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ORDER INTERVALS OF SELF-ADJOINT
LINEAR OPERATORS AND

NONLINEAR HOMEOMORPHISMS

E. N. DANCER

In this paper, we prove an invertibility criterion for order intervals
of self-adjoint linear operators.

We then use this to improve and clarify a good deal of recent work
(see Bates [2], Bates and Castro [3] and Mawhin [12] for example) on
homeomorphism theorems of Ahmad-Lazer type. In particular, we prove a
theorem of this type for systems without any conditions on the type of
spectrum of the linear part. (Of course, the location of the spectrum is
important.) We also show how our ideas can be used to obtain existence
results when similar conditions only hold asymptotically under certain
regularity assumptions.

Let us describe our main results in more detail. Firstly, we assume
that A and C are bounded invertible self-adjoint operators on a Hubert
space H with A < C. We prove that every self-adjoint operator B with
A < B < C is invertible if and only if R(Pΐ) + R(P{) = H. Here Pf is
the spectral projection for A corresponding to (0, oo), P2 is the spectral
projection for C corresponding to ( - oo, 0) and R(L) denotes the range of
L. We also obtain a number of equivalent conditions which we need later
and we discuss generalizations of the theorem to the case of unbounded
operators.

Secondly, we use the above result and a theorem of Browder [5] to
obtain a sufficient condition for a nonlinear Gateaux differentiable map /:
Hλ c H2 -* H2 to be a homeomorphism if f\x) is self-adjoint on H2 and
A < f\x) < B for x ^ Hv This uses no compactness assumptions in any
form and is in a sense best possible. We also show how linear operators
commuting with all the/'(;c)'s can be used to simplify the verification of
our main assumption. In particular, we otain a special case for systems.

Finally, we sketch briefly some applications to partial differential
equations.

In §1, we prove our result on linear operators. In §2, we prove our
result on nonlinear homeomorphisms. Finally, in §3, we consider very
briefly some applications.
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After our work was completed, we became aware of some work of
Amann [1], Most of our results improve his. Note that there is no
analogue of the results in §1 in his work. We have shortened our intended
list of examples because a number already appeared in his work.

I should like to thank the referee for his careful reading of the

manuscript.

1. Invertibility of order intervals of self-adjoints. We assume that H

is a real Hubert space (though the theory would work equally well for

complex spaces). Let S denote the set of bounded self-adjoint operators

on H and assume that A,C e S,A and C are invertible and A < C (that

is, (Ax,x) < (Cx9x) on if). L e t F = {B e S: A < B < C).

THEOREM 1. The following are equivalent.

(i) Every element of F is invertible.

(ii) There is a connected subset % of F such that A e #, C e # and

each element of ^is invertible.

(iii) Every element of F is invertible and there is a q > 0 such that

\\B-ι\\<qifB<ΞF.

(iv) R(P±) + R(P2) = H, where P± is the spectral projection of A

corresponding to (0, oo) and P2 is the spectral projection of C corresponding

to (-oo,0).

(v) There exist two closed subspaces M and N of H and a q > 0 such

that H = M + N9 (Ax9x) > q\\x\\2 on M and (Cx9 x) < -q\\x\\2onN.

Proof. Clearly (iv) => (v), (i) => (ii) and (iii) ==> (i). It is well known
and easy to prove that (v) implies (iii). One simply uses that A < C and
the assumptions to show that M Π N = {0} and thus H = M Θ N. Hence
the corresponding projection is continuous. If B e F9 then B is self-ad-
joint and thus B will be invertible if ||2toc|| > q\\x\\ on H. Hence this part of
the result will follow if we show that | |jBjc||>ήf||x| |ifx = m + w with
m e M and n e N. This is simply proved by showing that
(B(m + n)9m — n) > q(\\m\\2 + | |«| |2). A similar argument appears in
Mawhin [12]. Thus it remains to show that (ii) implies (iv). This is the
major part of the proof. If B e <g9 let Pβ denote the spectral projection of
B corresponding to (— oo,0). The idea of the proof is to use a continuity
argument to show that

(1) R(P+) + R(PB) = H

for all B e <€. (We first show that it is true if B = A.) We now consider
the details. If B = A, (1) is true by the spectral theorem (because σ(A) =

