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CONTINUOUS DECOMPOSITIONS INTO CELLS
OF DIFFERENT DIMENSIONS

JOHN J. WALSH AND DAVID C. WILSON

In 1970 S. Jones showed that the only continuous decomposition of
Eu into points and A-cells is the trivial decomposition into points. This is
extended by showing that, for a pair of positive integers r, s with
r + s > n, the only continuous decomposition of E" into points, r-cells,
and s-ce\\s is the trivial decomposition into points.

1. Introduction. The structure of continuous decompositions of
euclidean spaces is sufficiently rich to have supported investigations in
both existence and non-existence directions. While the trivial decomposi-
tion into points, the decomposition consisting of the origin and boundary
spheres of balls centered at the origin, and decompositions consisting of
orbits of compact group actions provide examples of continuous decom-
positions of euclidean spaces, there are obstacles to easily describing
examples displaying additional features. In 1952 R. D. Anderson ex-
hibited a continuous decomposition of E2 into nondegenerate cell-like
subsets (i.e., nonseparating subcontinua of E2) [AnJ but showed that the
decomposition elements could not be required to be, in addition, locally
connected [An2]. (Surprisingly, such a decomposition can consist of
mutually homeomorphic elements [L-W]). In 1955, E. Dyer established
that the elements of such a decomposition cannot be decomposable [DyJ
and shortly thereafter, extended the result to other dimensions by showing
that there does not exist a nontrivial continuous decomposition of En into
points and 1-dimensional decomposable cell-like subsets [Dy2]. Similar
analysis of decompositions with elements having dimension > 1 awaited
S. Jones' fundamental paper [Jo2] that provided an adequate replacement
for the role previously played by O-regularity, leading to the result that
there does not exist a nontrivial continuous decomposition of En into
points and /c-cells for any k. The last result is extended to

MAIN THEOREM. If r + s >n, then the only continuous decomposition
of En into points, r-cells, and s-cells is the trivial decomposition into points.

223



224 JOHN J. WALSH AND DAVID C. WILSON

A motivating factor for further pursuit of nonexistence results is that,
in spite of extensive development of techniques for constructing continu-
ous decompositions of En ([WiJ, [Wi2], [WaJ, [Wa2]) and a strong
approximation result in [Wa3], it remains a definite possibility that

Conjecture A. There does not exist a nontrivial continuous decomposi-
tion of En into absolute retracts.

The conjecture is evidently true for n = 1, is a consequence of
previously mentioned results for n = 2, and was recently established for
n — 3 in [W-W]. The techniques developed in [Wa3] produce continuous
decompositions of En that preserve the global structure but not local
structure of elements of the decomposition, in fact, they are so "1-dimen-
sional" that Dyer's previously mentioned result [Dy2] precludes the ele-
ments being decomposable. However, it is plausible that these techniques
can be refined but the strategy that appears most promising, if successful,
would do no better than

Conjecture B. For each integer k with 2k + 5 < n, there is a nontrivial
continuous decomposition of En consisting of cell-like sets that are
homotopically (or, at least, homologically) locally connected through
dimension k.

Appropriate formulations of these conjectures for upper semicontinu-
ous decompositions of En are settled by an example constructed by J. H.
Roberts in 1936 [Ro] of an upper semicontinuous decomposition of E2

each of whose elements is the homeomorphic copy of either a 1-cell or a
letter "H". The decomposition can be adjusted and made to consist of
1-cells and 2-cells by carefully "blowing up" each letter " # " to a 2-cell.
While there is no upper semicontinuous decomposition of En into 1-cells,
[Ro; n = 2] and [Jo^ n >: 3], a related unsettled problem is whether or not
there is an upper semicontinuous decomposition of some euclidean space
into fc-cells for some k>2.

2. Preliminaries. A decomposition H of a space X is upper semicon-
tinuous provided the elements of H are pairwise disjoint nonempty com-
pact subsets and, for each open subset U C X, the set U{AGff:/iC U)
is open. The decomposition H is continuous provided, in addition, for each
open subset U C X, the set U {h G H: h Π U Φ 0} is open.

A map /: X-* Y is proper provided f~\C) is compact for each
compact subset C C 7 . Without further mention, we shall freely move
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6etween the equivalent settings of proper maps and upper semicontinuous
decompositions and of proper open mappings and continuous decomposi-
tions.

