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PROJECTIVE SPACE AS A BRANCHED COVERING
OF THE SPHERE WITH ORIENTABLE BRANCH SET

ROBERT D. LITTLE

If RP" is a branched covering of S" with locally flat, orientable
branch set, then n— 1,3, or 7.

1. Introduction. Let M be a closed, orientable PL ^-manifold. A
theorem of Alexander [2] states that every such manifold is a piecewise
linear branched covering of the /i-sphere, Sn, i.e. there is a finite-to-one
open PL map /: M -> Sn. The subset of M where / fails to be a local
homeomorphism is called the singular set and the image of the singular set
is called the branch set. Brand [4] suggests the problem of determining the
values of n for which RP", real projective w-space, is a branched covering
of Sn with branch set a locally flat submanifold of Sn

9 and he shows that
if such a covering exists, then n = 2' ± 1. We show that the values of n
can be further limited if the branch set is orientable.

THEOREM 1.1. // RPn is a branched covering of Sn with locally flat,
orientable branch set, then n — 1,3, or 7.

The converse of Theorem 1.1 is true in the cases n — 1 or 3: the
identity map provides a branched covering of Sx and Hilden and
Montesinos have shown, independently, that every closed, orientable
3-manifold is a branched covering of S3 with branch set a locally flat
1-manifold, [6] and [9]. Theorem 1.1 shows that if the branch set is
required to be orientable, n = 7 is the only open case.

2. Normalized branched coverings. In [5], Brand proves a normali-
zation theorem for smooth branched coverings. He uses his normalization
theorem to show that there is a certain ^-theoretic necessary condition for
the existence of smooth branched coverings. In [4], Brand extended his
normalization theorem to branched coverings with locally flat branch sets.
He then showed that a branched covering with locally flat branch set is
the pull-back of a universal smooth branched covering and hence must
satisfy the same iΓ-theoretic necessary conditions as a smooth branched
covering.

If η is a 2-plane bundle over a complex X, let μk(η) be the 2-plane
bundle obtained from η by the homomorphism μk: O(2) -> O(2) given by
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μk(z) - zk for z e SO(2) and μk(τ) = T for

/I 0 \
τ = l o - iJ

If k is odd, μk and the Adams operation ψk agree on 2-plane bundles, ([1],
p. 193). There is a map, μk: η -* μk(η), given in local coordinates by
μk{x, z) — (x, zk), where x E X and z G R2 = C. The definition which
follows is due to Brand, [4].

DEFINITION 2.1. A branched covering/: M^N, with locally flat
branch set B and branch cover B — f~\B)9 is called a normalized
branched covering if

(2.2) /1M — B is a local PL isomorphism,
(2.3) / 1 B is a local PL isomorphism, and
(2.4) if ξ = normal bundle of B C M and £ = normal bundle of

B C N, then for each component J 7 of 7?, there is an integer ki such that
μk (I) IJ?,. = /*{ IB. and the map / maps a tubular neighborhood of B into
a tubular neighborhood of B via £>| | Bf -> Z>μ*t(|) 14 = Z)/*| | ̂  -> Dξ.

If /: M -» N is a branched covering, then/1M — JB is a covering space
map and, if the degree of this covering is /c, / is called a k-ίold branched
covering. It is possible to visualize a &-fold, normalized branched covering
in the following way. For each component Bj of the branch set 2?, there is
associated a partition of k, Σ%x ltkt — k, such that on part of f~\Bj)9 the
map / has the form f(x9 z) = (f(x)9 zkι) in the local coordinates of the
disc normal bundle, and this part of f\Bj) is an /-fold covering of BJ9

[4]. The integers kt are called the exponents of the branched covering.
Each exponent is less than or equal to k9 and so a normalized branched
covering has only a finite number of distinct exponents.