(σ(A) Π (0, oo)) U (σ(A) n ( - oo,0))). Assume D e if. We first show
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that R(Pι) Π R(PD) = {0} and R(P±) + R(PD) is closed. To see this,
choose ε > 0 such that σ(A) U σ(D) does not intersect [ —ε, ε]. Thus
σ(Λ\R(p+)) Q (ε, oo) and hence

(2) (Ax,x) >e\\x\\2

for x G ΛίPj4"). Similarly (Z>JC, x) < -ε\\x\\2 on Λ(P^). Since A < D9 it
follows that

(3) <Λx,*)< -εW2

on R(PD). We prove that if m G R{P?\n G Λ(P^) and ||m|| = ||fl|| = 1,
then ||/w + Λ|| > φ 4 | Γ \ It follows easily from this that R(P^) Π Λ(/^)
= {0} and R(Pχ) + R(Pr>) iS closed. To prove the inequality note that,
by the self-adjointness of A9

(A(m + n)9m ~ n) = (y4m, m) - (y4«5 Λ) > ε + ε = 2ε

(since m G R(Pf), n G R(P^) and ||m|| = ||«|| = 1. Here we have used
(2) and (3)). Since

((A(m + n),m- n)) <\\A\\ \\m + n\\ \\m - n\\ < 2\\A\\ \\m + Λ||,

the required inequality follows.
Next we show that if B is near D, R(Pβ) is close to R(P^) in the gap

sense on H (in the sense of Kato [9, p. 197]). Since P# and PD are
projections, this follows easily if we show that | |P^ - P^|| -> 0 as \\B —
D\\ -> 0. This follows from [9, Theorem 6.5.12]. Note that we are assuming
that D is invertible.

We have shown that R(P?) + R(Pό) is closed, Λ ί ^ ) Π R(PD) =
{0} and R(Pp) changes continously in the gap sense. By Lemma 4.4.28 in
[9], it follows that the codimension of R(Pι) Θ R(P^) is locally constant.
Since ^ is connected, it follows that the codimension is constant on ^.
However, we proved that the codimension is zero for D = A and hence it
also must be zero for D = C, that is, R(P±)®R(P{) = H. This com-
pletes the proof.

We now discuss generalizations to the unbounded case. We first need
some notation. Assume that A and C are self-adjoint closed operators on
H with the same domain 3)(A) and A < C. Let T = [B\ B is closed,
3){B) = 2{A\ A < B < C}. We use the graph norm to topologize T. (In
other words, D is near B if B — D has small norm as a map of Si {A) with
the graph norm into H.) Note that ||x|| + ||J?JC|| is a norm on 2{A)
equivalent to the graph norm (cp. [9, p. 191, Remark 1.5]). Then it is
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possible to prove the following partial analogue of Theorem 1. Note that
the modulus and square root of self-adjoint operators are studied in [9].

THEOREM Γ. Assume that A and C are self-adjoint closed inυertible
linear operators on H with the same domain and A < C. In addition, assume
that T contains at least one connected set containing both A and C. Then the
following are equivalent,

(i) Every element of T is invertible.
(ii) There is a connected subset ^ of T such that A e <%, C G Ή and

each element of ^is invertible,
(iv)®(\A\1/2) = (^(M| 1 / 2 ) n R(P+)) + (^(M| 1 / 2 ) n R(P2)).
(v) There exists subspaces M andNof@(\A\1/2) closed in the @(\A\1/2)

norm and q > 0 such that (a) 2{A) Π M is dense in M for the @(\A\ι/2)
norm, (b) 2{A) Π N is dense in N for the 9{\A\ι/2) norm, (c) M + N =
@{\A\ι/2),{ά)(Ax,x) >q\\x\\2onMn@(A)and(έ)(Cx,x) < -q\\x\\2

onN Π

REMARKS. This is not really satisfactory for a number of reasons. We
do not know if the extra assumption in Theorem V of the existence of the
connected set can be avoided. In our applications to nonlinear equations,
it is usually trivially satisfied. Note that this extra assumption is only used
to prove that (i) => (ii). It certainly holds if C — A is A bounded with A
bound less than 1 (in the sense of [9, §4.1.1]). We simply use

[A + t(C-A):0< t < 1}.

