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DIVISIBILITY OF ARITHMETIC FUNCTIONS

DAVID REARICK

Any two nonzero arithmetic functions have a greatest common
divisor relative to the Dirichlet product, but the known proofs of this fact
are nonconstructive. In a restricted setting, this paper develops a method
for obtaining specific formulas for the greatest common divisor. It is
conjectured that formulas of this type hold more generally. The method
is based on properties of a certain derivative-like operator on the
Dirichlet algebra of arithmetic functions. The resulting "differential
calculus" is used to construct polynomial equations satisfied by the
greatest common divisor of two arithmetic functions. Then the Euclidean
algorithm is applied to these polynomials.

1. Units in the Dirichlet algebra. As is well known [1, 2], if / and g
are arithmetic functions and we define fg(n) = Σφ f(d)g(n/d) and
( / + S)(n) — f(n) + g(n)> the resulting system forms an integral domain
D called the Dirichlet algebra. The multiplicative identity δ is defined by
δ(l) = 1, δ(n) = 0 if n > I. Every nonzero function / has a norm Nf,
defined to be the smallest n such that/(«) φ 0; it follows that N(fg) =
NfNg. There are infinitely many units in D, namely the functions of norm
1. The set of nonunits forms an ideal which is not principal, so D is not a
principal ideal domain or a Euclidean domain. However, D has the unique
prime factorization property, as was first shown by Cashwell and Everett
[1], and it follows that any two arithmetic functions, not both zero, have a
greatest common divisor (GCD), unique to within multiplication by a
unit.

To simplify the treatment of units in this paper, we identify a
standard form such that each nonzero associate class of arithmetic func-
tions contains exactly one in standard form. Namely, if Nf= a, we say
that/is in standard form if f(na) = δ(n) for all n.

LEMMA 1. Let f be any nonzero arithmetic function (i.e., not identically

zero). There is a unique unit u such that uf is in standard form.

Proof. Let Nf— a. The condition Σφ f l u(d)f(na/d) = 8(n) gives a
recursive formula for w, starting with u(\) — \/f{a), and u(n) is then
determined uniquely in terms of values u(k),k<n.
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We shall denote by L the GCD, in standard form, of two nonzero
arithmetic functions h0 and hx. Thus L is that unique common divisor of
h0 and hλ which is in standard form and has maximum norm.

2. A derivative-like operator. Throughout the rest of the paper, let
p denote a fixed prime number. Let r be the fixed arithmetic function
defined by

1 iίn—p,

Consider the mapping/ ->/' of D into D defined by f\n) — f{np) for all
n.

It follows from the definition of norm that

(1) pNf">Nf9

with equality holding if and only iίp \ Nf.
Clearly ( / + g)' = /' + g' for all/, g e D. We also verify readily that

(2) (fg)'=f'g+fg'-rf'g'.

Since the product rule (2) is suggestive of that for a derivation, we shall
refer to/ ' as the derivative of/. It follows from (2) that

(3) 0/)'=/,
so, in this kind of calculus, integration is equivalent to multiplication by r.
For use later in this paper, several further principles of this calculus must
be developed.

Denoting the fcth derivative of / by f(k\ we have the following
Leibniz-like formula for higher derivatives of a product:

(4) (fg)(k) = Σ fU)Sik~J) ~ r Σ fWgW\

This is proved by induction, making use of (3). Also by induction we
establish a formula for the first derivative of a kίh power,

r(fk)'=fk-(f-rnk,
and, applying the binomial theorem,

(5) (/*)' = '/ 'Σ I

7 = 0

Now suppose /' ^ 0 (0 being the zero element of D). From (5) we find
that if we start with a power/*, differentiate it and then divide by rf\ and
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repeat this process successively, a total of k times, the result is δ. This
leads to the following principle.

LEMMA 2. Let P(f) be a polynomial in /, of positive degree k, each
coefficient being an arithmetic function with zero derivative. Assume P(f)
= 0. Thenf = 0.

Proof. Suppose/' φ 0. Apply k successive operations, of the type just
described, to both sides of the equation P(f) — 0. On the right side we
obtain 0, and on the left side the leading coefficient of P, which is not
zero.