For each integer k > 2, Brand defines a AΓ-theoretic characteristic
class ηk in KO(MO(2)) with the property that τ? |̂BO(2) = γ - μk(y)9

where γ is the universal 2-ρlane bundle. Let Bk = {x E B: f maps the
fibre over x of the tubular neighborhood of B in M to the fibre over/(x)
of the tubular neighborhood of B in TV by the map z -> zkι}9 where k{ is
one of the exponents of/, 1 < / < m. For each /, 1 < Ϊ < m, let g7 be the
composite map

(2.5) M ^ ^

where cz is the collapsing map onto the Thorn space and hi is induced by
the classifying map of the bundle \ \ Bk.
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The theorem below is due to Brand, ([4], Theorems 0.1 and 6.4). The
proof involves Brand's theorem that locally flat branched coverings of a
fixed dimension are all pull-backs of a universal smooth branched cover-
ing, ([4], Lemma 6.3), the naturality of the stable block bundle τM — f*τN
with respect to pull-backs, and Brand's Λ>theoretic necessary condition
for smooth coverings, ([5], Theorem 1). Our statement is slightly different
than Brand's original statement. We wish to focus attention on the
exponents of the branched covering, and so we have observed that it
clearly follows from the construction of the universal smooth covering,
([4], Lemma 6.3), that the realization of a PL covering preserves local
degree.

THEOREM 2.6. (Brand, [4].) ///: M -> N is a branched covering with
locally flat branch set, then, given a PL structure on N, there exists a unique
PL structure on M making f a normalized branched covering. The stable
block bundle τM — f*τN determined by this unique PL structure is related to
the exponents offby the equation

m

(2.7) τM-f*τN= Σ Λt.

A natural question now arises: Does formula (2.7) depend on the
special PL structure for M which makes / a normalized branched cover-
ing? If one wants to use (2.7) to obtain information about branched
coverings, there will typically be a strongly preferred stable tangent block
bundle τM that one will want to use in (2.7). For example, if M and N are
smooth manifolds, one might like to use the stable tangent bundle
determined by a preferred smooth structure for M in (2.7). A form of (2.7)
which does not depend on the PL structure of M can be obtained if stable
block bundles are replaced by stable spherical fibrations. Before we can
establish this fact, we need a preliminary lemma.

If M is a PL ^-manifold, a homotopy PL structure for M is a PL
^-manifold X together with a simple homotopy equivalence φ: M -> X. It
is well-known that a block bundle determines a spherical fibration, ([10],
p. 23). If β is a stable block bundle over M, let J(β) denote the stable
spherical fibration determined by β. In particular, if τX is the stable
tangent block bundle of X, J(φ*τX) denotes the stable spherical fibration
determined by φ*τX

LEMMA 2.8. If φ: M -> X and ψ: M -» Y are two homotopy PL
structures for M, then J(φ*τX) = /(ψ*τΓ).
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Proof. Set v — Φ*rx, where vx is the stable normal block bundle of X9

and note that the homotopy PL structure φ: M -» X determines an
element of the PL bordism group Ωπ(Af, v) ([11], p. 32), of degree + 1 .
The homotopy PL structure ψ: Λf -» 7 determines an element of degree
+ 1 in ΩΠ(M, ?')> where J>' = ψ**v Let J>M be the Spivak normal fibration
of M, ([11], p. 105). According to Spivak's theorem, ΩΛ(M, v) contains an
element of degree + 1 if, and only if, v is stably homotopy equivalent to
vM9 that is, if, and only if, J(v) = vM, ([11], p. 105). If follows that
J(v) = J(v') and so /(φ*τAr) = /(ψ*τ7) since in the group of stable fibre
homotopy equivalence classes, we have J{<$>*τX θ v) — /(ψ*τ7 θ v% a n d
Whitney sums are preserved.

If X is a complex, taking spherical fibrations yields a homomorphism
KO( Jf) -» /(X), ([7], p. 211). The terms on the right-hand side of (2.7) are
stable block bundles determined by elements of KO(M). It follows
immediately from Lemma 2.8 and the fact that / preserves Whitney sums,
thaΓthe image of the right-hand side of (2.7) under the /-homomorphism,
/: KO(M) -> J(M)9 is equal to J(rM - f*τN)9 where ΊM - f*τN is the
stable block bundle determined by any choice of PL structures for M
and N.