Secondly, it would often be preferable to replace 3(\A\ι/2) by 2{A) in
(iv) and (v) (with other corresponding changes). This is especially true of
(v) where the statement could be simplified. Moreover, @(\A\1/2) is not
always easy to calculate. Unfortunately, we have been unable to prove
such a result except if A is bounded below. Note that a density argument
shows that the statement corresponding to (iv) with !3>(\A\1/2) replaced by
2{A) implies (iv). (A corresponding result holds for (v).) One further
problem is that we have no analogue of (iii) of Theorem 1 unless we make
further restrictions. I will return to this in a moment.

Sketch of proof of Theorem Γ. The proof has the same basic ideas as
the proof of Theorem 1 but the details are more complicated. We need
only prove that (ii) => (iv) and (v) => (i). To prove that (v) => (i), we note
that, if B e Γ, then 3)(\B\ι/1) = 3>{\A\ι/1) and \B\ι/1 is \A\^2 bounded
(cp. [9, p. 572]). If (v) holds and B *Ξ T, one shows by considering
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(\B\(m + n), m — n) that there is a k > 0 such that

(4) \\\B\l/\m + n)\\\\\B\l/\m-n)\\

>k(\\m\\2 +\\\A\1/2

m( +\\n\\2 +\\\A\1/2n()

ύ m ^ M Cλ 2ι(A) and n e jV Π 2>{A). By a density argument, the same
result holds for m e M and n&N. Since | 5 | 1 / 2 is \A\ι/1 bounded, it
follows that there is a k > 0 such that

> k\\x\\ if x e ^ ( | ^ | 1 / 2 ) = M + N.

Hence | 5 | 1 / 2 is invertible and thus 5 is invertible.
To prove that (ii) implies (iv) we use a similar argument to before

except that we work in the Banach space @(\A\ι/2). We prove that
(R(PD) Π @(\A\ι/2)) + (R(P?) Π 2){\A\ι/2)) is closed by using an argu-
ment similar to that in the proof of the corresponding part of Theorem 1
above except we use an inequality similar to (4) above. (It is here that we
run into difficulties if we try to use Sι(A) rather than @(\A\ι/2).) Thus the
proof can be completed as before if we show that the map D -» P^
depends continuously on D if D is given the graph norm and Pp is
considered in the uniform norm as a map of the Banach space @(\A\ι/2)
into itself. (The standard reduction theorem ensures that P^ commutes
with \D\ι/2 and so it maps 2{\D\ι/1) = ®(\A\ι/1) into itself.) By [9,
Theorem 6.5.12], \\P^ - P^"|| -> 0 as D -> B in the graph norm. (Note
that the norm || || is the norm on H.) Hence, by the Heinz inequality (cp.
[10]), the result will follow if | |P^ - P£\\Λ -> 0 as D -> B. (Here, || | ^ is
the usual norm for linear operators on the Banach space 2]{A).) Now
BPB = PBB a n d (B + S)PD = PD(B + s) w h e r e S = D- Bis small in
the graph norm. Hence

(5) B(PD - PB)B-1 = BPBB-1 ~ PB

= PD ~ PB + PDSBι - SPDB~\

Now PQ commutes with D and hence has norm 1 as a map of Si (A) =
2(D) with the D graph norm into itself. Thus it has locally bounded
norm if we put the B graph norm on 2{A) (because the two norms are
"nearly the same" if D is near B). Hence it follows from (5) that
WB(PD ~ PB)B~1\\ -> 0 as D -> B. The result now follows.

ADDITIONAL REMARKS. I want to return to the question of obtaining
estimates for B~ι. Note that there are three possibilities here. We could
try to estimate B1 as a map of H into H or H into @(\A\1/2) or H into
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). We briefly discuss all three as they seem to be of interest for
nonlinear problems. Firstly, if (v) is strengthened to an assumption on
@(A) (rather than on @(\A\1/2)) we easily find that there is a k > 0 such
that \\B'ιx\\ < k\\x\\ if x e H and B e Γ. This follows because

\\B(m + n)\\(\\m\\ + \\n\\) > (B(m + n),m- n)

>(Am,m)-(Cn,n)>k(\\m\\2+\\n\\2).

