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SPACES DETERMINED BY POINT-COUNTABLE
COVERS

G. GRUENHAGE, E. MICHAEL AND Y. TANAKA

Recall that a collection 9 of subsets of X is point-countable if every
x G X is in at most countably many ? G f . Such collections have been
studied from several points of view. First, in characterizing various kinds
of j-images of metric spaces, second, to construct conditions which imply
that compact spaces and some of their generalizations are metrizable,
and finally, in the context of meta-Lindelόf spaces. This paper will make
some contributions to all of these areas.

1. Introduction. A space1 X is determined by a cover £P, or 9
determines X,2 if U C X is open (closed) in X if and only if U Π P is
relatively open (relatively closed) in P for every P E <•?. (For example, X is
determined by <$ if <$ is locally finite or if {P°: P E <3>} covers X.) We will
explore this notion in the context of point-countable covers.

Within the class of λ -spaces, spaces determined by point-countable
covers turn out to be related to spaces having a point-countable Λ -net-
work. Recall that a cover ζP of X is a k-network for X if, whenever K C U
with K compact and U open in X9 then K C U φ C U for some finite
^ C ^ . Such collections have played a role in S0-spaces (i.e., regular
spaces with a countable λ -network [MJ) and K-spaces (i.e., regular spaces
with a σ-locally finite λ -network [0]).3

Diagram I below gives a convenient overview of some of our principal
results. The numbered conditions are defined as follows, where in (1.3)
and elsewhere in this paper we adopt the convention that, if & is a
collection of sets, then &* denotes { U <$: <$ C #, f finite}.

(1.1) X has a point-countable cover 9 such that each open U C X is
determined by {P E <?: P C U}.

!A11 spaces are assumed to be Hausdorff.
2 We use "X is determined by 9" instead of the usual "X has the weak topology with
respect to 9 ". The term "weak topology" is used in a different way by functional analysts,
to whom it implies that X has the smallest (not the largest) topology that gives each
member of 9 its subspace topology. Our terminology avoids this problem, and is also
shorter.
ί3While the elements of the defining A -network may always be chosen closed in N0-spaces
and in ^-spaces (by simply taking closures), that is not always true for point-countable
^-networks (see Example 9.2).
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(1.2) X has a point-countable cover P̂ such that, if x E U with U open
i n * , then* 6 ( U f ) ° C U ^ C U for some finite φ C #.

(1.2), Same as (1.2) with U = A\{ />} for some/? E X
(1.3) X has a point-countable cover <•? such that each open U C X is

d e t e r m i n e d b y { ? E ? : P C I/}*.
(1.3), Same as (1.3) with U = A\{/>} for some/? E X
(1.4) Xhas a point-countable Λ -network.
(1.4), Xhas a point-countable cover <•? such that, if K C [/is compact

and/? E X \ # , theniΓC U^CX\{/?} for some finite f C <3\
(1.5) X has a point-countable cover ty such that, if x E # C ί/ with K

compact and Uopen in X, then there is a finite ^ C <•? such that U f c ί / ,
x E Π 5% and ίF covers a neighborhood of x in Ĵ f.

(1.6) Xhas a point-countable closed /^-network.
It should be remarked that conditions (1.2) and (1.2), were studied in

[BM2], where they were labeled (1.4) and (1.5), respectively.
In Diagram I, an s-image denotes the image under an s-map, that is, a

map with separable fibers.4 A σ-space is a space with a σ-locally finite
network. When implications in the diagram require additional hypotheses,
these are indicated next to the relevant arrows.5 The notation "all P e ?
closed" next to the implications (1.3) -»(1.1) and (1.4) -̂  (1.6) refers to
the collection 9 in the definitions of these conditions given above.

Many of the implications in Diagram I follow immediately from the
definitions. Some of the others appear in the literature: That X has a
point-countable base if and only if it is an open s-image of a metric space
was proved by Ponomarev [P], and that a regular space X is a quotient
image of a separable metric space if and only if it is a Λ:-and-N0-space was
proved in [M,]; that (1.2) -> (point-countable base) if X is regular and
either X is a Λ -space or t(X) < ω,6 as well as the implication σ ->(1.2),,
was established in [BM2]. In this paper, we prove that X is a quotient
.s-image of a metric space if and only if it is a Λ -space satisfying (1.1) in §6,
and that (1.3) -> (1.2) and (1.3), -» (1.2), in countably bi-A -spaces in §3.
In §2, we prove that (1.3) ^ (1.4) ^(1.3), that (1.3), -* (1.4), ̂ (1.3),, that

(1.3) -> (1.1) if all P E <3> are closed, and that (1.1) -> (1.5) ^(1.1). In §5,

we prove that (1.4) -» 8 0 if X is a regular separable Frechet space, and

4A11 maps in this paper are continuous and onto.
5 See Section 3 for the definition of countably bi-fc-spaces.
6Xhas countable tightness, or t(X) < ω, if, whenever j c E J i n l , then c e C for some
countable CCA. Sequential spaces and hereditarily separable spaces have countable
tightness.



SPACES DETERMINED BY POINT-COUNTABLE COVERS 305

quotient image of
separable metric

regular

quotient s-image .
of metric

open s-image
of metric

point-countable
base

(1.1)

-(1.6) —

all P ε Ψ closed

-(1.5)

all P ε T closed

regular separable Frechet

regular and:
k, or t(X) s ω
or separable

DIAGRAM I

that (1.2) -»(point-countable base) if X is regular and separable. The
remaining implications in Diagram I are clear.

Besides the results indicated in Diagram I, we also obtain some results
concerning hereditarily meta-Lindelδf spaces. In §8, we prove, among
other results, that a pseudo-open7 s-image of a hereditarily meta-Lindelόf
space is hereditarily meta-Lindelδf, and that a regular Frechet space
satisfying (1.3) is hereditarily meta-Lindelόf.

We conclude this introduction by recording some elementary facts
which will be used later on.

LEMMA 1.7. Iff: X -» Y is a quotient map, and ifXis determined by the
cover <3\ then Y is determined by / (#) = {/(P): P e #} .

LEMMA 1.8. If(Xa) is a cover of X, then X is determined by (Xa) if and
only if the obvious map f: Σa Xa -* X is quotient {where Σ denotes topologi-
cal sum).

LEMMA 1.9. // X is determined by the cover (Xa), and if each Xa is
determined by the cover φa, then X is determined by U t t ^PΛ.

7A map /: X -* Y is pseudo-open if, for each y E Y,y E (/(ί/))° whenever U is an open
subset of X containing/" \y).
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2. Point-countable λ-networks and spaces determined by point-coun-
table collections. In this section, we analyze the close relationship be-
tween the concept of a point-countable fc-network (see property (1.4) or,
more generally, property (1.4)^) and spaces determined by Φ or <?*, where
^ is a point-countable collection (see, especially, properties (1.1), (1.3),
and (1.3),).

The following is the principal result of this section.

PROPOSITION 2.1. Suppose that 9 is a point-countable cover of X such
that X is determined by ty*. Then every countably compact K C X is covered
by some finite % C ty.

Proof. Suppose not. For each x E K, let {P <E<3>: x E P] = {Pn(x):
n E co}. Inductively choose xn E K such that xn ξ£ Pj(Xi) for i, j < n.
Since K is countably compact, the set A = {xn: n E co} has a cluster point
x*, so B = ^4\{x*} is not closed. Thus there exists a finite ^ C 9 such
that B Π ( U ^ ) is not closed. Some F G ̂ must contain infinitely many
JCΠ'S. Then F — Pj(Xj) for some i andy, and there exists n > i, j such that
xn E PjiXi), contradicting the way the xn

9s were chosen. D

The following simple result is a partial converse to Proposition 2.1.

LEMMA 2.2. // ty is a cover of a k-space X such that every compact
K C X is covered by some finite f C <3), then X is determined by ̂ P*.

Proof. The proof is immediate from the following simple observation:
If a space X is determined by a cover 9H, and ^ is a refinement of 91,
then X is determined by %. D

COROLLARY 2.3. In any space X, (1.3) -̂  (1.4) and (\3)p -* (1.4)p. 77*e
converse implications are true if X is a k-space.