The cohomological dimension with respect to a group G of a space X
is denoted D(X\ G); recall that D( X\ G) equals the smallest integer k > 0
such that the inclusion induced homomorphism /'*: Hk(X; G) -> Hk(A; G)
is a surjection for each closed subset A C X. (Except in an appendix, the
cohomology used is Cech theory.)

Two well documented facts are that D(A; G) <D(X; G) for each
A C Xand that D(X; Z) = dim X whenever the covering dimension dim X
is finite.

A compact space X is said to be G-acyclic provided it is connected
and Hg(X; G) = 0 for q > 1. A proper map /: X -> Y is G-acyclic pro-
vided each point inverse f~\y) is G-acyclic.

3. Theorems of Jones and Dyer. The subsequent computations of
cohomological dimension that comprise the proof of the Main Theorem
are done by combining a result of S. Jones that detects regular conver-
gence in continuous collections of manifolds with a type of "Kϋnneth
formula" due to E. Dyer that detects cohomological dimension.

THEOREM 3.1 ([Jo2; Theorem 3.6].) Let f be a proper open mapping
from a complete metric space X onto a metric space Y such that each f'\y)
is a compact orientable k-manifold. Then there is a dense Gδ subset S C Y
such that f is k-regular at each interior point of f~\s) for each s E S.

The statement that follows is a variation of that in [Dy3] but the same
proof applies.

THEOREM 3.2 ([Dy3, Theorem 11]). Let f be a mapping from a compact
metric space X onto a metric space Y that is k-regular {over Z) at a point
x E f~\y) for somey E Y; furthermore, assume that D(f~\z)\ Z) < k for
each z E 7, that D(W; Z) = m for each neighborhood Wofy, and that the
rational cohomological dimension D{f~\y)Π U; Q) = k for each closed
neighborhood U of x. Then D(X,Z)>m + k.

4. Preliminary lemmas and computations. The lemmas are standard
results; proofs are included for completeness.

LEMMA 4.1. ///: En -> Y is a proper G-acyclic mapping, then D(V; G)
= n for each open subset V C Y.
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Proof. On the one hand, the Vietoris-Begle Mapping Theorem [Sp; p.
344] readily yields that D(A; G) < D{f'\A)\ G) and, hence, D(A; G) < n
for each subset A C Y.

On the other hand, specifying a point j G F , let P Cf~ι(V) be a
compact polyhedral neighborhood of f~\y)\ since Hn~ι(P; G) is finitely
generated andf~\y) is G-acyclic, there is a neighborhood V of y with
f-\V) CP such that

Im{ΐ*: Hn~\P\ G) -> / / " " ' ( / " ' ( P ) ; </)} = {0}

and hence,

Im{/*: H»-\f-\V)\ G) -> Hn'\f-\\r)\ G)} = {0}.

For a compact neighborhood N C.V ofy, Hn~\f'\FrN)\ G) Φ 0 as the
set f'\FrN) separates En. We conclude that /*: Hn~\f~\V)\ G) ->
Hn~\f~\FrN)\ G) is not onto and, translating via the Vietoris-Begle
Mapping Theorem, that /*: /f n~\V\ G) -> Hn~\FrN; G) is not onto and,
consequently, D(V; G) > «.

LEMMA 4.2. Lei f be α proper mapping from a metric space X onto a

metric space Y; for each positive integer k, the set S(k) = {y: dim f~\y)

< A:} is a G8 subset of Y.

Proof. Let n be a positive integer. For each j ; G S(k) specify a finite
cover %^ of f~\y) such that each £/ E ̂  is an open subset of X with
diamί7< l//i and every k + 2 distinct elements of Gllk have empty
intersection. Set Vn = {z: f~\z) C U ^ for some j> G 5(A:)}; evidently,

While the properness of / assures that each Vn is an open subset, the
cover definition of dimension reveals that dim/~1(z) < k for each z E
(Ί Vn\ consequently, S(k) = Π Vn.

PROPOSITION 4.3. If f is an open mapping from a compact metric space
X onto a metric space Y and f~\y) is a k-cell for each y E Y, then
D{X\T)>k + D(Y;Z).