Secondly, if we consider a subset Tλ of T of those operators for which

(6) ||I^Γ/ 2HI^^(WI+||MI1 / 2H|)
on @(\A\ι/2) where kλ is fixed, we then have a uniform bound for \B\~ι/2

as a map of H into @(\A\1/2) and hence of B~ι as a map of H into
2{\A\ι/1) for B in Tv (One simply uses (4).) Our estimate for \B\ι/2 is used
to obtain an upper estimate for || \B\ι/2(m - n)\\. Note that a condition of
the above type holds for each B e T. Our assumption is that we can find
a single kx for all 5 E Γ1# It seems unlikely that this is always true for
Tx = F. However, we do not have a counterexample. However, it seems to
be true in a great many situations. For example, we can take Tλ = T if A
is bounded above or below. Secondly, if there is a k2 > 0 such that

(7) \\B(x)\\<k2(\\x\\+\\Ax\\)

for x G 2{A) and B G Tl9 one can use the Heinz inequality (cp. [10]) to
deduce (6) for B e Tv Condition (6) seems to be considerably weaker
than (7). Finally, suppose T2 is a subset of T and k4 < 1 < k3 such that
\\(B - A)x\\ < k3\\x\\ + k4\\Ax\\ for x e ^(Λ) and 5 G Γ2. Then we have
a uniform bound for B~ι as a map of if into ^(^4) for B G Γ2. This
follows because the results above give a bound for i?" 1 as a map of i7 into
H and because

> (1 - kA)\\Λx\\ - k \x\\

ίoτx
Note that to verify the conditions of Theorem l(iv) or (v) (or Γ(iv) or

Γ(v)) one can use symmetries to simplify the calculations. If Z is self-ad-
joint and commutes with both A and C and if we have a finite or infinite
decomposition of if, H = ΣR(Pi), determined by orthogonal spectral
projections Pi of Z, it suffices to verify (iv) or (v) on each space i?(Pf )
(since the Pt commute with A and C).

One final comment. Some of our ideas have other uses. The codimen-
sion of R(Pι) + R(Pp) where D > A can be used to measure the number
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of eigenvalues of D which cross zero as D varies in cases where R(P£) and
are both infinite dimensional. We return to this briefly in §2.

2. Nonlinear homeomorphisms. We apply the results of the previ-
ous sections to nonlinear maps. We first consider the bounded case.

THEOREM 2. Assume that A and C are self-adjoint bounded inυertible
linear operators on H, that f:H-+H is Gateaux-differentiable for every
x e Hand that A < / ' ( * ) < Candf(x) is self-adjoint for x e H.

(i) // R(Pι) + A(P2~) = H> then f is a homeomorphism of H. Here
P1

+(P2~) is the spectral projection for A(C) corresponding to (0, oo)
((-oo,0).

(ii) If f\x) is inυertible for x e H, if there exist x0, y0 e H such that
fXχo) = A andf\yQ) = C and if there is a subset f of H containing xQ and
y0 such that f\t) is connected, then f is a homeomorphism.

Proof. Part (ii) follows from part (i) by using that (ii) implies (iv) in
Theorem 1. (Set C = f'(f)). To prove (i), note that

| i r ( ) | | p { | | | U | | | } forx e H

and thus

\\f(x) -f(y)\\ < sup{M||,||C||} \\x - y\\ ΐoτx,y^ H.

Hence / is continuous. Assume that, for each x9 y e H, there is a
self-adjoint linear operator D(x, y) on H such that A < D(x, y) < C and

(8) f(x)-f(y) = D(x,y)(x-y).

We will return to this at the end of the proof. Since (iv) implies (iii) in
Theorem 1, we see that Z>(x, y) is invertible and there is a q > 0 such that
\\(D{x, y))~ι\\ < q for I , ^ G £ Hence, by (8), \\f(x)ι- f(y)\\ >
q~ι\\x - y\\ for x9 y e H. Since/is continuous, it follows easily from this
result that / has closed range. Since / is Gateaux-differentiable and
f\x) is invertible for x e //, it follows from Browder [5, Theorem 2]
that/is onto. That/is a homeomorphism now follows easily.