Proof. The first assertion follows immediately from Proposition 2.1.
The second follows from Lemma 2.2 and the fact that an open subset of a
Hausdorff /c-space is a A -space. D

Now for another simple lemma.

LEMMA 2.4. Ifty is a closed cover of X such that (3>* determines X, then
9 determines X.
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Proof. This follows from a simple observation: If A Π Pt is closed in
Pi for i = 1,2,...,«, and if each P, is closed in Jf, then A Π Pz is closed in
X for all /, and therefore Λ Π (U" = , Pz) is also closed in X. D

COROLLARY 2.5. // *P satisfies (1.3) awd /λe? elements of <$ are closed,
then <$ satisfies (1.1).

There is another simple condition which implies that (1.3) implies
(1.1), namely that f̂ is countable (since in this case the collection 9\ hence
also ^P*, is countable). However, Example 9.7 shows that it does not
suffice for X to be merely separable.

For applications of Proposition 2.1 to countably compact spaces, see
Section 4.

The following lemma will be used in the proof of Proposition 2.7 and
elsewhere in this paper.

LEMMA 2.6. Suppose X is determined by a cover φ9 and x E X. Then:
(a) IfXis Frechet? x E (st(jc, 9))°.
(b) If X is first-countable9 and 9 is point-countable, then there is a finite

Φc9 such that x E Π f andx6(Uf)°

Proof, (a) Suppose not. Then there exist xn E X\%\{x, <•?) with xn -> x.
Then A — {xn\ n E ω} is not closed, but A Π P is relatively closed in P
for each P 6 ? , a contradiction.

(b) Suppose not. Let (Pn) enumerate {P E ^P: x E P}. Let (Un) be a
countable decreasing base at x. Choose xn E Un\ U . ^ Pt. Then, as in (a),
the set {xn: n E ω} is not closed, but its intersection with each P E ty is
relatively closed in P. D

PROPOSITION 2.7. For any space we have (1.1) -» (1.5)10, and (1.5) -*
(1.1) in k-spaces.

Proof. Suppose ^ is a cover of X satisfying (1.1), and let us show that
<3> satisfies (1.5). Let x E K C U be as in (1.5). Then {P E<$: P CU}
determines U9 so {P Π K: P E Φ, P C U) determines K. Also, X satisfies

8Example 9.3 shows that "Frechet" cannot be weakened to "sequential".
9Example 9.8 shows that "first-countable" cannot be weakened to "Frechet". It can,
however, be weakened to "countably bi-sequential" [M2].
1 0It is not known whether (1.1)—or even the existence of a point-countable base—implies
(1.6).
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(1.4) by Corollary 2.3, hence K also satisfies (1.4), and therefore K is
metrizable by Theorem 3.3 in the next section. The conclusion of (1.5)
now follows from Lemma 2.6 (with X replaced by K, and 9 replaced by

Suppose, now, that X is a fc-space, and that 9 is a cover of X
satisfying (1.5). To show that 9 satisfies (1.1), let U be open in X, and
suppose that A C U is not closed in U. We must show that A Π P is not
closed in P for some P 6 ? with P C U. Now C/, being open in X, is a
fc-space, so 4̂ Π K is not closed in K for some compact K C U. Pick
x e jSr\i4 such that x E Z By (1.5), there is a ? E ? with ? C ί / such
that x E(A Π P)~ , and hence ̂ 4 Π P is not closed in P. G

3. Point-countable collections in countably bi-A-spaces. As defined
in [M2], X is a countably bi-k-space if, whenever (An) is a decreasing
sequence of subsets of X with a common cluster point x9 then there exists
a decreasing sequence (2?n) of subsets of X such that x E (Bn Γ) An)~ for
all «, the set K— ΠnBn is compact, and each open U containing K
contains some Bn. Locally compact spaces, first countable spaces, and
paracompact Λf-spaces11 are countably bi-fc, and every countably bi-k-
space is a fc-space. Moreover, all countably bi-fc-spaces have the following
property [M2; Proposition 4.E.5]:

(3.1) If (An) is a decreasing sequence of subsets of X, and if
Γ\nAnφ 0, then some compact K C X meets every An.

We now state and prove the basic result of this section.

PROPOSITION 3.2. Let X be a countably bi-k-space of countable tight-
ness,12 and 9 a point-countable cover of X such that each compact K C X is
covered by some finite § C <3).13 Then every x E X is in ( U SΓ)° for some
finite Φc 9.

Proof. Suppose the conclusion is false for some x E X. For each
countable C C X, let (/^(C)) be an enumeration of the countable collec-
tion ( P e ? : P n C ^ 0 ) . Using the countable tightness of X, we can
inductively choose countable sets Cn C X, with Cλ — {x}, such that x E Cn

1 1X is a paracompact M-space if it is Hausdorff and admits a perfect map onto a metric

space.
1 2 The "countably bi-Λ>space" assumption can be weakened to (3.1), but it cannot be
weakened to "Ac-space" (see Example 9.2). It is not known whether the assumption that X
has countable tightness (see Footnote 6) can be omitted.
13Equivalently, by Proposition 2.1 and Lemma 2.2, if A"is determined by 9*.
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for all «, and Cn Π P,(C,) = 0 whenever i < n and j < n. The last
condition implies that n o P E ^ P meets infinitely many Cn. _

Let An = U {Q: /:>«}. Then (ΛΛ) is decreasing and x £ ^ for all
w, so some compact K C X meets every An and hence meets infinitely
many Cn. But ϋf is covered by some finite subcollection ^of P̂, so some
P E ^ meets infinitely many Cπ, a contradiction. D

Before applying Proposition 3.2, we pause to quote two results from
[BM2] which will be frequently used (and generalized) in the sequel.

THEOREM 3.3. [BM2; Theorem 3.1]. Every compact space satisfying
(1.2), (equivalently, (1.4),) is metrizable.

COROLLARY 3.4. Every k-space satisfying {\A)p is sequential, and thus
of countable tightness.

We now come to some consequences of Proposition 3.2 and Corollary
3.4.

COROLLARY 3.5. In any countable bi-k-space, (1.4) -> (1.2) and {\A)p

-> (1.2)^. {The converses are trivial)

Proof. We will prove that (1.4) ^ (1.2). The proof that (1.4), -> (1.2),
is similar.

Let U C X be open. Then U has countable tightness by Corollary 3.4,
and U is countably bi-k because it is an open subset of a Hausdorff
countably bi-fc-space [M2, top of page 114]. Hence, if 9 is a point-counta-
ble fc-network for X, the hypotheses of Proposition 3.2 are satisfied with X
replaced by Uand Φ by {P E 9: P C U). Thus Λ'has property (1.2). D

COROLLARY 3.6. If X is regular\ then X has a point-countable base if
and only if it is countably bi-k and satisfies (1.4).

Proof. The "only i f part is trivial, while the " i f part follows from
Corollary 3.5 and the fact, noted in the introduction, that a regular
fc-space satisfying (1.2) has a point-countable base [BM2, Theorem 6.2]. D

Corollary 3.5 permits us to sharpen two results from [BM2] by
weakening (1.2) to (1.4), in the hypotheses.

COROLLARY 3.7. A space X is metrizable if and only if it is a paracom-
pact M-space satisfying (1.4),.
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Proof. With (1.4)^ strengthened to (1.2)^, this result was proved in
[BM2; Theorem 4.2]. Since paracompact M-spaces are countably bi-A;, the
present result follows from that theorem and Corollary 3.5. D

COROLLARY 3.8. A regular space is a σ-space if and only if it is a strong

Σ-space14 satisfying (1.4)^.

Proof. This result follows from Corollary 3.7 in essentially the same
way that [BM2; Theorem 5.2] followed from [BM2; Theorem 4.2], using
the easily verified fact that (1.4)^—just like (1.2)^—is hereditary and
finitely productive. (See §7 for the hereditary and productive characteris-
tics of all these properties.) D

4. Countably compact spaces. We shall consider conditions (1.4)
and (1.4)^ with "compact" changed to "countably compact". Let us call
these conditions "quasi-(1.4)" and "quasi-(1.4)^", respectively. The rela-
tion of these concepts to closely related concepts from Diagram I is shown
in the following Diagram II, where only those implications which are valid
without additional hypotheses are indicated. The implications (1.3) -»
quasi-(1.4) and (1.3)^ -» qudLsi-(\A)p follow from Proposition 2.1; the
others are clear.