3. Functions of prime-power norm. From now on we shall restrict
our attention to functions whose norms are powers of /?, the prime
number fixed earlier. If Nf — pa, then Nf = pa~ι; and if /is in standard
form then so is /'. Note that such a function / is in standard form if and
only if f{a) — δ. We also have the following principle, which is essential in
the remainder of the paper, and which breaks down for functions whose
norms are other than powers of the same prime.

LEMMA 3. Let h — fg, where Nf = pa and Ng = pb. If two of these three
functions are in standard form, then the third is also in standard form.

Proof. First assume/and g are in standard form. By (4),

a + b a + b

(6) h{a*b) = 2 fU)g(a+b~J) - r 2 / ^ y ^ ^ Ά
y = 0 y = l

In the first sum, the summand is zero if j < a or j > a, so the only
contributing term is f(a)g(b) = δ. In the second sum, the summand is
always zero. Thus h{a+b) = δ, so h is in standard form.

Now suppose g and h are in standard form. The left side of (6) is δ,
and we may rewrite (6) in the form

7 = 1

Suppose/^ Φ δ; say N(δ - /<*>) = /. By (1), Nfu+a) > t/pj if j > 1. By
(1) and (3) the norm of g(b~j) - rg{bJrλ~j) is greater thanpJ iϊj > 1, since
PI Ng(b~j). Therefore each term in the sum in (7) has norm greater than
(t/pJ) - pj — t, which contradicts our assumption that the norm of this
sum is t. Thus/ ( α ) = δ, so/is in standard form.
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By repeated application of Lemma 3 it follows that, if h is in standard
form and is a product of several functions, then h is also the product of
the corresponding standard forms of these functions. In this context, the
theorem of Cashwell and Everett can be stated in the following unit-free
form:

If Nh is a power of/?, and h is in standard form, then h is a product of
prime factors each in standard form, uniquely except for the order of
arranging the factors.

LEMMA 4. Suppose Nf = p, Ng = pb, and f is in standard form. Then

k=0

Proof. With the aid of (4), and using the fact that / ' = δ, the sum can
be rewritten as

Σ {(g(k-l) ~ rgM){r-f)k - (g<*> - ι*<*+I>)(ι - / ) * + I ) ,
k = 0

which telescopes to zero. (In the first term, we understand g(~l) = rg.)

THEOREM 1. Let h be in standard form, Nh = pc. Consider the following
polynomial over D:

Hf)= Σ (Λw-rA<*+1>)(r-/)*.
k = 0

The roots of P lying in D are exactly the divisors ofh of norm p, in standard
form.

Proof. \ίh— fg, with/in standard form and of norm/?, then Lemma
4 shows that P(f) = 0. Conversely, suppose P(f) = 0. Each coefficient
h{k) — rΛ(/c+1) has zero derivative by (3), so r — f has zero derivative by
Lemma 2, so/7 = r' = δ. The constant term, when P is written in powers
of /, is P(0) = Σc

k=o(h{k) ~ rh{k+V)rk, which telescopes to h{0) = h, so
f\h. Thus Nf = pa for some a. But f(p) =/ '( l) = δ(l) = 1, which shows
that a — 1 and/is in standard form.

Note that P(f) is of degree c in / and is monic, since the coefficient
of/(c) is (— l)*δ, a unit. For later use we write out the polynomials /*(/),
in powers of / rather than r — /, for the cases c — 2, c — 3 and c = 4,
respectively:

(8) . / 2 - ( * ' +
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(9) -p + {h" + 2r)f2 - (A' + rh" + r2)f+ A,

(10) f4 ~ (A'" + 3r)/ 3 + (A" + 2rW" + 3 r 2 ) / 2

- (Λ' + rA" + r2Λ'" + r 3 ) / + A .

From (8) we notice

THEOREM 2. 4̂ function A, of norm p2 and in standard form, is a square

if and only ifh satisfies the differential equation

(Λ' + r) 2 -4A = 0;

and h is a prime if and only if (A' + r)2 — 4 A is not a square.

To facilitate the further discussion of polynomials with coefficients in

Z), it will be convenient to regard them as polynomials over K, the field of

quotients of D. This simplifies the proofs of some of the following

theorems, and justifies the use of long division of polynomials in §§5

through 7.

