orientable Klein surface of genus $p \ge 3$.

3. Non-orientable surface-kernel homomorphisms.

(3.1) DEFINITION. A homomorphism θ of a proper NEC group Γ into a finite group is a non-orientable surface-kernel homomorphism if ker θ is the group of a surface and $\theta(\Gamma^+) = G$.

From [2], [3] and (2.4) we get

(3.2) PROPOSITION. A homomorphism θ of a proper NEC group Γ of signature $(g; \pm; [m_1, \ldots, m_{\tau}]; \{(n_{11}, \ldots, n_{1s_1}) \cdots (n_{k_1}, \ldots, n_{ks_k})\})$ into a finite group G is a non-orientable surface-kernel homomorphism if and only if $\theta(c_{ij})$ has order 2, $\theta(x_i)$ has order m_i , $\theta(c_{ij-1} \cdot c_{ij})$ has order n_{ij} and $\theta(\Gamma^+) = G$.

(3.3) COROLLARY. Let G be a finite group with odd order. Then there is no proper NEC group Γ with period cycles for which there exists a non-orientable surface-kernel homomorphism $\theta: \Gamma \to G$.

(3.4) COROLLARY. There does not exist any proper NEC group Γ with period cycles having some non-empty period cycle for which there is a non-orientable surface-kernel homomorphism $\theta: \Gamma \to Z_n$ with n even.

Proof. If there were a non-orientable surface-kernel homomorphism $\theta: \Gamma \to Z_n$, we would have that for every $c_{ij} \in \Gamma$, $\theta(c_{ij})$ would have order 2 in Z_n ; if Γ has some non-empty period cycle, there would be two reflections $c_{ij}, c_{ij+1} \in \Gamma$ such that $(c_{ij} \cdot c_{ij+1})^{n_{ij}} = 1$ and, by (3.2), the order of $\theta(c_{ij} \cdot c_{ij+1})$ would be n_{ij} , but this is impossible because

$$\theta(c_{ij} \cdot c_{ij+1}) = \theta(c_{ij}) + \theta(c_{ij+1}) = \bar{n}/2 + \bar{n}/2 = \bar{n},$$

where \bar{p} denotes the equivalence class of the element p of Z_n .

(3.5) THEOREM. Let Γ be a proper NEC group with signature

$$\left(g; +; [m_1,\ldots,m_{\tau}]; \left\{(-)(-),\ldots,(-)\right\}\right)$$

and let *n* be even. Then there exists a non-orientable surface-kernel homomorphism θ : $\Gamma \to Z_n$ if and only if:

(i) $m_i \setminus n \forall i \in I, I = \{1, ..., \tau\};$ (ii) if g = 0, k = 1, then l.c.m. $(m_1 \cdots m_{\tau}) = n$. *Proof.* If there is a non-orientable surface-kernel homomorphism θ : $\Gamma \to Z_n$, then, by (3.2), $\theta(\Gamma^+) = Z_n$.

By Theorem 2 of [9] and Theorem 4 of [5], (i) and (ii) hold.

If we suppose that the elements of the signature Γ fulfill (i) and (ii), we define the homomorphism $\theta: \Gamma \to Z_n$ in the following way:

if $g \neq 0$:

$$\theta(a_1) = \overline{1}, \qquad \theta(a_i) = \overline{n}, \quad i = 2, \dots, g, \qquad \theta(x_i) = \frac{n}{m_i},$$
$$\theta(b_1) = \overline{1}, \qquad \theta(b_i) = \overline{n}, \qquad \theta(c_i) = \frac{\overline{n}}{2},$$
$$\theta(e_1) = -\overline{\sum_{i=1}^{\tau} \frac{n}{m_i}}, \quad \theta(e_i) = \overline{n}, \qquad i = 2, \dots, k;$$

if g = 0, k = 1:

$$\theta(x_i) = \frac{\overline{n}}{m_i}, \quad \theta(c_j) = \frac{\overline{n}}{2}, \quad \theta(e_1) = -\overline{\sum_{i=1}^{\tau} \frac{n}{m_i}};$$

if g = 0, k > 1:

$$\theta(x_i) = \frac{\overline{n}}{m_i}, \qquad \theta(c_i) = \frac{\overline{n}}{2}, \quad \theta(e_1) = \overline{1},$$
$$\theta(c_2) = \overline{-1 - \sum_{i=1}^{\tau} \frac{n}{m_i}}, \quad \theta(e_i) = \overline{n}, \qquad i = 3, \dots, k;$$