(1.2)

1
(1.3)

i
quasi-(1.4)

i

(1.4)

0-2),
i

(1.3),

1
-> quasi-(1.4)^

I
(1-4),

DIAGRAM II

We now quote a result of Balogh [Ba; Theorem 2.1] which generalized
the result from [BM2] quoted in our Theorem 3.3.

THEOREM 4.1 (Balogh). Every countably compact space satisfying (1.2)p

(equiυalently, quasi-(\A)p) is metrizable (and thus compact).

It may be worth observing that Proposition 2.1 yields a new and
direct proof of Theorem 4.1, because Proposition 2.1 implies that the

14in the sense of K. Nagami [N].
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proof of Theorem 3.3 in [BM2; Theorem 3.1] remains valid without
modification to prove the more general Theorem 4.1. (Proposition 2.1
implies that, even if X is only countably compact, the cover <3l in the proof
of [BM2; Theorem 3.1] has a finite subcover.)

It follows from Theorem 4.1 that, in any space satisfying q\x&si-(\A)p,
every countably compact subset is compact, and hence in such a space
every property defined in terms of countably compact subsets is equiva-
lent to the analogous property defined in terms of compact subsets.
Consequently, the countably compact counterparts of Corollaries 3.5-3.8
are all valid. In particular, we obtain the following analogues of Corollaries
3.7 and 3.8.

COROLLARY 4.2. A space X is metrizable if and only if it is an M-space
satisfying quasi\ 1 A)p.

COROLLARY 4.3. A regular space X is a σ-space if and only if it is a
Σ-space15 satisfying quasi-(\A)p.

5. Separable spaces. The purpose of this section is to examine the
effect of separability on properties (1.4) and (1.2).

First we prove the following lemma; part (a) will be applied in the
proof of Theorem 5.2, while (b) is used in the proof of Proposition 8.6.

LEMMA 5.1. Suppose X is a regular Frέchet space, 9 a k-networkfor X,
and x E Uwith Uopen in X. Then:

(a) // x 6 Ϊ " in X, then x E (P Π A)~ for some P E 9 such that
PCU.

(b) IfB = U{PE<3>: xEP C (/}, then x E B°.

Proof, (a) If x E A, the conclusion is clear. So suppose x £ A. Pick
xn E A ΓΊ U with xn -»x, and let K = {x} U {xn: n E co}. Then KCU
and K is compact, so K C V C V C U for some open V in X. Hence
K C U ®s C V for some finite f C <3\ Some P E ^must contain infinitely
many xn, and this P has the required property.

(b) Suppose not. Let^ = X\B. Then x EA, so, by (a), x E(PΠA)~
for some P E Φ with P Cί/. But then P C B by definition of B, so
P Π A = 0, contradicting x E (P Π A)~ . D

15:in the sense of K. Nagami [N],
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THEOREM 5.2. The following are equivalent for a regular Frechet space
X:

(a) X is an tfo-space.
(b) X is a separable space satisfying (1.4).

Proof That (a) -» (b) is trivial. So suppose X satisfies (b). Let Q be a
countable dense subset of X, and let <•? be a point-countable /^-network for
X. Let & = {P: P E 9 and P Π ρ =£ 0 } . Certainly a is countable. We
will show that 61 is a /:-network for X

Suppose K C £/, where # is compact and £/ is open in X. Let
&(!/) = {Λ e &: Λ C t/}. It follows from Lemma 5.1(a) (with ,4 = Q)
that *H(Ϊ/) covers ί/. We must show that a finite subcoUection of *H(ί/)
covers # , and we will do that by showing that each x E K is in the relative
interior, in the subspace K, of a finite union of elements of 31 (ί/).

Suppose this is false for some x E ί , Let $l(ί/) = {/{„: n E ω}, with
x E i?0. Now # is first-countable by Theorem 3.3, so we can choose
xn E K\ Uf.<w i?z such that xn -> x. Since each Rn is closed, we can also
choose #„ ̂  E β \ U .<n JR, such that ^ k -* xnas k -> oo. But then x is in
the closure of these qnJc's, so there exists a sequence qn k -» x as 7 -> 00.
Since jcrt ^ x and ^ ^ T6 X for all A* and k (because x E Λo), we have
fij -> 00 asy -> 00. By Lemma 5.1(a), there exists a P E <•? such that P C U
and #„ Λ E JP for infinitely many7. Then P E 3l(£/), so P = Rm for some
m E ω. But qn k ^ i?m when «. >: m, a contradiction. D

Examples 9.3, 9.5 and 9.7 show that, in Theorem 5.2 (b) -* (a),
"Frechet space" cannot be weakened to "sequential space" (which, by
Corollary 3.6, is here equivalent to "fc-space"). Examples 9.4 and 9.6 show
that "separable" cannot be replaced by "Lindelόf'. Note that, if "Frechet"
is replaced by "countably bi-fc" in the hypothesis of Theorem 5.2, then,
by Corollary 3.6, condition (b) (and hence also condition (a)) implies that
X is a separable metric space.

We conclude this section with the following result. It should be
observed that, if X is a /c-space, this result follows immediately from
[BM2, Theorem 6.2]; see Diagram I.

PROPOSITION 5.3. The following are equivalent for a regular space X:
(a) X is a separable metric space.
(b) X is a separable space satisfying (1.2).

Proof. That (a) -»(b) is trivial. Suppose X satisfies (b). Let D be a
countable dense subset of X, and let ^ be a cover of X satisfying (1.2). Let



SPACES DETERMINED BY POINT-COUNTABLE COVERS 313

61 = {P: P E *P and P Π D φ 0}. Then <3l is countable; we will prove
that 61 is a network for X. Suppose x E U, with U open in X. Let
9be a finite subset of <$ such that x e ( U f ) ° CUΦCU. Then c E
( U { F Π D : FE ¥})~ = U {(F Γ) D)~ : FE φ}. Thus, for some
F E f , we have xE(FΠ D)~ . Then x E F C t/, and F E 61. Hence
61 is a countable network for X.

Every space with a countable network is hereditarily separable and
thus has countable tightness. Hence X has a point-countable base by
[BM2; Theorem 6.2], and so X(being separable) satisfies (a). D

6. Quotient -̂images of metric spaces. Quotient s-images of metric
spaces were characterized by T. Hoshina in [H]. In Theorem 6.1 we obtain
a new characterization in terms of concepts considered elsewhere in this
paper, while simultaneously giving a partial solution to a problem stated
in [MN].

Recall that a map /: X -> Y is compact-covering if every compact
K C Y is the image of a compact C C X. Analogously, call f:X->Y
sequence-covering if every convergent sequence (including its limit) S C Y
is the image of some compact set (not necessarily a convergent sequence)
C C X. Clearly every compact-covering map is sequence-covering, and,
analogously to [M l 5 Lemma 11.2], every sequence-covering map onto a
sequential Hausdorff space is quotient.16 Examples 9.13 and 9.15 show
that neither of these implications can be reversed. It was asked in [MN]
whether, nevertheless, every quotient s-image Y of a metric space must
also be a compact-covering quotient £-image of a (possibly different)
metric space. While this equation remains open, Theorem 6.1 shows that
such a space Y must at least be a sequence-covering quotient s-image of a
metric space.

THEOREM 6.1. The following are equivalent for a space X:
(a) X is a sequence-covering quotient s-image of a metric space.
(b) X is a quotient s-image of a metric space.
(c) X is a k-space satisfying (1.1).

Proof, (a) -»(b): Trivial.
(b) -* (c): Let % be a point-countable base for the metric space M,

and let /: M -» X be a quotient s-map. Then X is a &-space because it is

l6Proof. Let/: X -» Y be such a map. Suppose A CY with/" \A) closed in X. US CY is
a convergent sequence, then S =f(K) f°Γ s o m e compact K C X. Since f\A) Π K is
compact, so is A Π S9 and hence Λ Π S is closed. Since 7 is sequential, A is closed in Y.
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the quotient image of a λ -space. We now show that *P = {f(B): B E $}
satisfies the conditions of (1.1). First, £P is point-countable, because each
f\x) is separable and hence/" \x) meets only countably many members
of φ. Let UCX be open. Then f\Γ\U) is a quotient map of Γ\U)
onto U, so, by 1.7, C/is determined by {/(£): £ E φ and£ C/^ί/)} =
( ? e f : P C C/}.