THEOREM 3. Let h be in standard form, Nh — pc. Consider the following

polynomial over D:

β(/)= Σ (h^-rh^)Γk{rf-h)k/h.
k=0

The roots of Q lying in D are exactly the divisors of h of norm pc~\ in

standard form.

Proof. By construction Q(f) = P(h/f)fc/h, where P is the poly-

nomial of Theorem 1. If A = /g, with/in standard form and of norm/?^1,

then g = h/f is in standard form and of norm p, and P(g) — 0 by

Theorem 1, so Q(f) = 0.

Conversely, suppose Q(f) = 0. Then P(h/f) = 0, where h/f EL K.

Since P is monic, h/f&D, so f\h. By Theorem 1, N(h/f) = p9 so

Nf — pc~ι. Also by Theorem 1, A//is in standard form, so/is in standard

form.

When c = 3 or c = 4, <2(/) is respectively,

(11) - / 3 + {h' + h" + r 2 ) / 2 - Λ(Λ" + 2 r ) / + A2,

(12) / 4 - (A' + rh" + r2h"r + r 3 ) / 3 + h(h" + 2rh"r + 3r 2 )/

-A2(A'" + 3r)/+A 3 .
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Let Ao and hx be two arithmetic functions, each assumed to be in

standard form and having norm a power of/?. By a differential polynomial

(DP) in Ao and A, we mean a polynomial in r, Ao, hx and their derivatives,

with constant coefficients. By a differential rational form (DRF) in Ao and

hx we mean an arithmetic function expressed as a quotient of two DP's in

Ao and hx. The main purpose of this paper is to show that, at least if

neither NhQ nor Nhx exceeds/?4, the GCD L = (Ao, hx) is always expressi-

ble as a DRF in Ao and hx (but in general is not expressible as a DP). The

first nontrivial case to consider is

4. The case NhQ — Nhx = p2. Let Ao and hx be in standard form

and not equal. Then L is either δ or has norm/?. Assuming the latter case,

/ = L is a common root of the two polynomials in (8) formed taking

A — Ao and h — hx respectively. Forming the difference of these two

polynomials yields the equation

Δh'L - ΔA = 0,

where Δh = hx — Ao. Since ΔA T^ 0, we must have also ΔA' ^ 0, and in

fact ΔA'|ΔA. Therefore L = Δh/ΔW, expressed as a DRF in Ao and A^

Also, Δh/ΔW must be a root of each of the two polynomials P9 and the

equation (Δh')2P(Δh/Δh') = 0 can be written in the form (13) no matter

which one of h0 and hx is used in forming P.

Conversely, suppose h0 and hx satisfy (13). Then Δh' φ 0, and the

element Δh/Δhf of AT is a root of both polynomials P in (8). Since (8) is

monic, Δh/ΔW E A and by Theorem 1 Δh/ΔW is a common divisor of

h0 and A,, in standard form and of norm/?, so ΔA/ΔA' = L.

These results may be summarized as follows.

THEOREM 4. Let h0, hx be in standard form, not equal, each ofnorm p2.

Then h0 and hx have a nonunit common divisor if and only if they satisfy the

differential equation

(13) (ΔA)2 - (h'ohx - A0A; + rΔA)ΔA' = 0,

and if (13) holds, this common divisor, in standard form, is L = Δh/Δh''.

We ask whether the formula Δh/ΔW for L as a quotient of two DP's

could be written as a single DP. The answer is negative.

THEOREM 5. There is no DP in Ao and hx which is equal to L whenever

Ao and hλ are of norm p2, in standard form, and having NL = /?.
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Proof. Here (and later, when Nh0 = Nhx) it is convenient to introduce

a numerical parameter x by defining, for all«,

hx(n) = (l-x)h0(n) + xhι(n).

Then, for every x9 the function Ax is in standard form and has the same

norm as Ao and hλ\ also, (Ao, hx) — (Ao, Aj) = L whenever x Φ 0.

Suppose there exists a DP as described in the theorem. In this

expression replace hx by hx = ho + JCΔA, and h\ by h'o + xΔh\ For fixed

«, the value of this expression is a polynomial in x which is equal to L(n)

for each x ^ O . Therefore L is equal to the sum of those terms of the DP

not containing JC, i.e. not containing ΔA or ΔA'. Thus L — (Ao, Aj) is

represented by a formula independent of Al5 which is absurd.

