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COMPARISON THEOREMS FOR SECOND-ORDER
OPERATOR-VALUED

LINEAR DIFFERENTIAL EQUATIONS

G. J. BUTLER AND L. H. ERBE

Let B be a Banach lattice with order continuous norm, t(B) the
algebra of bounded linear operators. Let B+ denote the positive cone
induced by the lattice structure of B, and £ + ( # ) the corresponding
positive cone in £(/?). We consider second-order operator-valued dif-
ferential equations of the form Ύ" + Q(x)Y = 0, where Q: [ α, + oo) ->
t(B) is continuous in the uniform topology and is such that /x°° Q{ΐ) dΐ
E £ + (B) for all x > a. Comparison theorems of Hille-Wintner type are
obtained.

1. Introduction. Consider the second-order linear differential equa-
tion

(1.1) Y" + Q(t)γ=0

where Q: [ α , + o o ) - * £ ( 5 ) i s a continuous operator-valued function and
t(B) represents the Banach algebra of bounded linear operators T:
B -* B, where B denotes a Banach space. By a solution Y of (1.1) we
understand a function Y: [α, oo) -> t(B) which is twice continuously
differentiable in the uniform operator topology and satisfying (1.1) for all
/ E [a, oo). We refer to the text of Hille [12] for a discussion of the
concepts of differentiation and integration of functions from [α, oo) to a
Banach algebra and to [15] for basic results concerning differential equa-
tions in Banach spaces. We shall be interested in comparing solutions of
(1.1) with solutions of a second equation

(1.2) Y" + Qx(t)Y=0

with Qx\ [a, oo) -* t(B) continuous. A solution Y= Y(t) of (1.1) (or
(1.2)) is said to be non-singular at a point t0 E [α, oo) if it has a bounded
inverse Y~ι(t0) E t(B). If Y(t) is non-singular for all t E[tθ9+ oo), some
t0 >: a, then Y — Y{t) is said to be a non-oscillatory solution of (1.1) on
[ί0, +oo). Otherwise, Y = Y(t) is said to be oscillatory on [a, oo). (Note
that the inverse Y"\t) of a non-oscillatory solution Y(t) of (1.1) is
continuously differentiable.)

Equations (1.1) and (1.2) have been the subject of numerous investiga-
tors ([4]-[ll], [19], and the references therein) for the case that B is a
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Hubert space in which case t(B) is a i?*-algebra. Comparison and
oscillation theorems have been obtained in many of the above references
which are generalizations of the known theorems in the classical scalar
case (e.g., the Sturm comparison theorem and the Hille-Wintner compari-
son theorem). In these results, the notion of comparison of operators in
&{B) is used which is induced by the inner product; that is, if Tl9 T2 E
£(B) then Γ, > T2 means ((Γ, - T2)x, JC>> 0 for all x in the Hubert
space B. In this paper we shall be interested in employing an alternate
notion of positivity in &(B) which is induced by a vector lattice structure
on B. This has the advantage in that the class of positive operators is not
only a positive cone but is also closed under multiplication, a fact which is
not true in the 2?*-algebra case.

A further advantage of the Banach lattice context is that it enables
one to obtain certain results for nonselfadjoint equations. Ahmad and
Lazer ([1], [2]) have extended the Sturm comparison theorem to non-
selfadjoint equations, and Ahmad and Travis [3] and Keener and Travis
[14] have obtained oscillation criteria for such systems. The emphasis of
the papers [1], [2] and [14] is on conjugate point and focal point proper-
ties.