(c) -> (a). Let X be a Λ -space with a cover P̂ satisfying (1.1). We may
assume that X Ety. Giving *P the discrete topology, the countable product
9ω is metrizable. Let M C <$ω be the set of all ( P J E # ω such that, for
some x E Ππ PM, every neighborhood of x contains some Pn. Since X is
Hausdorff, this JC is uniquely determined by (Pn) (in fact, {x} = Π n Pw),
and we denote it by f((Pn)). That defines our map /: M -> X We will
show that/is a sequence-covering quotient s-map from M onto X.

f is onto: If JC E I , and if (Pn) enumerates {P E<$: x E P}9 then

/is continuous: Clear.
/ is έin j-mfl/?: Clear, since Γ\x) C {P E <?: x E P}ω, and 9 is

point-countable.
/ is sequence-covering: Let S be a convergent sequence in X, together

with its limit point s. We must find a compact K C M with / ( # ) = S.
Let <?' be the collection of all P E <? such that P Π 5 is a non-empty

closed subset of S. (Note that P Π S is closed if either P Π S is finite or
s E P.) Since S is countable, so is ^P'. Let ( ^ ) enumerate the finite
subcollections of <?' which cover 5. Let # be the set of all (P w )EΠ β f Λ

such that (PnΠ S) has the finite intersection property. Now Rn% is a
compact subset of ^ (since it is a product of finite spaces), and K is
closed in Π,, %, so # i s a compact subset of ^Pω. We will show that K C M
and f(K) = 5.

First we show that # C M and /(A') C 5. Suppose (Pn) E A. Then
(Pw Π 5) is a collection of closed sets with the finite intersection property,
so there is an x E Πn(PnΠ S). To establish that (Pn) E M and/((PJ) =
x, it will suffice to show that every neighborhood U of x contains some Pn.

For each y E 5, pick a neighborhood J^ of 7 in X such that Wy C U
iίy — JC, such that x & Wy iiy φ JC, and such that ^ Π S ^ {j) if y φ s.
Now Jf satisfies (1.5) by Proposition 2.7, so there is a finite & C <•? such
that 5 E IΊ&, U β C Ws9 and β covers a neighborhood of s in 5. Let
T = S\U&; clearly T is finite. For each y E Γ, pick P^ E ^ such that
j E P^ C Wr and let f = « U {Py: y E Γ}. Then ^ C <$\ φ covers 5,
and ^is finite, so ^ — % for some n, and hence Pn E ^for this n. But our
construction of ^implies that P C U whenever x E P e f , and therefore
P.CίΛ
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It remains to show that S Cf(K). Suppose x E S . For each n, pick
Pn e % so that x e Pn. Then (Pn) E K, so (Pn) E M. Since x E Πn Pn9

and since f((Pn)) is the only element of Πn Pn, it follows that/((PJ) = x.

f is quotient: Since X is a fc-space satisfying (1.1), it is sequential by

Corollary 3.4. Hence/is a sequence-covering map onto a sequential space,

and such maps are always quotient (see Footnote 16). D

REMARK. AS the proof of Theorem 6.1, (c) -> (a), shows, any space

(not necessarily a λ -space) satisfying (1.1)—or even (1.5)—is a sequence-

covering s-image of a metric space.

REMARK. Each of the following two conditions (d) and (e) implies the

equivalent conditions (a)-(c) of Theorem 6.1, and (d) -> (e) by [M 5 ,

Theorem 3.2]. We don't know whether, conversely, ((a)-(c)) -> (e) or

(e) -»(d). (See Footnote 10.)

(d) Xis a /:-space satisfying (1.6).

(e) X is a compact-covering quotient s-image of a metric space.

Recall that if /: X -» Y is a quotient map and Y is a Frechet space,

then / must be pseudo-open (see Footnote 7), and that the pseudo-open

image of a Frechet space is Frechet [A]. Thus we have the following

corollary to Theorem 6.1.

COROLLARY 6.2. The following are equivalent for a space X:

(a) X is a pseudo-open s-image of a metric space.

(b) X is a Frechet space satisfying (1.1).

We don't know whether the class of spaces characterized by Corollary

6.2 is preserved by pseudo-open ^-images (or even perfect images). See

Theorem 7.1 (e)-(h) for some related results.

Example 9.8 shows that, in general, the spaces characterized by

Theorem 6.1 are not preserved by quotient s-images or even perfect

^-images. We do, however, have the following partial result.

PROPOSITION 6.3. Suppose that X is a k-space satisfying (1.1) and that

/: X -> Y is a quotient s-map. Then either (a) or (b) implies that Y is a

k-space satisfying (1.1).

(a) X has a point-countable base.

(b) X is a k-and-tf-space.
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Proof. Part (a) is the same as the proof of Theorem 6.1, (b) -> (c). Part
(b) is quite similar: Clearly Y is again a fc-space. Let <•? be a σ-locally-finite
λ -network for X. Then, as in the proof of Theorem 6.1, (b) -> (c), the
collection S = {f(P): P e <$} satisfies (1.1) for 7 provided it is
point-countable. Now S is point-countable provided e a c h / " 1 ^ ) meets
only countably many members of 3\ This will be the case if each/^](;;) is
Lindelof. Foged [Fo] has shown that every fc-and-N-space is meta-Lindelόf
(i.e., each open cover has a point-countable open refinement). But separa-
ble meta-Lindelόf spaces are Lindelof, so each/" \y) is Lindelof. D

As the proof shows, Proposition 6.3(b) remains valid with "quotient
s-map" changed to "quotient map with Lindelof fibers". That is not true,
however, for Proposition 6.3(a), because Example 9.6 shows that even a
quotient image of a Lindelof space with a point-countable base need not
satisfy (1.1).

The following result generalizes [T\; Theorem 7], where it is shown
that (a) and (c) are equivalent if X is metrizable.

PROPOSITION 6.4. Let f: X -> Ybe a closed mapping of a paracompact
ft'Space X onto a k-space Y. Then the following are equivalent.

(a) Y satisfies (1.6).
(b) Ysatisfies (IΛ).
(c) df~\y) is separable (equiυalently, Lindelof) for each j E 7 ,

Proof. By Diagram I, we have (a) -> (b). Now assume (b), and
suppose (c) does not hold. Then some dj^\y) is not Lindelof, so, by the
paracompactness of X, there exists a closed discrete subset of df~\y) of
cardinality ωv The space Yis sequential by Corollary 3.4. Then, since f̂ is
paracompact, it follows from [T2; Lemma 1.5] that Y contains a closed
copy of 5ωi, the space obtained by identifying the limit points of ωx

convergent sequences. In Example 9.2, we show that this space does not
satisfy (1.1). Since it is easily seen that property (1.1) is hereditary with
respect to closed subspaces, this contradicts (b). Thus (b) -> (c).

It remains to prove (c) -> (a). Assume that each df~\y) is Lindelof.
For y G 7, choose a point x(y) eΓ\y) L e t x' = u {QΓ\y) ϊ G γ)
U {x(y)'« y is an isolated point of Y}. Then Xf is a closed subspace of X.
Let g be the restriction of / to X\ Then g is a closed map of X' onto Γ,
and each g~\y) is Lindelof.

Let <$ be a σ-locally-finite closed λ -network for X\ and let £ = g(<$).
Clearly S is a point-countable, closed cover of Y. To complete the proof,
we show that Sis a /:-network for Y.
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Suppose K C U C Y, where K is compact and U is open. By [M4], g
is compact-covering, so there is a compact set L C X such that g(L) = K.
Let ^ b e a finite subcollection of ^ such that L C U§C g~\U). Then
ί C U {g(P): ? E f } Cί/, s o S i s a point-countable closed λ -network
for Y. D

7. Preservation.

THEOREM 7.1. The properties in Diagrams I and II are preserved under

the following operations.