in every case there is a $\gamma \in \Gamma^+$ such that $\theta(\gamma) = \overline{1}$:

if $g \neq 0$, $\gamma = a_1$;

if g = 0, k = 1, by (ii) l.c.m. $(m_1 \cdots m_{\tau}) = n$, for there exist integers $\alpha_1, \ldots, \alpha_{\tau}$ such that $\alpha_1 n/m_1 + \cdots + \alpha \tau n/m_{\tau} = 1$, therefore $\gamma = x_1^{\alpha_1} \cdots x_{\tau}^{\alpha_{\tau}}$;

if $g = 0, k > 1, \gamma = e_1$.

Therefore $\theta(\Gamma^+) = Z_n$ and θ is a non-orientable surface-kernel homomorphism.

(3.6) THEOREM. Let Γ be a proper NEC group of signature

$$\left(g; -; [m_1, \ldots, m_{\tau}]; \left\{(-)(-), \ldots, (-)\right\}\right)$$

and let θ be a non-orientable surface-kernel homomorphism θ : $\Gamma \to Z_n$ with n even. Then

(i) $m_i \setminus n \forall i \in I, I = \{1, 2, ..., \tau\};$ (ii) if g = 1, k = 0, then l.c.m. $(m_1 \cdots m_{\tau}) = n$. *Proof.* The Conditions (i) and (ii) hold by Theorem 2 of [9] and Theorem 4 of [5].

(3.7) THEOREM. Let Γ be a proper NEC group of signature $(g; -; [m_1 \cdots m_{\tau}])$ and let n be odd. Then there exists a non-orientable surface-kernel homomorphism $\theta: \Gamma \to Z_n$ if and only if

(i) $m_i \setminus n \forall i \in I, I = \{1, \ldots, \tau\};$

(ii) if g = 1, then l.c.m. $(m_1 \cdots m_{\tau}) = n$.

Proof. The necessity is similar to (3.6). Let us see the sufficiency. If we suppose that the elements of Γ fulfill (i) and (ii) we define the homomorphism $\theta: \Gamma \to Z_n$ in the following way: assume $\overline{\sum_{i \in I} n/m_i} = \overline{p}$.

If g = 1 and p odd:

$$\theta(x_i) = \frac{\overline{n}}{m_i}, \quad \theta(a_1) = \frac{1}{2}(n-p).$$

If g = 1 and p even:

$$\theta(x_i) = \frac{\overline{n}}{m_i}, \qquad \theta(a_1) = \overline{-\frac{1}{2}p}.$$

If g > 1 and p odd:

$$egin{aligned} & heta(x_i) = rac{ar{n}}{m_i}, & heta(a_2) = rac{ar{n-2p-1}}{2}, \ & heta(a_1) = rac{ar{p+1}}{2}, & heta(a_i) = ar{n}, \quad i > 2. \end{aligned}$$

If g > 1 and p even:

$$\theta(x_i) = \frac{\overline{n}}{m_i}, \qquad \qquad \theta(a_2) = \frac{\overline{n+1}}{2}, \\ \theta(a_1) = \frac{\overline{-p-n-1}}{2}, \qquad \theta(a_i) = \overline{n}, \quad i > 3.$$

In every case there is $\gamma \in \Gamma^+$ such that $\theta(\gamma) = \overline{1}$: if g = 1, by (ii) l.c.m. $(m_1 \cdots m_{\tau}) = n$, for there exist integers $\alpha_1, \ldots, \alpha_{\tau}$ such that $\alpha_1 n/m_1 + \cdots + \alpha_{\tau} n/m_{\tau} = 1$, therefore $\gamma = x_1^{\alpha_1} \cdots x_{\tau}^{\alpha_{\tau}}$;

if g > 1 and p odd, $\gamma = a_1^4 \cdot a_2^2$;

if g > 1 and p even, $\gamma = a_2^2$.

Therefore $\theta(\Gamma^+) = Z_n$ and θ is a non-orientable surface-kernel homomorphism.