Henceforth, B will denote a Banach lattice. We recall that a Banach
lattice Bis a. Banach space with a vector lattice structure such that | x \<\y \
implies ||JC|| < \\y\\, JC, y E 5, where | JC|= xy{-x) (see e.g. [17]). Let B+ be
defined by B+ = {x E B: x > 0}. A subset S C B is order bounded if
there exists z E B+ with | x |< z for all x E S. The Banach lattice B is said
to be order complete if for every non-empty majorized (with respect to the
ordering) subset A of 2?, sup A exists in B. Also, B is said to have order
continuous norm if each downward directed family A of B such that
inf A = 0 converges in norm to 0. A Banach lattice with order continuous
norm is automatically order complete ([17], Theorem II.5.10, p. 89).
Familiar examples of such Banach lattices are lp, tp9 1 </? < oo, c0, and
any reflexive Banach lattice. Let &+(B) denote the set of positive bounded
linear operators on B. That is, T E β+ (B) iff T(B+) C 5 + . An operator
T E t(B) is said to be regular if T = Tx - T2 for some Tl9 T2 E £+(£).
tr{B) denotes the vector space of regular operators on B. It can be shown
(cf. [17], p. 229) that if B is order complete, then T is regular iff T maps
order bounded sets onto order bounded sets iff | T\= Ty(-T) exists in the
lattice structure induced on t(B). Furthermore, if B is order complete,
then tr(B) is an order complete vector lattice ([17], p. 229). We refer to
[16] and [17] for a more complete discussion of Banach lattices and their
properties.
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The most familiar example of lattice structure is with B = R", B+ —

{x G R": xι > 0 , i = l ,2,. . . ,n}, £+(B) = {Γ: Γ i s a n n X n matrix (r/y.)

with t{J > 0; /,y = 1,2,... ,«}. Another example is J? = /2, 5+ = {x E /2:

JC, > 0, / = 1,2,...,}, where an important subset of fc+(B) is the set of

positive Hilbert-Schmidt operators. These are compact operators T for

which Teι e B+ , / = 1,2,..., and S ^ J I Γ e ^ 2 < oo, where {ei}%x is the

usual basis for I2.

2. In this section it is our object to present in a more general setting

some extensions of the classical Hille-Wintner comparison theorem for

second-order scalar ordinary differential equations. The Hille-Wintner

Theorem ([13], [20]) asserts that if p(x) = /x°° q(t) dt, pλ(x) = /x°° qx{t) dt

exist (real-valued) and satisfy \pι(x)\<p(x) for all x E [a, oo) then the

existence of a non-oscillatory solution of

(2.1) y"(χ) + q(χ)y = o

on [ a, + oo) implies the existence of a non-oscillatory solution of

(2.2) y"(x) + qλ(x)y = 0

on [ a, +00). We shall consider the equations

(1.1) Y" + Q(t)Y=0

and

(1.2) Y" + Qλ(t)Y=0

and prove several generalizations of this result in the Banach lattice case.

Etgen and Lewis [6] have extended the Hille-Wintner theorem in the

B*-algebra situation.

We begin with

THEOREM 2.1. Let B be a Banach lattice with order continuous norm.

Suppose the limits

P(t)= lim (TQ{s)ds, Px{t) = lim (TQx{s)ds

exist (in the uniform operator topology oft(B)) and

(i) p(ή, PM, p(t) - p,(0 e £+ (B), * e[α, + oo).

If there exists a non-oscillatory solution Y(t)of(l.l) such that

(ii) Z(t) = Y'(t)Y-\t)eZ+(B) forallt(Ξ[a,+oQ),

then (1.2) has a non-oscillatory solution on [α, + oo).
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Proof. Throughout, inequality signs will refer to the appropriate
positive cone.

The Riccati transformation Z(t) = Y\t)Y'\t) in (1.1) yields the
equation

(2.3) Z(t) = Z(T) + [TQ(s)ds+ [TZ2(s)ds, a<t<T<oo.

We assert that (2.3) implies that the set {ft

τZ\s) ds: a < T < oo} is an
upward directed set in tr(B) and is order bounded above by Z(t). To see
this, note first of all that the monotonicity of [jt

τ Z2{s) ds: a < T< oo}
follows from the hypothesis that Z(s) (and therefore Z2(s)) is > 0 for all
s > a. Denote ft

τ Z2(s) ds by φ(ί; Γ). Then we can write (2.3) as

(2.4) φ(ί; Γ) - Z(ί) - Z(T) - P(t) + P(T).