5. The case Nh0 = /?2, iV/̂  = p3. We assume Ao t A1? so L must be

either δ or of norm p. In the latter case, / = L is a common root of the

quadratic polynomial (8) formed taking h = Λo, and the cubic polynomial

(9) formed taking h = hv Dividing the former into the latter yields a

linear remainder

((A'o)
2 - hoh\' ~ho + h\)f- (Λo*'o - AoΛ'/ - rA0 + A,)

of which L is also a root. Thus there is just one possible value for L, and it

is a DRF in Λo and Λj.

THEOREM 6. Let Ao, Aj fe in standard form, with Nh0 = /?2, JVAj = /?3,

Ao \ hx. Then L is either δ, of norm 1, ί?r

of norm p.

6. The case 7VA0 = Λ̂ A! = p3. Let Ao, Aj be in standard form and

not equal. If L is not δ, its norm must be p2 or p. We assume first the

former case and use the "hx method" introduced in §4. L is a root of (11)

with A replaced by Λx, for every x. We may equate to zero, in particular,

the x2-component of (11), which gives ΔAΔA"L — (ΔA)2 = 0, or L =

ΔA/ΔA".

We turn to the more difficult case NL — p. L is a common root of the

two polynomials (9) formed using Ao and hλ respectively. The difference of

these two polynomials is

(14) ΔA"/2 ~ (ΔA' + rΔA")/+ ΔA,
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and L is a root of this. If ΔA" = 0, we obtain immediately L = ΔA/ΔA'.
If we assume ΔA" φ 0, and divide the quadratic polynomial (14) into the
cubic polynomial (9) corresponding to Λo, the constant term of the linear
remainder is, apart from a nonzero factor δ/(ΔA")2,

(15) A0(ΔA")2 - Λ'0'ΔΛΔΛ" + ΔAΔΛ' - rΔAΔA".

We shall show that (15) is not zero. This will guarantee that the linear
remainder is not identically zero, and, since its coefficients are DP's and L
is a root of it, we shall obtain a DRF for L.

Suppose then that (15) is zero and ΔA" Φ 0. Divide (15) by L and
rewrite in the form

(ΔA")2A0/L = (A'JΔA" - ΔΛ' + rΔA")ΔA/L.

Since ho/L and ΔΛ/L are relatively prime, the former divides A'0'ΔA" —
ΔA' + rΔA". This last quantity is not zero but has zero second derivative,
which contradicts the fact that it is divisible by Ao/L, of norm/?2.

After specifically carrying out the long division outlined above, and
rewriting the resulting DRF in a form symmetric in Ao and hl9 we may
summarize these results as follows.

THEOREM 7. Let Ao, hx be in standard form, not equal, each ofnorm p3.
Then L is either δ, of norm 1, or Δh/Δh'\ of norm p2, or

(16) —^—ί —• , of norm p.
(ΔA') + ΔA"(A'0Λ7 - A'OΆ; - ΔA)

In case ΔA" = 0, (16) reduces to ΔA/ΔA', a DRF in the single
variable ΔA. Even if ΔA" φ 0, we see from (14) that L is "almost" a
function of ΔA, since knowledge of ΔA restricts L to be one of at most two
possible functions. However, (16) cannot in general be expressed in terms
of ΔA alone. To see this, suppose for example that qx and q2 are distinct
arithmetic functions, each of norm p and in standard form. Let s be an
arithmetic function of norm p + 1 which takes the value zero on all
multiples of p. Define

hλ = q\ + sqλq2.

Then Ao and hx are in standard form, of norm /?3, with ΔA = sqλq2 and
L — qx. Reversing the roles of qx and q2 gives another pair Ao, hx with the
same ΔA but different L, namely L = q2.
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7. The case Nh = p4. We have seen that if neither Nh0 nor Nhx

exceeds /?3, the value of L is always expressible as a DRF in Ao and hx.
The author conjectures that this is true for Nh0 and Nhx any powers of p.
A proof of this result for one or both norms as large as p4 will illustrate
the difficulties to be expected in the general case.

THEOREM 8. Let Ao, hx be in standard form, each having norm a power

of p not exceedingp4. Then L is always expressible as a DRF in h0 and hx.