(a) All subsets: (1.2), (1.2),, (1.4), (1.4),, quasH\A\ quasi-{\A)p, (1.5),

(1.6).

(b) Λl// c/αs ed subsets, all open subsets, and all subspaces which are

k-spaces:(\Λ)9i\3\{\3)p.

(c) Countable products: (1.2), (1.2),, (1.4), (1.4),.

(d) Products with locally compact metric spaces: (1.1), (1.3).

(e) Per/ecί mqu: (1.2), (1.2),, (1.4), (1.4),.

(f) Open s-maps: Frechet spaces satisfying (1.1).

(g) Quotient s-maps with Frechet domain: (1.3), (1.4).

(h) Quotient maps with countable fibers: (1.1), (1.3).

(i) Shrinking closed subsets to a point: (1.3), (1.3),.

Proof of (a). Suppose that 7 C X, and that P̂ is a cover of X satisfying

one of the conditions in (a). Then it is easy to check that {P Π Y: P E ty}

satisfies the same condition for Y.

Proof of (b). That (1.1), (1.3) and (1.3), are hereditary with respect to

closed subsets or open subsets is easy to see.

Suppose Y is a &-subspace of X satisfying (1.3). Then X satisfies (1.4)

by Corollary 2.3, hence Y satisfies (1.4) by (a) above, and hence Y satisfies

(1.3) by Corollary 2.3. Thus (1.3) is preserved by &-subsρaces, and the

same proof works for (1.3),. The proofs for (1.4) and (1.4), are similar,

relying on Proposition 2.7 instead of Corollary 2.3.

Proof of (c). Let X = Πw Xn be a countable product. For each n E co,

let % be a cover of the space Xn, and let

<3> = {Po X Pλ X • •. XPn X Xn+λ X Xn+2 X . . - : n E co, i> E <3>}.

If each ^ is point-countable, so is <3>. We claim that, if each % satisfies

(1.2), (1.2),, (1.4), or (1.4),, so does 9. The easy verification for (1.2) and

(1.2), is left to the reader, and the proof for (1.4), is similar to that for

(1.4). It remains to give a proof for (1.4).
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Suppose each % satisfies (1.4). To show that <•? satisfies (1.4), let
K C U with K compact and U open in X. Pick basic open sets
F(l), . . . , V(m) in the product space Xsuch that K C U ^ V(i) C U. Pick
a closed cover ^4(1),... >A(m) of K such that A(i) C V{i) for ι = 1,... ,m.
It is easy to see that, for each / < m, there is a finite ^P(ι) C ζP such that
A(i) C U#(i) C V(i). Let ^ = U ^ <?(/). Then f is a finite subcollec-
tion of 9, and # C U f C ί/. Hence # satisfies (1.4).

Proof of (d). First we establish the following fact: If Xis determined
by <3), and 7 is locally compact, then X X 7 is determined by (P X 7:
? 6 ?} . To see this, let E - Σ^P, the topological sum of the elements of
Φ, and let /: E -» X be the obvious map. By Lemma 1.8, / is a quotient
map. By Whitehead'stheorem[W; Lemma4],/X id y : E X 7 - > I X 7is
also a quotient map. Since E X Y = Σ{P X Y: P E ^P}, the conclusion
follows from Lemma 1.8.

We now complete the proof of (d) for (1.3); the proof for (1.1) is
similar. Suppose P̂ satisfies (1.3) for X Let Y be a locally compact metric
space, and let ® be a point-countable base for Y. Then {P X B: P E <•?,
5 6 ^ } is a point-countable cover of XX Y. It suffices to show that
every basic open set UX B in XX 7, with U open in X and B E $, is
determined by {P X 5: P E <3\ P C ί/}* - {P X 5: P E <?*, P C ί/}.
But this follows from the previous paragraph and the assumption that U is
determined by (P E <3)*: P C U).

Proof of"(e). For (1.2)^, this was proved in Theorem 8.4 of [BM2]. The
proofs in the other cases are similar, and are thus omitted.

Proof of (f). Suppose /: X -* Y is an open s-map, and X is a Frechet
space satisfying (1.1). For each y E 7, let Dy be a countable dense subset
of Γ\y\ and let D = U ^ ^ . Then D satisfies (1.1), by part (b) of this
theorem. It is easily checked that f\ D is open. Since f\ D is countable-to-
one, the result now follows from part (h).

Proof of (g). Suppose that /: X -» 7 is a quotient s-map with X
Frechet, and that ^ is a cover of X satisfying (1.4). Let D — UyeγDybe
as in the proof of (f), and let a = {/(P Π D)\ P E #}. We will show that
6 satisfies (1.3) for 7. Since (1.3) implies (1.4), that will prove our result
for both (1.3) and (1.4).

Clearly £ is point-countable. Suppose V C 7 is open in 7. We must
show that, if B C F and 5 is not closed in V, then B Π E is not closed in
E for some £ E {Q E S: β C F}*.
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Let A =f\B) and U = f~\V). Since/is quotient, A is not closed
in U. Pick x E U\A with x EA. Then x E (A D D)~, so there are
xnEAΠD with xn -> JC. Let # = {JC} U {JCΠ: « e ω}. Then Λ: is com-
pact and K C U, so K C U W C £/ for some finite f C <•?; we may assume
that some P e ^intersects Z)/(JC). Let E = U {/(/> n ΰ ) : ? G ̂ } . Then
£ E { ρ e S : β C K}*, and 5 ΓΊ E is not closed in E because f(x) E

Proof of (h). This follows easily from Lemma 1.7 and the fact that the
image of a point-countable collection under a countable-to-one map is
point-countable.

Proof of (i). We will prove this for (1.3). Suppose X has a cover P̂
satisfying the requirements of (1.3), let A C X be closed, let Y= X/A,
and let/: f̂ -* 7be the quotient map. Let

Z={f(A)}U{f(P\A):Pe9).

It is easy to check that the cover & of Y satisfies the requirements of
(1.3). D

Examples 9.10 and 9.11 show that (1.1) and (1.3) are not preserved by
arbitrary subsets or binary products.17 Example 9.16 shows that (1.4) is
not preserved by the maps considered in Theorem 7.1(f)-(h). See §10 for
some related open problems.

8. Hereditarily meta-Lindelόf spaces. Recall that a space X is
meta-Lindelόf if every open cover of X has a point-countable open
refinement. The primary purpose of this section is to study hereditarily
meta-Lindelόf ̂  spaces (i.e., spaces all of whose subspaces are meta-Lindelόf)
and their relationship to some of the other concepts considered in this
paper.

We begin with a useful characterization. By a well-ordered cover
(Ua)aeA of X, we will simply mean a cover with a well-ordered index set
A; the order need not be related to subset ordering. If (Ua) is such a cover,
and if x E X, then a(x) will denote the first a such that x E Ua, and Ua

will denote {JC E X: a(x) = a}. Clearly ϋa C Ua.

THEOREM 8.1.18 The following are equivalent:
(a) X is hereditarily meta-Lindelόf.

17We don't know how (1.3)^ behaves in these respects.
18This result was also noticed by J. Chaber and H. Junnila (personal communication).
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(b) Every well-ordered open cover (Ua) of X has a point-countable open
refinement Ύsuch that, ifxEX, then x E V C Ua(x) for some V E Ύ.

(c) Every well-ordered open cover (Ua) of X has a point-countable open
refinement (Va) such that Ua C Va C Uafor all a.

Proof, (a) -> (b). Assume this is false. Then we can find a hereditarily
meta-Lindelόf space X, an ordinal λ, and a well-ordered open cover
(f/α)α < λ of X which does not have a refinement Ύ satisfying the conditions
of (b). We can assume that λ is the least such ordinal (for any hereditarily
meta-Lindelόf space). Then, for each a < λ, the well-ordered open cover
(Uβ)β<a of Uβ<aUβ has a point-countable open refinement \ satisfying
the conditions of (b). If λ = a + 1 for some α, then it is easy to see that
CV= \ U (ί/α) is a refinement of (Ua)a<λ satisfying the conditions of (b),
a contradiction. So suppose λ is a limit ordinal.