THEOREM 2.9. If there exists a branched covering /: M -* N with locally
flat branch set, then the stable block bundle ΊM — /*τ7V, determined by any
choice of PL structures for M and N> is related to the exponents off by an
equation in the group J(M),

m

(2.10) J(τM-/*τJV)= Σ'Ufiϊ*,)-
i— 1

3. Products of the Brand characteristic classes. If /: M -> N is a
branched covering with locally flat branch set and exponents ki91 < i < m,
let

(3.1) η Λ i ( M ) = f t χ ,

be the Brand characteristic classes in KO(M) described above. If X is any
complex, the tensor^ product operation on vector bundles makes KO( X) a
ring with ideal KO(J0, ([7], p. 116). Our next theorem asserts that the
product of any two Brand characteristic classes corresponding to distinct
exponents must be zero.

THEOREM 3.2. // /: M -* N is a branched covering with locally flat
branch set and exponents ki9 1 < i < m, then, ifi

(3.3) Vkι(M)ηkj(M) = 0.
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Theorem 3.2 will follow immediately from the lemma below. If Xi9

\ <i <m, is a family of complexes, let pry: Xλ V X2 V \/Xm -> Xi

denote projection on the ith summand.

_ _ LEMMA 3.4. // ct e KO(^) and c} E KO( A}), / ̂  j , /Λew wi the ring
K O ί ^ V ^ V . - . V Λ Γ J

(3.5) (pr cJίpr c,) - 0.

Prcx?/. If /7 : Xj -* Xx V X2V — - V Xmis the inclusion map, then there
is an^isomorphism (if, /£,. . . ,/*): KO( JT, V X2 V V I J -*
Σ ^ ί K O ί ^ ) , ([7], p. 116). To establish (3.5), it is therefore enough to
show that /* [(pr*c7)(pr*c7)] = 0, / Φj9\< i9j9 k <m. This is clear since
pr, © ik is the constant map at the basepoint 'ύiφk and the identity if
i = k.

To prove Theorem 3.2, let c: M -> V,^, T(ξ\Bk.) be the collapsing
map into the one point union of the Thorn spaces determined by the
exponents of the branched covering and note that

(3.6) η

where hi is the map in (2.5). Theorem 3.2 now follows from Lemma 3.4 if
we set Xt= Ί\l\Bk)9 1 < / < m.

It is interesting to compare Theorem 3.2 with a theorem concerning
branched coverings and products of Stiefel-Whitney classes. Berstein and
Edmonds showed that if M is spin (w2(M) = 0) and if there exists a
branched covering f:M-*Sn with locally flat branched set, then all the
products of the Stiefel-Whitney classes of M are zero, [3]. Theorem 3.2
says that if M is a branched covering of any manifold with locally flat
branch set, then the product of any two Brand classes corresponding to
distinct exponents is zero.

4. The proof of Theorem 1.1. We will prove Theorem 1.1 by using
(2.10) to show that if RP" is a branched covering with locally flat,
orientable branch set and n ^ 1,3, or 7, then the branched covering must
have more than two distinct exponents. It will then follow from Theorem
3.2 that the product of two Brand classes corresponding to a pair of
distinct exponents must be zero and we will show JJiat this leads to a
contradiction in view of the structure of the ring KO(RP") for every
n φ 1,3, or 7 except n = 5. The next lemma eliminates this one additional
case. The proof of the lemma involves the techniques used by Brand to
prove his theorem that if RP" is a branched covering with locally flat
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branch set of any manifold with trivial total Stiefel-Whitney class, then
n = 2' ± 1, [4] and [5].

LEMMA 4.1. IfRPn is a branched covering with locally flat, orientable
branch set of any manifold with trivial total Stiefel-Whitney class, then
n = T - 1.

Proof. If £e v e n denotes the union of all ξk for k even, we have Brand's
formula, [4] and [5], for the total Stiefel-Whitney class of τM - f*τN
where/: M -» N is a branched covering with locally flat branch set,

(4.2) w(τM -f τN) = 1 + c * φ ( l + wγ{leven) + w^f + - • - ) .

In formula (4.2), c: M -> Γ( | e v e n) is the collapsing map and φ is the Thorn
isomorphism. If M = RPW, π = 2' + 1, and JV has trivial total Stiefel-
Whitney class, it follows from (4.2) that 0 φ a2' = c*φ(>v,(|even)

2'~2)
where α in /^(RP"; Z2) is the generator. If t > 2, this means ^ , ( 1 ^ ) ^ 0
and so the branch set is not orientable.