Then if a < Γ < T we have, by (2.4) φ(ί; Γ) < φ(ί; T) < Z(0 + P(τ), so

(2.5) Z(/) + P(τ) - φ(/; Γ) > 0, α < Γ < r.

For each T > T the left-hand side of (2.5) is in t\B), which is a normed
vector lattice and therefore has norm-closed positive cone £ + (B). Letting
T -» oo in (2.5) we obtain Z(ί) — φ(ί; Γ) > 0, which completes the proof
of our assertion. Since t\B) is order complete, it follows that φ(t) =
supΓψ(/; Γ) exists. Let J C 6 5 + . Then (2.3) implies

(2.6) Z(T)x = Z(t)x - [jTQ{s) ds^x - φ(ί; T)x.

Since J? has order continuous norm, φ(t; T)x -> φ(t)x in norm, so
φ(ί) is the strong operator limit of φ(/; Γ) as T -> oo. Thus the limit in
norm as Γ -> oo exists for the right-hand side of (2.6). We conclude that
the limit in norm of Z(T)x as T -> oo exists (in B+ by norm-closedness of
B+), call it C(JC). Thus

(2.7) C(JC) = Z(ί)jc - P(t)x ~ Φ(t)x.

It follows that C(x) in fact defines a positive linear operator o n 5 + and
extends uniquely to a linear operator on B (cf. [17], p. 58). Thus, (2.7)
holds for all x and we may write C(x) = Cx. Thus,

(2.8) Z ( 0 = C + P ( 0 + φ(f), C G e + (5), ί G [α, oo).
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We now define a sequence of operator-valued functions [Wn(t)} as
follows:

Let W0(t) = C, t > α, and inductively

(2.9), » ; + 1 ( 0 Ξ C + P t(/) + s-lim ίTWn

2(s) ds,

n = 0,1,2,..., f > * ,

where s-lim denotes the strong operator limit. To justify this, we make the
inductive assumption

JO < Wn(t) < Z(t) and Wn{t) is continuous in the

[ uniform operator topology of£(B),t>:a.

Clearly (2.10)0 is true. Assume (2.10)n is true. Then 0 < Wn(s) < Z(s)
implies 0 < W2(s) < Z2(s). This is a consequence of the cone £+(5)
being closed under multiplication. It does not, in general, hold in the
2?*-algebra case. Thus [ft

τ W2(s) ds} is monotone increasing in T and is
order bounded by Z(t) since ft

τ W2(s) ds < j t

τ Z2(s) ds <Z(t\ and hence
s-lim^nJt

TWn

2(s)ds exists. Thus Wn+X(t) is well defined by (2.9)π. It
follows from the hypothesis 0 < P^r) < P(t) that 0 < W^+1(0 ^ Z(0
We also have

(2.11) Wn+ι(t) - Wn+ι(s) = P,(ί) - P,(j) -fwn

2(τ) dτ,

so it follows that Wn+X{t) is continuous, hence (2.10)n+1 is true and thus
(2.10)n is verified for all n > 0.

Let ψB(ί; Γ) = /,Γ»ΓB

2(J)Λ and denote s-lim r^ψ n(ί; T) by ψB(ί).
Since for fixed t, {Wn(t)}^=ι is a monotone increasing sequence in t+{B),
bounded above by Z(t), it follows that s-lim„_x Wn(t) exists. Let

,, Wn(t). By (2.9)n we have

(2.12) W(t) = C + Px{t)

where \p(t) = s-limn_M 4>n(t). Note that W(t) is continuous since

(2.13) W(ί) - fF(ί) = P,(0 - P,(s) - s-hm /Vπ

2(τ) έ/τ

and 0 < W (τ) < Z(τ) implies

0 <|| fwn

2(s) dsϊ < f \\Z2(s)\\ds -» 0 as r - s -* 0
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by continuity of Z. For each T and each x E ί + , W2(τ)x -> W2(τ)x in
norm and W2(τ)x is continuous in r. Now it follows from Dini's
Theorem [21] that this convergence is uniform on any compact subinterval
[s, t]oΐ[a, +00). Thus

lim ( fw2{τ) dτ)x = I /V2(τ)
B-»OO j S

so that

s-lim fw2{r)dT= (tW2(τ)dτ.