Proof. Set m — D{ Y\ Z) and assume that Y has been replaced by a
closed subset (if necessary) so that D( W\ Z) = m for each nonempty open
subset W C Y (see Appendix I). An application of S. Jones' result
recorded in Theorem 3.1 produces a point y E Fsuch that/is /:-regular at
each interior point of f"\y) and an application of E. Dyer's result
recorded in Theorem 3.2 yields that D(X; Z) > k + D(Y; Z).
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COROLLARY 4.4. ///: En -» Y is a proper open Z-acyclic mapping, k is

an integer > 1, and K C Y is a compact subset withf~\y) a k-cellfor each

y £K,thenD(K;Z)<n-k.

Proof. The inequality D{K\ Z) >n — k together with Proposition 4.3

yield that dim f~\K) - D{f~\K)\ Z) > n and, consequently,

Intf~ι(K) φ 0 . In turn, the openness of/ forces iniKΦ 0 and, by

Lemma 4.1, D(K; Z) — n. A second application of Proposition 4.3 pro-

duces the impossibility D(f'\K)\ Z)>k + n>n+\.

5. Proof of main theorem. In establishing nonexistence results, it is

preferable not to assume that the decomposition spaces are finite dimen-

sional, a fact that is not known for upper semicontinuous or continuous

decompositions of finite dimensional spaces into points and 1-cells. Since

the computations that form the heart of the proof are cohomological, it is

reasonable to expect that the Vietoris Begle Mapping Theorem assuring

that the decomposition spaces have finite cohomological dimension is

sufficient. While this is the case, one point in the proof requires a "general

position" result recorded in Appendix II that can be avoided by assuming

the decomposition space is finite dimensional.

Let π: En -* En/H denote the quotient mapping induced by a con-

tinuous decompositin H consisting of points, r-cells, and s-cells. For

convenience, assume that π~ιπ(x) Φ point for each x G En (otherwise,

apply the argument that follows to the restriction of π to the open subset

{x: π~ιπ(x) φ point} of En).

Specify that s < r, S = {y G En/H\ m~\y) is an s-cell}, and that

R — {y G En/H: π~ι(y) is an r-cell). Using Lemma 4.2, S is a Gδ subset

of En/H and, hence, R is an Fσ subset of En/H. Writing R = U^Λ,.

where each Rf is compact, Corollary 4.4 produces the inequality D(Ri; Z)

< n — r — 1 and, since the Sum Theorem is valid for cohomological

dimension, D(R; Z) < n — r — 1. Recorded in a corollary in Appendix II

is the "general position" result that there is a compact subset K C

(En/H) - R with D(K; Ίj)>n-D(R\Z)-\>r. Since K C S, another

application of Corollary 4.4 is that D(K; Z) < n — s — 1. These last two

inequalities combine to force r + s < n — 1.

6. Decompositions into (n — l)-dimensional ANR's. Among the

examples mentioned in the Introduction was the decomposition of En

consisting of the origin and boundary spheres of balls centered at the
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origin. The next result records that the non-vanishing of the (n — 1)-

dimensional cohomology of the boundary spheres is an attribute pos-

sessed by most elements of a continuous decomposition of an open subset

of E" into (n — l)-dimensional absolute neighborhood retracts.

THEOREM 6.1. If H is a continuous decomposition of an open subset of

En into absolute neighborhood retracts with dim h = n — 1 for each h G H,

then there is a dense G8 subset H' C H such that Hn~\h'; Z) φ 0 for each

W G H'.

Proof. According to [Jo2; Corollary 2.5], there is a dense Gδ subset

Hf C H such that H is 0-regular at each element of H'. We shall show

that, for each component C of each hf G H' with dimC = n — 1,

Hn-\C;Z)Φ0.

Since dimC = n — 1, there is a point x G C and a connected open

neighborhood W oί x such that JV\C is not connected for each neighbor-

hood N of x contained in W. Since the decomposition H is 0-regular at h\

there is an open neighborhood V of x contained in W such that h Π V is

contained in a component of h Π W whenever h G H and h Π V Φ 0.

Since the decomposition // is continuous and is 0-regular at h\ there

is an open connected subset U of the open set U {h G H: h Π V φ 0}

such that hf Π U' = C and h Π U is a component of /z whenever h Π U ¥=

0 . The conclusion / / " " ^ C ; Z) 7̂  0 follows from Alexander Duality once

we have shown that U\C (and, hence, En\C) is not connected. Choose a

separation V\C = Vλ U V2 so that K, and V2 are contained in different

components of W\C. Since no element of H meets both Vλ and F 2, as i/

is 0-regular at h\ the open sets Ut= U {h Π U: h G H and A n Vtφ 0 } ,

/ = 1,2, form a separation of £/\C.