Let % be a point-countable open refinement of the open cover
( ί/ β ) β < λ of X. For each W E % pick a{W) < λ such that W C U<wy

Now define

Since W and all % are point-countable open collections, so is Ύ. Suppose
x E X, and pick JF E <¥ with x E W. Then

so there exists V E\(ιv)+λ with x G F C ί/α(JC). Hence W Π F E Ύ, and
j c e l f ί l F C t/α(JC). Thus Ύis a refinement of (Ua)a<λ satisfying the
conditions of (b), and we again have a contradiction.

(b) -* (c). Let (Ua) be a well-ordered open cover of X, and choose an
open cover Ύof X as in (b). For each α, let

Va= U { K E Ύ : F C t / α , F ( Z ί ^ i f i β < α } .

It is easy to verify that (Va) satisfies (c).
(c) -» (a). Suppose Y C X, and X satisfies (c). Let % = (Wa)a<λ be a

well-ordered open cover of Y. Let (ί/α)α<λ be a well-ordered open cover of
X such that C/λ = X and, for each α < λ, Ua Π 7 = JFtt. Let (Fα)α<λ be a
point-countable open refinement of (ί/α)α<λ with C/α C Fα C t/α for all α.
Note that eachjμ E 7 is in ϊ/α for some a < λ. It follows that (Fα Π 7 ) α < λ

is a point-countable open refinement of %. Hence 7 is meta-Lindelόf,
and so X is hereditarily meta-Lindelόf. G

Hereditarily meta-Lindelόf spaces are clearly preserved by subsets
and topological sums. The following result is less obvious.
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PROPOSITION 8.2. If f: X -> Y is a pseudo-open19 s-map or a closed
map,20 and if X is hereditarily meta-Lindelόf, then so is Y.

Proof. By Theorem 8.1, it will suffice to show that Y satisfies 8.1(c).
So let (ί/α) be a well-ordered open cover of 7, and let us find the cover
(Va) of 7required by 8.1(c).

Let £/α' = f~\Ua). Then (t/α') is a well-ordered open cover of X, so, by
Theorem 8.1, it has a point-countable open refinement (V^) such that
(f£)~C V'Λ C t£ for all α. Observe that/TO C t/α and/"\Ua) C (t£)~C
Pς for all a.

If/is a pseudo-open 5-map, let Va = (/(ϊ^))°. Clearly Fα is open, and
ί̂  Cf(V£) C t/α. Also (J^) is point-countable because/is an 5-map and
(V£) is a point-countable collection of open subsets of X, and Ua C Va

because f~\Ua) C V'a and/is pseudo-open. Hence (Va) satisfies 8.1(c).
If/is a closed map, let Va = [y e 7: f"^ j ) C F^}. Then Fα is open

because/is closed, and Va Cf(V^) C Ua. Moreover, (Va) is point-counta-
ble because (PQ is point-countable, and UaCVa because f~\Ua) C V'a.
Hence (Fα) satisfies 8.l(c). D

We don't know whether there is an analogue of Theorem 8.1 for (not
hereditarily) meta-Lindelόf spaces, or whether Proposition 8.2 remains
valid with "hereditarily" omitted. We do, however, have the following two
results in case the index set is ωx.

LEMMA 8.3. The following properties of an open cover (Ua)a<ωχ are
equivalent:

(a) (Ua) has a point-countable open refinement.
(b) (Ua) has a point-countable open refinement Ύsuch that, if x E X,

then x E V C Ua(x)for some VeΎ.
(c) (Ua) has a point-countable open refinement (Va) such that Ua C Va

C Ua for all a < ω{.

Proof, (a) -»(b). Let ^ b e a point-countable open refinement of (Ua).
For each W E % pick a(W) < ω, such that W C Ua{wy Let

Ύ= {WΠ Ua: WE%,a<

19See Footnote 7 for the definition of pseudo-open.
20That Theorem 8.1 can be used to show preservation of hereditarily meta-Lindelόf spaces
under closed maps was pointed out to the first author by J. Chaber.
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It is easy to check that this Thas the properties required by (b).

(b) -»(c). This is proved just like Theorem 8.1(b) -»(c).

(c) -> (a). Clear. D

PROPOSITION 8.4. // X is meta-Lindelόf, and if every open cover of X

has a subcover of cardinality < S 1 ? then every pseudo-open s-image and

every closed image21 of X has the same properties.

Proof. Let X satisfy the conditions of the proposition, and suppose

/: X -» Y is a pseudo-open s-mzp or a closed map. It is routine to verify

that every open cover of Y has a subcover of cardinality < Sj. To show

that Y is meta-Lindelόf, let % be an open cover of Y. Then % has a

subcover (Ua)a<ω . The fact that (Ua)a<ω has a point-countable open

refinement now follows from Lemma 8.3 just as Proposition 8.2 followed

from Theorem 8.1. D

Which of the properties considered in Diagram I are hereditarily

meta-Lindelόf? Clearly spaces with a point-countable base are. Some

stronger results will be presented in Proposition 8.6 below, but first we

need the following lemma, which deals with conditions related to 8.1(b).

LEMMA 8.5. Among the following properties ofX, (a) «-> (b) and(c) -» (a);

for regular X, all are equivalent.

(a) X is hereditarily meta-Lindelόf.

(b) Every well-ordered open cover (Ua) of X has a point-countable

refinement ty such that, ifxEϊX, then

xe( U {PeΦ:xEPCUa(x)}f.

(c) Same as (b), but with the last formula changed to

({J

Proof, (a) -»(b). This follows from Theorem 8.1, (a) -»(b).

(b) -> (a). It will suffice to show that (b) implies 8.1(c). So let (Ua) be

a well-ordered open cover of X, and choose a cover ^ of X satisfying (b).

For each α, let

Va=( U {PϊΞ(3):PCUa,P£Uβifβ<

2 1 For closed images, this result was obtained independently by D. Burke.
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As in the proof of 8.1(b) -> 8.1(c), it is easy to verify that (Va) satisfies the
requirements of 8.1(c).

(c) -> (a). The proof is essentially the same as (b) -> (a), but with

Va=(\J {PE<$:PCUa,P£Uβiΐβ<a})°.

We omit the straightforward proof that (a) -> (c) for regular X. D

PROPOSITION 8.6. Each of the following conditions implies that X is
hereditarily meta-Lindelόf.

(a) X is a Frechet space satisfying (1.1).
(b) X is a regular Frechet space satisfying (1.3).

Proof, (a). As noted in Corollary 6.2, the Frechet spaces satisfying
(1.1) characterize the pseudo-open ^-images of metric spaces. Hence these
spaces are hereditarily meta-Lindelόf by Proposition 8.2. (Alternatively,
this result follows from the implication 8.5(b) -> 8.5(a), together with
Lemma 2.6 with JΓ replaced by ί/α(x).)

(b) This follows from the implication 8.5(c) -» 8.5(a) and from Lemma
D

REMARK. It follows from Example 9.3 and Theorem 6.1 that "Frechet"
cannot be weakened to "sequential" in Proposition 8.6, even if X satisfies
(1.6). If X is an K-space, however, then X is hereditarily meta-Lindelof
whenever it is a fc-space [Fo].

Our final results in this section deal with locally separable spaces.

PROPOSITION 8.7. Suppose X is locally separable and hereditarily
meta-Lindelof. Then X, as well as every pseudo-open s-image of X, is a
topological sum of separable, hereditarily Lindelof spaces.

Proof. Let X be locally separable and hereditarily meta-Lindelόf, and
let /: X -» Y be a pseudo-open s-map. Each f~\y)9 being separable and
meta-Lindelόf, is Lindelof. Since X is locally separable, it then follows
that each f^\y) is contained in some separable open set Uy. Since
y E (f(Uy))°9 we see that Y is locally separable. Also, Y is hereditarily
meta-Lindelόf by Proposition 8.2. Now a locally separable meta-Lindelόf
space is a topological sum of separable subspaces [S]. A separable,
hereditarily meta-Lindelόf space is easily seen to be hereditarily Lindelof,
so the result follows. D
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PROPOSITION 8.8. Suppose X is a regular, locally separable Frechet
space satisfying (1.3) or (equiυalently) (1.4). Then X, as well as every regular
pseudo-open s-image of X, is a topological sum of^^-spaces.