It remains to prove thς existence of D(x, y). The obvious candidate
for D(x, y) is D where D is defined by Du = /J f\x + t(y - x))u dt. It
is easy to check that this has all the right properties provided we prove
that the integral exists. Since our assumptions give a bound on /', it
suffices to prove the measurability of the integrand. This follows because
the integrand is the pointwise limit of continuous functions (by [7,
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Corollary III.6.14]). In fact,

s ' ι ( f ( x + t ( y - χ ) + s u ) - f { x + t { y - x ) ) ) ^ f ' ( x + t ( y - x ) ) u

as s -> 0. This completes the proof.
We now want to consider the unbounded case. We start with the

simplest generalization which applies in many cases. Assume that A is a
closed self-adjoint operator on H with domain 3 (A) and f: 3 (A) —> H is
Gateaux-differentiable {where 3)(A) has the graph norm) such that each
f\x) is closed and self-adjoint on H and such that A < f\x) < C on H,
where A and C are closed self-adjoint operators with the same domain as A.
Assume that 9(\A\1/2) = (3(\A\ι/2) Π R(Pf)) U (3(\A\1/2) Π i?(P2~)).
Finally, assume that there exist k3 < 1 < k4 such that

(9) \\Γ(x)y-AyUk3\\Ay\\+k4\\y\\

for x, y <Ξ 2(A). Then f is a homeomorphism of 3 (A) onto H. The proof of
this is an easy modification of the above proof if one uses Theorem Γ and
the comments after it. The fairly restrictive assumption (9) is used twice.
Firstly, it is used to show that/is continuous as a map on 3(A) into H
and that/'(x + t(y — x))u is bounded on [0,1]. However, these condi-
tions hold under much weaker assumptions or could be assumed. Much
more importantly, it is used to obtain a uniform bound of D(x, y)~ι as a
map of H into 2{A) and hence to deduce that / has closed range.
However, many variants could be proved. For example, if we have an a
priori bound for x in 3)(A) when/(x) is bounded, it suffices to assume (9)
for x in a bounded set in S>(A). Secondly, if we assume (9) with any k3

and kA or if the /'(.x)'s are uniformly bounded below, then our earlier
comments on the use of |/'(«x)|1/2 imply that D(x, y)~ι is uniformly
bounded as a map of H into @(\A\1/2). It follows that if f{xn) -* y then
{xn} is Cauchy in 3(\A\1/2). Hence, if f(x) = Lx + r(x) where L is
linear and closed and @(L) = 3)(A) and if r extends to a continuous map
of 3(\A\1/2) into //, then xn converges in 3(A). It follows that / has
closed range and we obtain another variant of Theorem 2. The second
part of Theorem 2 can be similarly generalized.

Additional remarks. (These apply to both the bounded and un-
bounded case.)

1. In applications, the assumption that/'(Γ) is connected seems to
usually cause little difficulty. One can usually find rather "nice" elements
x0, y0 in 3(A) such that f'(x0) = A, f'(y0) = C and such that the map
t -> f'(txQ + (1 — t)yQ) is continuous even thouugh the map x -> f\x) is
not continuous.
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2. Part (ii) of Theorem 2 is in a sense best possible. Indeed suppose
that (i) /: 3)(A) -> H is (Frechet) twice continuously differentiate, (ii)
there is a connected subset^of 3){A), x0, y0 e <#and an invertible closed
self-adjoint linear operator^ with domain £#(A) such that/'(x) > Ax for
x e ^ (iii) f'(χ) is Fredholm for x e «t, (iv) f\x0) and f'(y0) are both
invertible and (v) ( S ( | i | 1 / 2 ) n i?(i\+)) + (@(\Aι/2) n Λ(^*~)) h a s dif-
ferent codimensions at x = x0 and x = y0. Then / is not a /oca/ homeo-
morphism at some point of &. (Here Pf is the spectral projection for Ax

corresponding to (0, oo) and P~ is the spectral projection for f\x)
corresponding to (— oo, 0).) In our case, it is usually natural to set Aλ= A
and x0 = xQ. The only problem is that in many of the natural applications
(for example, nonlinear wave equations) / is probably not C2. The above
result is proved by using our continuation ideas (as mentioned at the end
of §1) to show that an eigenvalue λ(x) of f\x) (where λ(x) depends
continuously on x) changes sign on ^ a n d by then applying the main
result in [6]. If each/'(x) is bounded below and if f'(x) - XI is Fredholm
on (— oo, 0], the results in [6] apply much more directly.