4. Minimum genus. In this section we shall compute the minimum genus of a non-orientable Klein surface which has a cyclic group of automorphisms. We know by (2.4) that if G is a group of automorphisms of a non-orientable Klein surface of genus $p \ge 3$, then $G \simeq \Gamma/\Gamma_p$, where Γ is a proper NEC group, and Γ_p is a group of a non-orientable surface. Thus if order(G) = n, we have

$$n = 2\pi(p-2)/|\Gamma|$$

and $p = 2 + (n/2\pi) |\Gamma|$, so we can reduce the problem to the search of a proper NEC group for which there exists a non-orientable surface-kernel homomorphism $\theta: \Gamma \to Z_n$ which minimizes p.

(4.1) THEOREM. If n = 1, q prime, then the minimum genus p of a non-orientable Klein surface with a group of automorphisms isomorphic to Z_n is:

if
$$q = 2$$
, $p = 3$,
if $q \neq 2$, $p = q$.

Proof. If q = 2, we consider an NEC group of signature

 $(0; +; [2, 2, 2]; \{(-)\}).$

This group fulfills the conditions of Theorem (3.5), so

$$(p-2)/2 = 1/2$$
, i.e. $p = 3$.

If $q \neq 2$, we have that an NEC group of signature (1; -; [q, q]) fulfills the conditions of Theorem (3.7), therefore it is the group of a surface and

$$(p-2)/q = 1 - 2/q$$
, i.e. $p = q$.

Now let us see that q is the minimum genus.

If we take any other NEC group Γ with the conditions of Theorem (3.7), Γ would have the signature $(g; -; [q, \ldots, q])$ and

$$\frac{p-2}{q} = g - 2 + \tau \left(1 - \frac{1}{q}\right) = (\tau + g - 2) - \frac{\tau}{q},$$
$$p = 2 + (\tau + g - 2)q - \tau,$$

since $\tau > 1$ if g = 1, and $g \ge 1$, then the following expression is always $\ge q$.

(4.2) THEOREM. If $n = 2^{\beta}q_1^{r_1} \cdots q_{\alpha}^{r_{\alpha}}$, where $2 < q_1 < \cdots < q_{\alpha}$ and $q_1 \cdots q_{\alpha}$ are prime, then the minimum genus p of a non-orientable Klein surface with group of automorphisms isomorphic to Z_n is

$$p = n/2$$
 if $\beta = 1$,
 $p = n/2 + 1$ if $\beta > 1$.

Proof. If $\beta = 1$, we consider an NEC group Γ of signature

 $(0; +; [2, n/2]; \{(-)\}).$

This group fulfills the conditions of Theorem (3.5), so

$$\frac{p-2}{n} = \frac{1}{2} - \frac{2}{n}$$
, i.e. $p = \frac{n}{2}$.

Now let us see that n/2 is the minimum genus. If we take any other group Γ in the conditions of (3.5), Γ would have the signature $(g; +; [m_1 \cdots m_{\tau}]; \{(-), \ldots, (-)\})$, where $m_i \setminus n$, so

$$p = 2 + n(2g - 2 + k) + n \sum_{i \in I} \left(1 - \frac{1}{m_i}\right).$$

If 2g - 2 + k > 0, then the genus would be greater than the one we had calculated before; if $2g - 2 + k \le 0$ as $g \ge 0$ and $k \ge 1$, we have that only the following cases can hold: g = 0, k = 1; g = 0, k = 2. If g = 0, k = 2, as $|\Gamma| > 0$ then $\tau \ge 1$.

$$p = 2 + n \sum_{i \in I} \left(1 - \frac{1}{m_i} \right) > \frac{n}{2}.$$

If g = 0, k = 1,

$$p=2-n+n\sum_{i\in I}\left(1-\frac{1}{m_i}\right),$$

as $p \ge 3$, $\tau \ge 2$ necessarily. But $\sum_{i=1}^{\tau} (1 - 1/m_i) < 2$, since if it is greater or equal, the genus would be greater than the one calculated before. Thus τ can only be 2 or 3. In both cases, keeping in mind that l.c.m. $(m_1 \cdots m_{\tau}) = n$, one can check easily that the minimum genus one gets is $\ge n/2$.

If we take an NEC group Γ with signature

$$\left(g; -; [m_1, \ldots, m_{\tau}]; \left\{(-), \ldots, (-)\right\}\right)$$

286

then

$$p = 2 + n(g - 2 + k) + n \sum_{i \in I} \left(1 - \frac{1}{m_i}\right).$$

If g - 2 + k > 0, then the genus would be greater than the one we had calculated before. If $g - 2 + k \le 0$, then, necessarily:

$$g = 1, \quad k = 1, \\ g = 1, \quad k = 0, \\ g = 2, \quad k = 0.$$

In the three cases, using Theorem (3.6), we have $p \ge n/2$. If $\beta \ne 1$, we consider an NEC group Γ of signature

$$(0; +; [n, 2]; \{(-)\}).$$

This group fulfills the conditions of Theorem (3.5), so

$$\frac{p-2}{n} = \frac{1}{2} - \frac{1}{n}$$
, i.e. $p = \frac{n}{2} + 1$.