Proof. Suppose X satisfies the conditions of the proposition. By
Proposition 8.6, X is hereditarily meta-Lindelδf. Let Y be a regular
pseudo-open s-image of X. By Proposition 8.7, Y = Σa Ya, where each Ya

is separable. By 7.1(g) and (a), each Ya satisfies (1.4). Hence each Ya is an
N 0-space by Theorem 5.2. D

Note that Proposition 8.8 generalizes Theorem 5.2, which was used in
its proof.

COROLLARY 8.9. Let X be a regular Frechet space. IfXis determined by
a point-countable collection of ϊϊo-spaces, then X is a topological sum of

Proof. Let ^ be a point-countable collection of S0-spaces which
determines X. Then the obvious map /: ΣίP -> X is a quotient s-map by
Lemma 1.8, and hence/is pseudo-open because A'is Frechet. Since Σ ^ is
a regular, locally separable Frechet space satisfying (1.4), the result now
follows from Proposition 8.8. D

9. Examples.

EXAMPLE 9.1. An infinite, completely regular, countably compact
space X, all of whose compact subsets are finite. (This space satisfies (1.4)
—even (1.6)—but not (1.3).)

Proof. Frolίk [Fr] has shown that there is an infinite, countably
compact subspace X of βN, the Stone-Cech compactification of the
integers, such that every compact subset of X is finite. D

EXAMPLE 9.2. A paracompact Frechet space X satisfying (1.3) but not
(1.1). (Hence X satisfies (1.4) but not (1.6).)22

Proof. Let X be the space Sωι, which is obtained by identifying the
limit points of ω, convergent sequences Xa(a< ωγ). This X satisfies (1.3)
by Theorem 7.1(i), so it remains to show that Xdoes not satisfy (1.1).

22 See Example 9.6 for a Lindelδf space with these properties. See also Example 9.7.
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Suppose X has a cover *P satisfying (1.1); we may assume that X E 3\
Let * be the non-isolated point of X9 and let Ya = Xα\{x}. Let ( P J be an
enumeration of those P Etf* such that Λ; E P and P meets infinitely many
Ya. By induction, choose xn E Pπ\{χ} s u c ^ ^ a t ^ e x*s a r e a ^ in
different Yα's. Let t / = ^\{*n: n E ω}; clearly ί/ is open in X Let
<$(U) = {P E <3>: P C (/}. If P E #(ί/) and x 6 P , then P *= Pπ for any
n, so P meets only finitely many Ya. Hence st(x, Φ(U)) meets only
countably many Yα, and thus cannot have x in its interior. Since X is
Frechet, this contradicts Lemma 2.6(a) (applied to the cover 9{U) of

c/). α

EXAMPLE 9.3. A two-to-one quotient map/: M -* Y9 with Λf a disjoint
union of compact metric spaces, and Y completely regular, separable, not
meta-Lindelόf, and not an K-space. (However, Y does satisfy (1.6).)

Proof. Let S = {l/n: n = 1,2,...} U {0}, and let Y = [0,1] X S. Let
F = [0,1] X {\/n\ n = 1,2,...} have the usual Euclidean topology as a
subspace of [0,1] X S. Define a typical neighborhood of (ί,0) in Y to be
of the form

where ί/(f, I/A:) is a neighborhood of (ί, 1/fc) in [0,1] X {1/fc}.
It is easily verified that Y is completely regular.
Clearly Yf is a dense separable subspace of Y, and [0,1] X {0} is a

closed discrete subspace of Y. Hence Y is separable but not Lindelof, and
thus Y is not meta-Lindelόf.

It is easy to see that Yis determined by the collection

{[0,1] X {l/n}: n = 1,2,...} U {{/} X S: t e[0, l]}

of compact metric spaces, and each point is in at most two elements of
this collection. Thus Y is the two-to-one quotient image of the topological
sum M of these compact metric spaces, by Lemma 1.8.

Finally, Y is not an N-space, because Foged [Fo] has shown that a
&-and-K-space must be meta-Lindelόf. D

EXAMPLE 9.4. A regular Lindelof space with a point-countable base
which is not separable (and thus not an N0-space).
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Proof. Let P be an uncountable subset of [0,1] containing no uncoun-
table closed subsets (i.e., a Bernstein set). Then the space obtained from
[0,1] by isolating the points of P clearly satisfies the desired properties, ϋ

EXAMPLE 9.5. A separable, regular, Lindelof &-space X satisfying (1.1)
which is not an N0-space (or even an N-space).

Proof. As in Example 9.4, let P be an uncountable subset of [0,1]
which contains no uncountable closed subsets. The space X is the same as
the space Y of Example 9.3, except that for t $ P we define a typical
neighborhood of (ί, 0) to be of the form

ί/X({0} U {l/fc: *>/!}),

where U is a Euclidean neighborhood of tin [0,1]. Now X is easily seen to
be a regular, separable, Lindelof &-space. It is not an N0-space, since
P X {0} is an uncountable relatively discrete sub space. It is not an
N-space, since a Lindelof N-space must be an N0-space. It remains to show
that X satisfies (1.1). Let A = {(y,0): y & P}. There is a countable base %
in X for the points of A. Now X\A is homeomorphic to an open
subspace of Example 9.3. Hence there is a point-countable collection <$
which satisfies (1.1) for X\A. Then it is easily checked that % U <$
satisfies (1.1) for X. D

EXAMPLE 9.6. A regular Lindelof Frechet space F satisfying (1.3) but
not (1.1).

Proof. Let H be the space of Example 9.4, and let

F= {HX{ω+ \))/HX {ω}.

(Here ω + 1 carries the usual order topology.) Since H X (ω + 1) has a
point-countable base, F satisfies (1.3), by Theorem 7.1(i). But F has
a subspace homeomorphic to Sω , the space of Example 9.2 (namely
(K X (ω + \))/K X {ω}, where K is a set of ωx isolated points of H).
Thus, by Theorem 7.1(b), F does not satisfy (1.1). D

EXAMPLE 9.7. A separable, regular, Lindelof A>space G satisfying (1.3)
but not (1.1).

Proof. Let Xbe the space of Example 9.5. Let

G = XX (ω + \)/XX {co}.
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Then G satisfies (1.3) by Theorem 7.1(d) and (i). But, as in the previous
example, G contains a copy of Example 9.2, so G does not satisfy (1.1). •

EXAMPLE 9.8. A perfect map /: X -» 7, with X a paracompact fc-space
satisfying (1.1) but with Y not satisfying (1.1). (However, Y must satisfy
(1.3) by Theorem 7.l(e).)

Proof. Let Z be the topological sum of the unit interval [0,1] and the
collection {S(x): x E [0,1]} of 2ω convergent sequences S(x). Let X be
the space obtained from Z by identifying the limit point of S(x) with
x E [0,1], for each x E [0,1]. Then X is a quotient s-image of a metric
space, so X is a &-space satisfying (1.1) by Theorem 6.1.

Let Y be the space obtained from X by identifying [0,1] to a single
point, and let / be the quotient map. Clearly, / is perfect. It is easy to see
that Y contains a closed subspace homeomoφhic to the space of Example
9.2. Hence Y does not satisfy (1.1). D

REMARK. It is not known whether there is a Frechet space with the
properties of the space X in Example 9.8.

REMARK. A separable Lindelόf space having the properties of the
space X of Example 9.8 can be obtained from Example 9.5 in much the
same way that X in Example 9.8 was obtained from Example 9.2. We omit
the proof. Note that, by Theorem 5.2, this space could not be a Frechet
space.

EXAMPLE 9.9. An N0-space X satisfying (1.1) which is not a k-space.

Proof. The space of Example 1.2 of [M3] has the required properties.
It is shown in [M3] that this space is an N0-space which is not a /c-space.
The proof that it satisfies (1.1) is quite long and complicated, and we omit
it. D

REMARK. The above example, although not a fc-space, is a fcΛ-space
(i.e., every real-valued function, whose restriction to every compact set is
continuous, is continuous). We don't know an example of a space satisfy-
ing (1.1) which is not even a fcΛ-sρace, but conjecture that such spaces
exist.
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EXAMPLE 9.10. A regular quotient space X of a countable metric
space, such that:

(a) ^has a countable cover P̂ satisfying (1.1) for which the conclusion
of Lemma 2.6(a) is false.