We now consider a special case of Theorem 2 which in fact motivated
our work.

THEOREM 3. Assume that J and K are self-adjoint matrices on Rn such
that J < K. Assume that L: D(L) c Hn -> Hn is self-adjoint and closed
and L commutes with^andCtfwherefis the natural map on Hn induced by J
and Xis defined analogously. Let at (bt) denote the eigenvalues of J (K)
written in increasing order and counting multiplicity. Assume that [αz, Z>J Π
σ(L) = 0 for 1 < / < n and that F: 2{L) -* Hn is Gateaux-differentiable
such that F\x) is symmetric on 2){L) andf< F\x) < Oίffor x e 2){L).
Then L - F is a homeomorphism of3)(L) and H.

Proof. We apply Theorem 2(i) and the comments after Theorem2. We
set/(jc) = Lx - F(x)9 A = L - Jfand C = L -#. Note that, since/and
JΓare bounded, F\x) extends to a bounded self-adjoint linear operator on
Hn. Moreover, since/< F'(x) < X,

As in the proof of Theorem 2, it follows that F is a continuous map of
2{L) into H. The result will follow from the comments after Theorem 2,
if we show that

(10) @(\L\1/2) = ί^( |L| 1 / 2) n R{P?)) u ( ^ ( | L | 1 / 2 ) n
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Let {7)}jLo denote the components of R\Ό?=ι[aι9 bt]9 where t0 is the
component "containing" — oo and tk is the component "containing"
+ oo. Let Pt be the spectral projection for L corresponding to 7). By our
assumption on σ(L), Σf=0P/ = /. Since L commutes with</9^commutes
with Pim Hence A and C commute with P.. Since the P, all commute and
they each commute with \L\1/2, it follows easily that it suffices to establish
(10) on each subspace i?(P/). For i = 0, we note that (Lx9 x) < μ(x, x)
on R(P0) C\2{L)9 where μ = sup(σ(L) Π ( —oo, aλ)) < av Since/ > aλl9

#>. axl and hence {<fx9x) > aλ(x9 x) on Hn. Thus (Cx9x) <
(μ — aλ)(x, x) on R(P0) and hence C is strongly negative definite on
R(P0). Hence R(Pϊ) n R(P0) = R(P0). Similarly, R(P+) n R(Pk) =
R(Pk). Hence we need only consider R(Pj) where 1 < / < k - 1. Thus we
are now in the case where L is bounded. Let xt = inf(σ(L) Π tt) and
^ = sup(σ(L) Π 7)). By our assumption on σ(L), there is ay such that
ί̂ -x < x, < J/ < «7 Let 7) denote the spectral projection on ϋ Λ corre-
sponding to the eigenvalues less than or equal to bJ_1 for K and let tt be
the spectral projection oni?" corresponding to the eigenvalues of / in
[aj9 oo) . One easily sees that Rn = R^) Θ i?(7;). This idea is due to
Lazer [11]. Let P be the corresponding projection onto /?(7] ). Let iPbe the
projection on /ί" induced by P. Assume that ̂ commutes with the Pr (We
will prove this in a moment.) It follows that ^maps R(Pt) into itself. In
particular, Λ(P,.) = (Λ(^) Π i?(P7)) θ (R(I - &) Π Λ(P,.)) (where we
are thinking of ^ a s a map only on i?(Py)). Since Λ(P) = Λ(7^), it follows
easily that R(&) = i ί ( ^ ) , where ^7 ^s the projection on Hn induced by
Tr (We are using here that the map S -> y from a n « X n matrix to the
induced operator on Hn is a ring homomorphism.) It is easy to check that
SΓt is the spectral projection corresponding to (-oo, 6y_x] for Jf. We
prove that A is strongly positive on R(iP) Π i?(P7). Since o(L\R(P)) c
[xz, j j , (Lx9x) > Xi(x9x) on i?(Pz ). Moreover, since σ(K\R{Ti))
c ^ - o o , ^ . ! ] , (Kx,x) < bj_λ{x,x) on i?(7;.). Hence (Ax9x)'>
(Xi ~ bj.Jix, x) on R(0>) Π Λ(Pf.) = R(^) Π i?(Pz). Since x, - b}_x >
0, this proves the positivity. Similarly (Cx, x) < (yt - ύj)(x, x) on
R{I - ^) Cλ R{Pi), This gives the required decomposition. Note that,
by using Theorem Γ(iv) rather than Theorem Γ(v), we can avoid show-
ing that the subspace we have constructed is the range of the spec-
tral projection though this is not difficult to show.