If we take any other group Γ , by (3.5) and (3.6) and operating in the same way as before, we get that n/2 + 1 is the minimum genus.

(4.3) THEOREM. Let $n = q_1^{r_1} \cdots q_{\alpha}^{r_{\alpha}}$, with $q_1 < q_2 < \cdots < q_{\alpha}$ being prime numbers and $q_1 \neq 2$. Then the minimum genus p of a non-orientable Klein surface with group of automorphisms isomorphic to Z_n is

$$p = 2 - q_1 + n - n/q_1 \quad if r_1 = 1, p = 1 + n - n/q_1 \quad if r_1 > 1.$$

Proof. Similar to the proof of the above theorem, bearing in mind (3.7).

The following corollary has also been obtained by W. Hall in [4]. The corresponding result for orientable Klein surfaces without boundary is due to A. Wiman [10].

(4.4) COROLLARY. The maximum order for an automorphism of a non-orientable Klein surface of genus $p \ge 3$ is

$$\begin{array}{ll} 2p & if \ p \ is \ odd, \\ 2(p-1) & if \ p \ is \ even, \end{array}$$

and it is always reached.

Proof. Given a non-orientable Klein surface of genus $p \ge 3$, we have by Theorems (4.1), (4.2) and (4.3) that the genus p satisfies $p \ge n/2$, i.e. $2p \ge n$. If p = n/2, then n = 2 and $n \ne 4$, so that bound is only reached when p is odd: in fact, given an NEC group Γ of signature (0; +; [2, p]; $\{(-)\}$), by (3.5) there is a non-orientable Klein surface of genus p, with a group of automorphisms isomorphic to Z_{2p} .

If p is even, the maximum order for an automorphism is 2(p-1), since given an NEC group Γ of signature (0; +; [2(p-1), 2]; $\{(-)\}$), by (3.5) there is a non-orientable Klein surface of genus p, with a group of automorphisms isomorphic to $Z_{2(p-1)}$.

If p is the topological genus of a compact non-orientable Klein surface without boundary, the algebraic genus is g = p - 1.

If we express the above corollary in terms of algebraic genus, these bounds are the same as the ones obtained by C. L. May in [6] for the order of an automorphism of an orientable bordered Klein surface.

The author wishes to thank the referee for several helpful comments and suggestions.

References

- [1] N. L. Alling, and N. Greenleaf, *Foundations of the Theory of Klein Surfaces*, Lecture Notes 219, Springer-Verlag (1971).
- [2] E. Bujalance, Normal subgroups of NEC group, Math. Z., 178 (1981), 331-341.
- [3] ____, Proper periods of normal NEC subgroups with even index, to appear in Revista Hispano-Americana.
- [4] W. Hall, Automorphisms and coverings of Klein surfaces, Ph.D. Thesis, Southampton (1978).
- W. J. Harwey, Cyclic groups of automorphisms of compact Riemann surfaces, Quart J. Math. Oxford, (2) 17 (1966), 86–97.
- [6] C. L. May, Cyclic groups of automorphisms of compact bordered Klein surfaces, Houston J. Math., 3, no. 3 (1977), 395–405.
- [7] _____, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math., 59 (1975), 199-210.

 $\mathbf{288}$

- [8] D. Singerman, Automorphisms of compact non-orientable Riemann surface, Glasgow J. Math., 12 (1971), 50-59.
- [9] ____, On the structure of non-Euclidean crystallographic groups, Proc. Camb. Phil. Soc., **76** (1974), 223–240.
- [10] A. Wiman, Ueber die hyperelliptischen Curven und diejenigen vom Geschlechte p = 3, welche eindeutigen Transformationen in sich zulassen. Bihan Kongl Svenska Vetenskans-Akademiens Handlingar (Stockholm 1895-6).

Received October 20, 1981 and in revised form June 26, 1982.

Departamento de Topologia y Geometria Facultad de Matematicas Universidad Complutense Madrid, Spain