Appendix I. The next result is a consequence of the Sum Theorem

that is valid for cohomological dimension; specifically, if β is either a

countable or a locally finite collection of closed subsets of X and D(C; G)

< n for each C Gβ, then D( U {C G β); G < w (see [Ku]).

PROPOSITION. // A" is a metric space and D(X; G) > n, then Xcontains

a closed subset A such that D(U; G) > n for each nonempty relatively open

subset U C A.

Proof. Consider the collection Ύ of all open subsets of V C X with

D(V; G) < n — 1. Using paracompactness, there is a locally finite collec-

tion β consisting of closed subsets of X with β refining Ύ and with
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U { C G β } = U { F E Ύ}. In particular, D(C; G) < n - 1 for each C e
6 and, therefore D( U {F E Ύ}; G) < Λ - 1. Set A = JT - U {F G Ύ}.
Since both U { F G Ύ ) and each relatively open subset UCA are Fσ

subsets of X, the inequality £>(£/; G) <n — 1 together with the Sum
Theorem would lead to the impossibility ( U { K 6 T } ) U ί / G T .

Appendix II. Failing to know that the decomposition space associ-
ated with a cell-like decomposition of En is finite dimensional necessitates
the appendix. For, in the proof of the Main Theorem, if En/H is finite
dimensional, then the compact subset K specified can be obtained by the
following analysis.

Suppose that X is a finite dimensional space and R C X is a subset
with dim R < k. Using [Na; p. 32], specify a Gδ subset R' C X with
R C /?' and dim i?' < A:. The computation [HW; p. 28] states that dim X
< dim R' + dim(X - i?') + 1 and, hence, dim(* - R') > dim X - k -
1. Since X — R' is an Fσ subset of X, Jf — R' contains a closed (compact
when X is locally compact) subset K of X with dim K >: dim X — k — 1.

Apparently, neither of the results for covering dimension that guide
the preceding argument are known for cohomological dimension. In the
specialized setting of singular homology manifolds, duality arguments
shall provide results that suffice for our purposes.

The Vietoris-Begle Mapping Theorem assures that the decomposition
space Mn/H associated with a cell-like decomposition H of a G-orien table
^-manifold is a G-orientable homology ^-manifold (G is any abelian
group). Since, in addition, Mn/H is homotopically locally connected in
every dimension (see [La]), each open subset is a homology w-manifold
with respect to singular homology. In particular, for a relatively closed
subset A of an open subset X C Mn/H, there is the duality isomorphism

where H* is Alexander cohomology with compact supports (see [Sp., p.
342]). For computational purposes there is the equality

H*{A\G)^Hq{A+\G) ίoτq>\

where A is locally compact and A + is the one point compactification (see
[Sp., p. 322 and p. 334]). Furthermore, the homotopical local con-
nectedness of Mn/H permits the identification for a compact pair (A9 B)

Hq(A, B; G) = Inv Um{Hq(Ua9 Va; G)}



230 JOHN J. WALSH AND DAVID C. WILSON

where (Ua9Va) ranges over pairs of open neighborhoods of (A, B). The
authors thank R. J. Daverman for his timely comments that aided the
preparation of the appendix.

THEOREM. Let H be an upper semicontinuous cell-like decomposition of
a G-orientable n-manifold Mn (dM = 0) and let Rv i?2> be a sequence
of closed subsets of Mn/H with D{Rt\ G)<k for each i. Then, for each
z E Hq(U9 V\ G) where V C Uare open subsets of Mn/H and q < n — k —
1, there is a compact pair (A, B) in (Mn/H)\ U Ri such that z

This supplies the essential ingredient for an analysis done subse-
quently that establishes the sought after.

COROLLARY. Let H be an upper semicontinuous cell-like decomposition
of an n-manifold Mn (3M = 0 ) and let Rl9 R29... be a sequence of closed
subsets of Mn/H with D(Ri; Z) < k for each i. Then there is a compact
subset K C (Mn/H)\ U Rt such that D{K\ Z) > n - k - 1.