In proving the theorem as stated, we may assume Nh0 — Nhx = p4.

For if each norm is less than p4 there is nothing to prove; and if say

Nho= p4, Nhx = pc (c < 3), and the theorem has been proved for L* =

(Ao, r4"~c7zj), then the result is true also for L = (Ao, Aj), because L is

equal either to L* or to L* divided by a power of r, since r is a prime in

D.

We may further assume Ao ^ hx and L ^ δ , so NL is either p3, p2 or
p. In the first case, by applying the "hx method" to (12), and setting the
x3-component equal to zero, we obtain L ~ ΔA/ΔA'".

For the case NL = /?, we form the difference of the two polynomials
(10) corresponding to h0 and hl9 obtaining

(17) -ΔΛ'"/3 + (ΔA" + 2rΔA'")/2 - (ΔAr + rϋh" + r2W')f+ ΔA,

of which L is a root. If ΔΛ" = 0, we get immediately L = Δh/Δh'. If
ΔA'" = 0 and ΔA" φ 0, (17) reduces to (14). Dividing the quadratic (14)
into the quartic polynomial (10) corresponding to Ao, we obtain a linear
remainder whose constant term, apart from a nonzero factor δ/(ΔA")3, is
of form A0(ΔA")3 — /ΔA, where / is a DP having zero third derivative. As
for (15), we are able to argue that this constant term is not zero. For if it
were zero, we would have that Ao/L divides /ΔA/L, and therefore ho/L
divides /. But since N(hQ/L) = p3, this contradicts the fact that / ' " = 0.
Therefore the above linear remainder is not zero, and, since L is its root,
we obtain a DRF for L.

If ΔA'" Φ0, divide the cubic (17) into the quartic polynomial (10)
corresponding to Ao. The quadratic remainder R has constant term, apart
from a nonzero factor,

(18) A0(ΔA'")2 - A'0"ΔAΔA'" + ΔAΔA" - rΔAΔA'".

Arguing as for (15) we see that (18) is not zero, so R is not identically
zero. If R is in fact a linear polynomial we are through, since its
coefficients are DP's and its root is L.
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Suppose R is of degree 2, with second root say /0; fQ lies in K, the field
of quotients of D. We may assume /0 is also a common root of the two
polynomials (10) corresponding to h0 and hλ, for otherwise division of R
into one of these polynomials will produce a linear polynomial with DP
coefficients having L as its root, and we are through. Since (10) is monic,
/0 lies in D, and by Theorem 1 /0 is a common divisor of h0 and hx, of
norm /? and in standard form. Thus /0 = L, so L is a double root of Λ.
Therefore the discriminant of R if zero, and we obtain a DRF for L.

We turn finally to the case NL — p2. Theorems 1 and 3 are no longer
applicable and we have to replace them by the somewhat less satisfactory

THEOREM 9. Let h be in standard form, of norm p4. There is a
sixth-degree polynomial

(19) τ(f) = / 6 + Af5 + Bf4 + C/3 + Bhf2 + Ah2f+ h\

where A, B, C are DP's in h, of norms p2, p4, p6 respectively, such that
every divisor f of h, of norm p2 and in standard form, is a root of T.
Furthermore, every root of T lying in D is a divisor of h, of norm p2.

(T, when written out fully, has 38 distinct terms, and its coefficients B
and C exhibit irregular patterns of formation, as contrasted with the
coefficients of the polynomials P and Q of Theorems 1 and 3. Also, in
contrast with P and Q, it is not known that every root of T lying in D is in
standard form.)

Proof, First suppose h — fg, with /, g in standard form and Nf = Ng
— p2. By repeated differentiation of h we obtain

h=fg9

(20) h'=f'g+fg'-rf'g>,

(21) h"=f + f'g' + g-rr-rg'f

(22) Λ ' " = / ' + g ' - r .

Between these four equations in/,/', g, g' we wish to eliminate/', gf and
g. We first solve (22) for/' and substitute in (20) and (21); then by adding
multiples of (20) and (21) to one another we obtain one polynomial
equation free of g'. This equation is of degree 3 in each of / and g. If we
multiply it through by/3 and replace fg by A, to eliminate g, we obtain the
expression (19) set equal to zero. Thus/is a root of Γ.