We may therefore write (2.13) as

(2.14) W(t) - W{s) = />,(/) - Pλ{s) - fw2{τ) dr.

Dividing (2.14) by / — s (t ¥= s) and taking limits in the uniform operator
topology as s -> t, we have

(2.15) W(t) = - β , ( 0 - ^ 2 ( 0

Now define Ϋ(t) to be the solution of

(2.16) F ( ί ) = W(ί)fy), Ϋ(a)=I

(I = the identity operator in £(5)). Then 7 is a non-oscillatory solution
of (1.2) and this proves the Theorem.

We note that Theorem 2.1 does allow for two operator-valued equa-
tions to be compared as distinct from the comparison theorems of [6]
which compare an operator-valued equation with a scalar equation.

One would like to weaken hypothesis (i) in Theorem 2.1 to

(i)' p,(/)ee'(B), P(t), p(0-|Λ(0|eMβ), <e[e,+«),

and to dispense with hypothesis (ii) (which holds automatically in the
scalar case for a non-oscillatory solution Y(t) of (1.1) when P(t) > 0).

As far as (ii) is concerned, we may make the following remarks:
Assume P(t) E £ + (B), t e [α, 00). Define PQ(t) to be P(t) and Pn(t)

by Pn(t) — P{t) + s-limΓ_0O/r

ΓPn

2_1(5)ώ. Then the existence of a non-
oscillatory solution Y(t) of (1.1) satisfying (ii) is equivalent to

Pn(t) is defined for all t e [α, 00), Λ = 0,1,2,..., and
( m ) 5-lim Pw(0 = P{t) exists.

«-»00

The equivalence of (ii) and (iii) is established by essentially the same
arguments as were used in the proof of Theorem 2.1 and is an extension of
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a well-known result in the scalar case (see [18], Theorem 3.2, where the
scalar result is given, though expressed in a slightly different form). One
marked difference from the scalar case, however, is that there may be
nonoscillatory solutions Y(t) of (1.1) for which (ii) does not hold, as the
following example illustrates. Let B — R2 and take

β ( r ) = 2887^1 5 48,
Then

is a solution of (1.1), where

5tμ

-25/"
5?

μ V — 7Γ 1 + \ ^

It may be verified that

z(t) =:
1 μ 5v

26/ - 5 ( r - μ )

—5(v — μ)

v + 5μ

so Z(/) ί £ + (5) . In this case however, (1.1) does have a (different)
nonoscillatory solution Y(t) for which (ii) holds, namely

ta -
5ta 5tβ

where a = —
1

We do not know whether P{t) G t+{B), t £ [β,oo), and the existence of
a nonoscillatory solution of (1.1) together do imply that (ii) holds for
some nonoscillatory solution Y(t) (and therefore that (iii) holds).

In the case that B is finite dimensional, we can replace (i) by (i)'.

THEOREM 2.2. Let B = R" and suppose

P(t)= lim (TQ(s)ds, P,(ί) = lim (TQx{s)ds

exist such that (i)' holds. If there exists a non-oscillatory solution Y(t) of
(1.1) such that (ii) holds, then (1.2) has a non-oscillatory solution on [a, oo).

Proof. As in the proof of Theorem 2.1, we put Z(t) = Y\t)Y'\t) in
(1.1) and obtain

(2.3) Z(t) = Z(T) ds fTZ2(s) ds, a< t < T < oo,
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which leads to

(2.8) Z(t) = C + P(t) + φ(t)9 t G [a9 oo),

where

Let % be the set of continuous functions W\ [a,oo) -* £(Rn) such
that I W(t) |< Z(/) for all / E [β, oo).