Proof of Theorem. The first step is to establish that, for each Ri and
each pair of open subsets (£/, V)9 the inclusion induced homomorphisms
Hq(U\Rl9 V\Ri'9 G) -> Hq{U, V\ G) are isomorphisms for q < n - k - 2
and surjective for q — n — k — 1. For a locally compact subset A Ci? (,
the inequality D(A; G) < kmd the Sum Theorem assure that D(A+ G)
< k. Therefore, H\A+ G) = 0 for q > /c + 1 and, consequently,
/^(Λ; G) = 0 for g > k + 1. In turn, ϊoτ_X equal to either U or F,
duality states that Hq(X9 X\Rf, G) = Hn'\X Π Rt; G) and, thus,
Hq(X, X\Rjl G) — 0 ioτ q<n — k — 1. Using the exact sequences for
the pairs (U,U — R() and (F, K— i?,), we conclude that the inclusion
induced homomorphisms H^U^,; G) -» Hq(U; G) and i/^(F\i?z; G)
-> ^ ( F ; G) are isomoφhisms for q<n — k — 2 and surjective for 9 = H
- A: - 1. Finally, the inclusion (U\Ri9 V\R^ =» (ί/, V) induces homo-
morphisms between the exact sequences of the pairs and the "Five
Lemma" yields that Hq(U\Ri9 V\Rt; G) -» Hg(U9 V; G) is an isomor-
phism for q < n — k — 2 and surjective for q — n — k — 1.

Setting (Uθ9 Vo) = (t/, F), z0 = z, and i?0 = 0, the proof is com-
pleted by recursively constructing a sequence of pairs of open sets {Ui9Vt)
and elements zi E Hq(Ui9 V{9 G) satisfying:

(a) for / > 1, Vi is compact, ί̂  C U^λ9 and ^ C Vt_x\
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(b) ΰi Π (Ro U U ^ ) = 0 ; and
(c) h-x = U(*i) where /*: Hq(Ui9 Vt\ G) -> ίtyt/,-,, K,.,; (?) is the

inclusion induced homomorphism. Evidently, (A9 B) = (ΠUl9 Π FJ )
satisfies the conclusion of the Theorem.

Proof of Corollary. The inequality D(Rt; Z) < k implies that
Hq(A, B; Z) = 0 for each closed pair (A, B) in Rt and each integer
q > k + 1. An appeal to a Universal Coefficient Theorem [Sp, p. 336]
reveals that Hq(A, B; Z/2Z) = 0 for each closed pair (A9 B) in R. and
each integer q >: k + 1 and, consequently, we conclude that £>(/?,; Z/2Z)
< /: for each /.

For each q < n — 1, there is an open pair (U9 V) in Mn/H with
//^(ί/, V; Z/2Z) ^ 0. Otherwise, since Hq(U, V; Z/2Z) and
Hq{U,V\Ίj/ΎL) are isomorphic as (Z/2Z)-vector spaces, we could con-
clude that H\A, B; Z/2Z) = 0 for all closed pairs (A9 B) in Mn/H and,
consequently, D(Mn/H; Z/2Z) < q < n - 1. This contradicts that
D{M"/H\ Z/2Z) = n (see Lemma 4.1).

Set q — n — k — 1 and specify an open pair (J7, V) in Mn/H with
Hq(U, V\ Z/2Z) 7̂  0. The Theorem produces a compact pair (A9 B) in
(M"/H)\ U i?z with ^ ( ^ , 5; Z/2Z) φ 0. Taking limits with respect to
the system of open pairs (ί/α, Va) containing (A9 B), there is an embedding

Hq(A,B;Z/2L)

ί7(t4, Va; Z/2Z),Z/2Z),Z/2Z)}

induced by the canonical embeddings of vector spaces into their second
duals. This inverse limit is categorically isomorphic to

Hom(DirLim{Hom(7/^(i7α, Va\ Z/2Z),Z/2Z)},Z/2Z),

The isomorphism from the Universal Coefficient Theorem [Sp, p. 243]

Hom(#,(£/β, Va; Z/2Z), Z/2Z) ^ H'(Ua, Va; Z/2Z)

reveals that the last group is

Hom(Hq{A,B\ Z/2Z), Z/2Z).

Since the latter contains an embedded copy of Hq(A, B; Z/2Z), we
conclude that H\A, B\ Z/2Z) φ 0. A final appeal to a Universal Coeffi-
cient Theorem [Sp, p. 336] shows that either Hq{A9 B\ T)/φ 0 or
Hq+\A, B;Z)¥=0 a n d , s e t t i n g K = A , w e c o n c l u d e t h a t D(K; Z)>n-

k-\.
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