(b) X has a subspace Y which does not satisfy (1.3).

Proof. Let X be the quotient space of the topological sum of Σn ( Ξ ω Sn

of countably many convergent sequences (including their limits) Sn9

obtained by identifying, for all n > 0, the limit of Sn with the nth term of
So. (This X is sometimes called S2 )

(a) Let P̂ be the set of all sets P such that P is a finite or cofinite
subset of Sn for some n E ω. It is easy to check that 9 satisfies (1.1) and
that x £ (st(x, Φ))0 if x is the limit of So.

(b) Let Y C X consist of all isolated points of X, together with the
limit x of So. Suppose ^ is a cover of Y satisfying (1.3) for 7, with Y ety.
Since Y is countable, 9 must also be countable, and we may assume
<$ = <$*.

Let (Pk) be an enumeration of those P G ' J which meet infinitely
many Sn. Inductively choose yk E P/\{x} such that each yk is in a
different Sn. Let U = Y\{yk: kEω}. Then x E U, and ί/is open in Y. If
P E ^ and P C £/, then P ^ ^ for any k; hence P meets only finitely
many Sn and therefore {x} Π P is open in P. But {x} is not open in ί/, so
ί/ is not determined by {P E 9: P C t/}. Since <? = ^P*, that contradicts
our hypothesis that P̂ satisfies (1.3). D

EXAMPLE 9.11. A countable Frechet S0-space X such that:
(a) Jfhas a countable cover P̂ satisfying (1.1) for which the conclusion

of Lemma 2.6(b) is false.
(b) XX Q does not satisfy (1.3), where Q denotes the rationals.

Proof. Let X— *Sω, the space obtained by identifying the limits of
countably many convergent sequences Sn. Let x be the unique non-iso-
lated point of X.

(a) Let %n be a countable base for Sn9 and let P̂ = Urt <$>„. This ^ has
all the required properties, with the conclusion of Lemma 2.6(b) false at x.

(b) Since property (1.3) is closed hereditary, it suffices to find a closed
subspace A of X X Q which is homeomorphic to the space Y in Example
9.10(b).

For each «, let xni -» xn be the sequence Sn in the above definition of
X. Let (yn) be a sequence of irrationals with j>rt -> 0, and, for each «, pick
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qni EQ with qni^yn. Let

A = {(x9O)} U {(xni9qni):n9ieω).

It is easy to check that the subset A of X X Q has the required proper-
ties. D

REMARK. Example 9.1 l(b) should be compared with Theorem 7.1(d),
which implies that 1 X 7 satisfies (1.3) whenever X satisfies (1.3) and 7 is
a locally compact metric space.

EXAMPLE 9.12. A space X satisfying (1.2) but not (1.1). (Note: This
space cannot be a fc-space.)

Proof. The space X is the ordinal space ω, + 1, with ω, having the
usual neighborhoods and all points a < ω] isolated. The points of X,
together with all intervals (α, ωx) where a < ωl9 is easily seen to be a
point-countable cover of X satisfying (1.2).

Suppose P̂ is a point-countable cover of X satisfying (1.1). Since only
countably many members of 9 contain the point ωl9 we can easily find an
ordinal a < ωx such that, if P E 9 and ωι E P C (α, ω, ], then P = {ωj}.
Thus P Π (α, ωλ) is closed in P for each P E <3> with P C (α, ω, ], but of
course (a,ω{) is not closed in (α, ω, ]. Thus Xdoes not satisfy (1.1). D

EXAMPLE 9.13. A sequence-covering open map between separable
metric spaces which is not compact-covering.

Proof. An example of an open surjection between separable metric
spaces which is not compact-covering was given in [M5, Example 4.1]. But
it is easy to check that every open surjection/: X -» 7 with first-countable
X is sequence-covering (in fact, every convergent sequence in 7 is the
image of a convergent sequence in X), so that completes the proof. D

Our next example is preceded by the following lemma. In both the
lemma and the example, S denotes {0} U {l/n: n = 1,2,...}.

LEMMA 9.14. Let Z be a separable metric space. Then there is a closed
subset YofSXZ containing {0} X Z such that ττ,(7) = S but τrλ{B) φ S
for any proper closed B C 7. (Here πx: S X Z -* S denotes the coordinate
projection.)
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Proof. Let (Sn) be a disjoint cover of SXfO} by infinite subsets, and
let (yn) be a countable dense subset of Z. Let

7=({0}XZ)U U(SnX{yn}).
n=l

It is easy to check that Y satisfies our requirements. D

EXAMPLE 9.15. A quotient map /: X-* 5, with X separable metric,
which is not compact-covering. Moreover,/can be chosen to satisfy either
of the following requirements:

(a) / = h o g, with g open and h perfect.23

(b) X is countable and complete.

Proof, (a) In Lemma 9.14, take Z to be a closed interval. Then Y is a
compact metric space of cardinality 2ω, so the proof of [M6, Lemma 4.1]
shows that there is a continuous open map g: X -> Y from a separable
metric space X onto Y which is not compact-covering. Then / = πx ° g
satisfies our requirements.

(b) In Lemma 9.14, take Z to be a countable, compact metric space
with infinitely many non-isolated points. Then Y will also have these
properties, so the proof of [M7, Theorem 1] implies that there is a
quotient map g: X -> Y from a countable, complete metric space onto Y
which is not compact covering. Then f=πx°g satisfies our require-
ments. D

REMARK. Example 9.15(a) provides a negative answer to the question
asked immediately after the statement of Theorem 1.4 in [M8]. It follows
from [M8, Theorem 1.4] that the map/in Example 9.15 cannot be chosen
to satisfy both conditions (a) and (b) of that example.

EXAMPLE 9.16. An open map/: X-> Y9 with each f~\y) countable,
from an K0-space Jfonto a regular, first-countable space Y which does not
satisfy (1.4).

Proof. Such a map is constructed in Example 12.6 of [MJ, where it is
shown that Y is not an 80-space. By Theorem 5.2, this implies that Y
cannot satisfy (1.4). D

23A. V. Ostrovskiϊ has kindly informed us that he also obtained such an example with
essentially the same proof.
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10. Some questions. We conclude this paper with a list of open
problems, some of which have already been mentioned elsewhere in the
text. See Theorem 7.1 and the examples in §9 for some related results.

(10.1). Suppose X is a quotient s-image of a metric space (equiva-
lently, X is a fc-space satisfying (1.1)). Is X a compact-covering .s-image of
a metric space? Does X satisfy (1.6)? (An affirmative answser to the
second question implies an affirmative answer to the first.) (See Footnote
10 and remarks preceding and following Theorem 6.1.)

(10.2). Are pseudo-open s-images of metric spaces (equivalently,
Frechet spaces satisfying (1.1)) preserved by pseudo-open s-maps? By
perfect maps? (See Example 9.8 and remarks following Corollary 6.2).

(10.3). Are spaces (or ^-spaces) satisfying (1.1) preserved by open
5-maps? (The answer is positive for Frechet spaces; see Theorem 7.1(f)).

(10.4). Are fc-spaces satisfying (1.3) (equivalently, (1.4)) preserved by
quotient s-maps? By pseudo-open s-maps? By open s-maps? (Without the
k-space assumption, (1.4) need not be preserved by open s-maps; see
Example 9.16.)

(10.5). Are spaces satisfying (1.3) preserved by perfect maps? (The
answer is positive for fc-spaces, since in this case (1.3) and (1.4) are
equivalent—see Theorem 7.1(e)).

(10.6). Is the pseudo-open s-image of a meta-Lindelδf (or even para-
compact) space meta-Lindelδf? Is the closed image of a meta-Lindelδf
space meta-Lindelδf? (See the remark following Proposition 8.2.)

(10.7). Does every closed image of a metric space satisfy (1.3) (equiva-
lently, (1.4))? (By Example 9.2, it need not satisfy (1.1).)

(10.8). Is every space satisfying (1.1) a /^-space? (See the remark
following Example 9.9.)

(10.9). Is property (1.3)^ preserved by arbitrary subsets? By finite or
countable products?

(10.10). Does Proposition 3.2 remain true without assuming that X
has countable tightness?
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