Then % is a closed, convex subset of 911, the Frechet space of
continuous operator-valued functions on [ α, oo) with the compact-open
topology.

Now if W E %, then for each / E [a, oo), W{t) may be represented
by an n X H matrix, say W(t) = [(W(t))iJ]. Similarly we may represent
Z(t) by the n X n matrix [(Z(t))u]9 and we have

It follows that | W\t) |< Z2(/). Furthermore, we have ||ϊF2(0ll ^ I|Z2(OH,
where || || denotes the uniform operator norm on t(B). Since Z2(t) is
integrable on [ α, oo), it follows that W\t) is integrable on [ a, oo), and

(2.17) Γw2{s) ds < / " 0 0 Z 2 ( J ) ώ .

It follows from (2.9), (2.17) and (i)r that the map F oτι% defined by

(2.18) (FW)(t) = C + Px(t) + Γw2(s) ds

is a map from % into itself.

with ]imn

have

(2.19)

Wrι = WK. For any Γ > / > a9 we

~j W\s)ds

Γw2(s) ώ\\
||

Since

W2{s)ds Z2{s) ds\
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and

\\Γw2(s)ds\\<\\Γz2(s)dsl
II II' IIJτ

we may, for any given ε > 0, choose T — T(ε) so that

n= 1,2,...,

and

'T II J

By the uniform convergence of Wn to W ôn [a, T] we have

: | forall«>iV(ε),

say, and for all t E [α, Γ]. Thus (2.19) gives

\\{FWn){t) - (FW)(ή\\<ε for all n>N(ε), ί G[α,oo).

It follows that l i m ^ ^ FWn = jFfΓ, that is, F: ^ -> ̂  is continuous.
Now for s,t>α, we have

It follows that F(%) consists of equicontinuous, uniformly bounded
operator-valued functions. Thus F(%) is precompact.

By Tychonov's Theorem ([10], p. 405), F has a fixed point in %, that
is, there exists W(t) such that

(2.20) W{t) = C + P,(ί) + Γw\s) ds.

It follows that (1.2) has a non-oscillatory solution.
Our next result is of a somewhat different nature. Here we compare

the operator equation (1.2) in t(Rn) with an appropriate scalar equation

(2.21) /'(0 + ί(Φ(0 = 0.

THEOREM 2.3. Let Qx\ [α, oo) -> β(ΛΛ) &e continuous and let
be the usual matrix representation of Qλ(t). Assume
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exists for all i, j . Let q: [a, 00) -» R be continuous and suppose p(t) =

ίt° q{s) ds exists, with

(iii) p({nt) >{ϊι maz(Px(t))ij9 t e [ α , o o ) .

If (2.21) has a non-oscillatory solution on [a, 00), then so does (1.2).

Proof. Let j>(0 be a non-oscillatory solution of (2.21) and put u(t) —

y\t)y~x{t) to obtain the Riccati equation

At) = -q(t) ~ u\t).

Put v{t) - u{Jnt)/ Jn to obtain

(2.22) υ'(t) = -

Integrate (2.22) to obtain

(2.23) v(t) = v(T) + jTq(fiιs) ds + nfTv2{s) ds.

Letting T -> 00 in (2.23), it follows that l i m ^ ^ v(T) = 6, where -00 <

< 00. In fact, it is easy to show that 0 < 6 < 00, and we have

(2.24) v(t) = b+ -^p(Jnt) + n Γv2(s) ds.

Let %0 be the set of continuous functions W{t) = [{W^t))^) from [a, 00)

to t(Rn) such that \{W{t%jf|< t)(0, / e [Λ, 00), for each /, j .

Define the map .Fo: %0 to % by

(2.25) ((F0W)(t))lJ - (^(0)0 + Γ ( Σ
Jt \k=\

t G[fl,oo),/, 7 = l,...,/ι.