It remains to show that ίP commutes with the Pf . Now it is easy to
show that a bounded linear operator S commutes with a projection P if
and only if S leaves both N(P) and R{P) invariant. Thus it suffices to
prove that Pt maps R(0>) = R(^) and N(0>) = R(^) into themselves,
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where^is the projection induced by fr This follows because/ commutes
with L and hence their spectral projections commute.

If one examines the above arguments, one can show that the assump-
tion on σ(L) is the best possible one to ensure our main condition on
spectral projections when A and C are invertible. The non-uniqueness
results mentioned earlier could also be applied in the above case. Note
that the assumption that L commutes with,/and Jfcertainly holds if L is
of the form L(uv... ,un) = (Zuv... ,Zun), where Z is a self-adjoint
operator on H but it holds more generally. {For example, it holds if / and
K are diagonal matrices and L is a diagonal operator on Hn.) Theorem 3
improves a result of Amann [1] by placing no condition on L (except that
[fl,., 6J Π σ(L) = 0 for 1 < i < n) and by weakening the commutativity
requirements.

It is possible to sometimes get results for the unbounded case by
looking at a related bounded problem and obtaining generalized solutions.
There are several ways of doing this. We assume the situation in the
comments on the unbounded case after the proof of Theorem 2. Assume
that \A\~ιf(x) extends to a Gateaux-differentiable map W{x) of 9(\A\ι/2)
into itself. (Now @(\A\i/2) is a Hubert space for the scalar product
(u, v)λ = (\A\ι/2u, \A\ι/2υ). Thus, if x e 2{A\ W(x) is characterized by
(W(x), v)λ = (f(x), v). This tends to be the easiest way to understand
the extension.) We now use our theory for the bounded case to ask if W is
a homeomorphism of 3>{\A\ι/1). Note that, if x e 2{A\ f(x) = h if and
only if W(x) = l^ίp1//. Thus asking if W is a homeomorphism is asking
for generalized solutions of the equation for A in a more general space
than H (and the corresponding continuity properties). This generalized
formulation is sometimes convenient and sometimes not. It seems proba-
ble that the spectral assumptions for the two methods to be applicable are
similar but not quite equivalent in the case of continuous spectra. If one
can prove that the generalized solutions are more regular, one can often
deduce that/is a homeomorphism (if Wis). Note that the above method
of looking for generalized solutions is a generalization of looking for
solutions in the Sobolev space W1'2 (instead of W22) for second order
elliptic problems.

Finally, our methods can sometimes be used to establish a priori
bounds for solutions of equations which do not satisfy the assumptions of
Theorem 2 but satisfy them asymptotically. Thus if we have a map s/(x)
such that s/(x) = f(x) + r(x) for large x where / satisfies the assump-
tions of Theorem 2 and ||x||~1r(x) -> 0 as ||x|| -> oo, we can deduce a
bound for x ifjtf(x) = y (since | |/(x)| | > £|MI) This can sometimes be
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combined with degree type arguments to prove that jtf is onto (as in
Mawhin and Ward [13]). Another example appears in §3. Of course, this
method needs stringent assumptions on sέ to ensure that some form of
degree theory can be used.

3. Some examples. Probably the most interesting applications of
Theorem 3 are to nonlinear wave equations. However, since this was
discussed in [1], we content ourselves with discussing very briefly some
other examples. (Note, however, that we could sometimes improve the
results in [1] by allowing a slightly more general linear term.) We assume a
knowledge of basic properties of elliptic operators as in Friedman [8].