It follows from the work of Brand that there are orientable character-
istic classes ηk in KO(MSO(2)) such that ηk \ BSO(2) = γ - μk(y)9 where γ
is the universal orientable 2-plane bundle, ([5], p. 2). Using the same
symbols in the orientable and non-orientable cases will not cause any
confusion in what follows.

If O(2) is replaced by SO(2) in Brand's construction, ([4], Theorem 2.2
and Lemma 6.3), it is clear that it is possible to construct a universal
smooth branched covering with orientable branch set. It follows that if /:
M -> N is a branched covering with locally flat, orientable branch set,
then each of the mappings gf. in (2.5) lifts to MSO(2), that is, each Brand
class of M is the pull-back of a universal orientable Brand class in
KO(MSO(2)). The space MSO(2) is homotopically simple. In fact, MSO(2)
is a K(Z, 2). It is therefore possible to compute the orientable Brand
classes in KO(RPΠ). The group KO(RP") is a finite cyclic group gener-
ated by λ — 1, where λ is the canonical line bundle over RP", ([7], p. 223).
The proof of the following lemma is found in [8].

LEMMA 4.3. // there exists a branched covering /: RPn -> N, with
locally flat, orientable branch set, then

(4.4)
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Before we can proceed, we need to know more about the ring

KO(RP"). The order of KO(RP") is 2φ(n\ where φ(n) is the number of
integers in the set {s: 0 < s < n, s = 0,1,2,4 (mod 8)}, ([7], p. 223), and
the ring structure is given by (λ - I)2 = -2(λ - 1), ([7], p. 225). It is
known that (τRPn) = (n + l)λ, where the left-hand side of the equation
is the stable isomorphism class of the tangent bundle determined by the
standard smooth structure on RP", ([7], p. 17).

In the theorem below, the term ττ-manifold means a smooth, closed
^-manifold with stably trivial tangent bundle, such as Sn.

THEOREM 4.5. // RPn is a branched covering of a π-manifold with
locally flat, orientable branch set, then n = 1,3, or 7.

Proof. Suppose RPn is a branched covering of a 7r-manifold N with
locally flat, orientable branch set. It is known that N immerses in R*+1

with trivial normal bundle, i.e. TN θ 1 is the trivial n + 1 bundle. It
therefore follows immediately from Theorem 2.9, the fact that the /-ho-
momorphism/: KO(RP") -*JQlLPn) is an isomorphism, ([7], p. 225), and
the comments above that, in KO(RP"),

m

(4.6) (« + i ) ( λ - i ) = Σ nkl(*P")>

where kξ9 1 < i < ra, are the exponents in a normalization of the branched
covering.

Let p be the number of distinct even exponents with essential classify-
ing map. It follows from Lemma 4.3 and formula (4.6) that n is odd and

(4.7) t>=i(/!+ 1)

If n φ 1,3, or 7, it is clear that « + l £ θ (mod2ψ(w)), ([7], pp. 219-221).
This is just the fact that RPn is a 77-manifold if, and only if, n — 1,3, or 7.
In fact, RPn is parallelizable if /i = 1,3, or 7. Therefore, if n φ 1,3, or 7,
p ΞΞ i ( w + 1) 5£ 0 (mod2φ(π)~1), and so t> > 3. This means that there are
at least three distinct even exponents with essential classifying maps. But
Lemma 4.3 and the ring structure of KO(RP"), together with Theorem
3.2 imply that two distinct even exponents is an impossibility. If kt and k;

are distinct, then by Theorem 3.2, ηk(RP")ηk(RPn) = 0. If k{ and k} are
distinct and even with essential classifying map,

Vkι(RP")ηkj(RP") =[2(λ - l)][2(λ - 1)] = -8(λ - 1) = 0,

but 8 s 0 (mod2φ(π)) if n φ 1,3,5, or 7, ([7], p. 219). Since Lemma 4.1
eliminates n = 5, the proof is complete.
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