It follows from hypothesis (iii) and (2.24) that F o is well defined. %0 is

a closed, convex subset of 9H, the Frechet space of continuous operator-

valued functions on [α, 00) with the compact-open topology. Arguments

similar to those used in the proof of Theorem 2.2 show that FQ is

continuous on ̂  and that F0(%0) is a precompact subset of ^lί0. Hence

Tychonov's theorem yields the existence of a fixed point for Fθ9 that is,

there exists W{t) = [(JF(0X7] such that

(2.26) u y/
^ V A:=l

/ G [ α , o o ) ; /, j= 1 , . . . , Λ .
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By examining the matrix Riccati equation for (1.2), it is apparent that
(2.26) enables us to define a non-oscillatory solution of (1.2).

3. We now present two examples which illustrate the results ob-
tained.

EXAMPLE 3.1. Let fibea Banach lattice with order continuous norm
and let B' be its dual space. (B' is also a Banach lattice, under the dual
norm, which is order complete.) Let c E B+ and φ E B'+ . Let q{t) be a
real-valued positive, twice continuously differentiable function on [ α, + oo)
such that q\t) > 0 and q"{t) < 0 for all t E [a, + oo). Define Q: [a, oo)
-> t(B)by

l+q(t)φ(c)9

Then

Note that

It may be verified that Y" + Q(t)Y = 0 has a solution 7(0 defined by

Since

it follows that 7(ί) is a non-oscillatory solution and, furthermore, the
Riccati variable Z(t) = Y'(ί)Y'\t) is given by

XEB=
l+q(t)φ(c)'

so Z(t) e β + (5) on [a, oo). Therefore, if c, e B+ , c, < c, φ, 6
φ, < φ, and if qx(t) is a real-valued function such that

o < rr
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then the equation Y" + Qx(t)Y = 0 has a non-oscillatory solution by
Theorem 2.1, where Qx(t) is given by

Note that Qx{t) $£+{B) in general.

EXAMPLE 3.2. As an application of Theorem 2.2, consider the case
n - 2. Let

where a, b, c, d>0, t G[l, OO).

Invoking condition (iii) (see the remarks following Theorem 2.1), there is a
nonoscillatory solution Y{t) of (1.1) satisfying (ii) iff the sequence Pn(t)
converges as n -> oo, where

P^x(s)ds9 n = l , 2 , .

If

we obtain the relations

an+ι =

(2.27) n + 1 ^ π; π , " : '

Since a, b,c,d> 0, the sequences an, bn, cn, dn are increasing with n and
have finite limits a, β, γ, δ iff the system of equations

(2.28)

has a solution.

a = a + a2 + βy,
β = b + β(a + δ),
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After some manipulation of these equations, we find that solvability
of (2.28) is equivalent to the existence of a positive solution θ of the
equation

(2.29) Θ2{ 1 - 2(d + a) ~ θ2} = (d - of + Abe.

α, β, γ, δ are then given by

Λ d-a\ b c 1/ Ω , d-a

This, in turn, is easily seen to be equivalent to the condition

(2.30)
a < -T, if d — a and be = 0

d+ a + ]/(d- a)2 + 4bc < - , if <i 7̂  α or be ¥= 0.

Let fl, b9 c, d be any nonnegative constants satisfying (2.30) with
equality. Now let Qx{t) — [#///)] be chosen so that

y.00 y.00

lim / / ^,(5) <& < 0, km t I ql2(s) ds < b,

(2.31) Bmί/" ^ 2 1 ( j ) ώ < c ,

/.00

lim t I q22(
s) ds < d.

Then by Theorem 2.2, (1.2) has a non-oscillatory solution.
This example may be thoughout of as an extension to the 2 X 2

matrix case of Hille's non-oscillation criterion [13]

(2.32) Πmίήr 1 (0<l/4
ί-»oo

for the scalar equation

(2.2) y" + qx(t)y = 0.

In case b — c — d — 0, we have a = 1/4 and (2.31) reduces to (2.32).
Other examples can be readily found utilizing condition (iii).
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