Conversely, suppose/is a root of T lying in D. If Nf < p2, the term/6

in (19) would be the unique term of smallest norm, so T(f) φ 0. Simi-
larly, we cannot have Nf > p2m, thus Nf = p2. Next we show that / divides
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A. By unique factorization, if f\ A there is a prime q E D which divides/to
a power higher than that to which it divides A; say qm\f, qm\h, qm~λ\h.
Every term of T(f) is then divisible by q3m~2 except for the last, so
T(f) ^ 0; thus/t A is impossible.

Now / = L is a root of Γ, with A replaced by Ax, for every x. The
coefficient of x3 in Γ(/) is (after cancelling a nonzero factor ΔA)

(23) V(f) = (ΔA'")2/3 ~ ΔA'"(ΔA' + rΔA" + r2ΔA'")/2

+ ΔA(ΔA" + 2rΔA'")/- (ΔA)2,

and L is a root of F. If ΔA'" = 0 we get L = ΔA/ΔA", so we assume
henceforth that ΔA'" ^ 0.

LEMMA 5. Lei / fee any root of V lying in D. Then f\ ΔA and f" = δ.

Proof. The first assertion follows as in the proof of Theorem 9. To
prove that/" = δ, we notice that, by analogy with the polynomial (11) of
Theorem 3, we can rewrite the equation V(f) — 0 in the form

2 (ΔΛ"03~*(ΔΛ(*> - rΔΛ^XrΔA" ' - ΔA//)" - 0.
k = 0

By Lemma 2 the derivative of rΔA'" — ΔA// is zero; that is, ΔAr// =
(ΔA//)'. If we now divide each term of (23) by/2, differentiate each term
and replace (ΔA//)r by ΔA'", and then factor ΔA'" from each term, we
obtain the equation

ΔA'"/' - ΔA" - rΔA'" + ΔA//= 0.

Again differentiating both sides, replacing (ΔA//)' by ΔA'" and factoring
out ΔA'", we obtain simply/" - δ = 0.

The proof of Theorem 8 is now completed as follows. Referring to the
paragraph preceding Lemma 5, the coefficient of x2 in T(f) is a quartic
polynomial in /, and the remainder when it is divided by the cubic
polynomial V has constant term (apart from a nonzero factor) exactly
equal to (18). The proof used earlier when NL — p serves also to show
that (18) is not zero in the present case. Let W denote this remainder,
having nonzero constant term. W is a linear or quadratic polynomial
having L as a root. If W is linear, we are through.

Suppose Wis of degree 2, with second root say/; fλ lies in the field
K. We may assume/ is also a common root of the two polynomials (19)
corresponding to Λo and hl9 and also a root of V9 for otherwise division of
W into one of these three polynomials will produce a linear polynomial
with DP coefficients having L as a root, and we are through. Since (19) is
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monic, fx lies in D, and by Theorem 9 fx is a common divisor of h0 and Al5

of norm/?2. Also, since/! is a root of Fwe have//' — δ by Lemma 5, so/ t

is in standard form. Thus fx = L, so L is a double root of ίΓ. Therefore

the discriminant of W is zero, and we obtain again a DRF for L.

8. The GCD of three functions. Suppose each of Λo, hx and h2 has

norm /?3. We may assume N(h09 hx) = iV(Λ0, A2) = Λ^(Λl5 Λ2) = p2 and

A^(Λ0, Λj, h2) = /?, for in any other case the three-fold GCD (Λo, Λj, A2)

reduces to one of the above two-fold GCD's. We write (h09 hl9 h2)
 =

((hθ9 hx)9 (hl9 h2)) and apply first Theorem 7, then Theorem 4. The result

is

THEOREM 10. Let h0, hx, h2 be in standard form, each of norm p3, with

N(h09 A,) = N(h09 h2) = N(hX9 h2) = p\ N(h09 A,, A2) - /

If instead we write (Ao, hl9 h2) — ((Ao, Aj), A2) and use first Theorem

7, then Theorem 6, we obtain a DRF which represents (h0, hx, h2)

whenever the two conditions N(h0, A,) = p2 and iV(A0, hl9 h2) — p are

satisfied.
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