Firstly, we consider the problem

in Ω with boundary conditions w = Δι/ = 0on9Ω, where Ω is a smooth
bounded domain in Rn. Assume that g is differentiable and c < g'(y) < d
on R. Assume that zero is not an eigenvalue of Δ2w + a (d2u/dx2) (with
the boundary conditions) for any a in [c, d]. This is an example where it is
best to first work with generalized solutions on the space <@((Δ2)1/2)
where Δ2 includes the boundary conditions. It is well-known and easy to
prove that (Δ 2 ) 1 / 2 is simply - Δ with Dirichlet boundary conditions. On

), our equation becomes u + stf(u) = (Δ2)"1/, where j/is defined on

dx

It is easy to prove using the embedding theorems that j/is a Gateaux-dif-
ferentiable map of <®(Δ) into itself. Our operators A and C are simply the
operators

respectively. Now it is easily checked that

/ + Δ~2 \r —

is a compact linear operator and thus the spectrum consists only of
eigenvalues with eigenfunctions in ^(Δ 2 ) (by standard regularity theory).
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Hence

dx:

is invertible on S(Δ) if c < r < d by our assumptions. By Theorem 1, B is
invertible if A < B < C. Hence, by Theorem 2, / + J / is a homeomor-
phism of ^(Δ) into itself. In other words, for each / e Z, (11) has a
unique generalized solution and the inverse map is continuous as a map of
Z into S(Δ). Here Z denotes {Δw: u e L2} with the natural norm and
our derivatives are distributional derivatives. If u e <®(Δ), then by Morrey
[14, p. 66] (3/ax)g(3w/3x) e L2. If w + J^(W) = / a n d / e L2, it follows
that w e S(Δ2). Thus u is a strong solution (that is, a solution in
W4'2(Ώ)). Provided that g' is continuous (though this could be weakened),
it is easy to show that the map (d/dx)g(du/dx) is a continuous map of
S(Δ) into L2. It follows easily that the inverse map (for equation (11)) is
continuous as a map of L2 into <®(Δ2) as required. If we tried to treat this
example directly on S(Δ2), it seems that our earlier comments on the
unbounded case only apply under additional assumptions (and even then
some care is needed). This illustrates how the reduction to the bounded
case is often useful. It also illustrates how the various equivalences in
Theorem 1 can be used to simplify statements of theorems. Finally, the
above could be used with slight modifications if we change the boundary
conditions on Δ2 to Dirichlet boundary conditions. (We now do not have a
simple formula for (Δ 2) 1 / 2 but this does not matter.) Moreover, by using
degree theory together with the present ideas, it can be shown that the
unique solvability still holds if g is merely Lipschitz (instead of differen-
tiable).

As our last example, we consider a system of one-dimensional wave
equations. Assume that G is a C2 convex function on Rn. We consider the
problem

(12) Πu= vG(u)-f(x,t)

in Ω = [0,2π] X [0, π] where u = (ul9...9un)9 Π denotes the diagonal

operator each of whose components is Uu = utt — uxx with boundary

conditions w(2ττ, x) = w(0, x), ut(2π, x) = ut(0, x), u(t,0) = u(t, π) = 0.
(As in [12], the boundary conditions only hold in a generalized sense.) We
assume that there exist self-adjoint matrices / and K such that [ar bt] Π
σ(D) = 0 for 1 < / < n, where αz (£z) denote the eigenvalues of / (K) in
increasing order and counting multiplicity. We assume that there is an
r > 0 such that if y e Rn and | | j | | > r, then VG(y) = ω(y)y + f(y),
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where ω(y) is a self-adjoint linear map on Rn, ω(y) depends continuously
onj>,/< ω(y) < AΌnd||.y|Γ1/(<y) -> 0 as ||j/|| -> oc. This holds if vGis
asymptotically linear with / < (VG)'(°°) < K but it holds in other cases.
We extend ω to a continuous map of Rn into Z, the self-adjoint matrices C
with J < C < K. (We can do this because Z is contractible.) It is then
easy to prove that

VG(u)-ω(u)u=f(u)

for u in L2(Ω)W, where ||/(w)||2/IMl2 -> 0 as ||w||2 -* oo. Here || | |2 denotes
the usual norm on L2(Ω)". (One splits Ω into {x: \u(x)\ > r) and its
complement.) If ε > 0, consider the equation

(13) Πu = vG(u) + εu - /.

Then Πu - (ω(u) + ε/)w = f(u) - / . Since / < ω(y) < K, then /<
ω(u) + ε/ < JΓ+ ε/. Here, as in §2, f denotes the mapping on L2(Ω)"
generated by / and Jf is defined analogously. Since the assumptions of
Theorem 3 are stable to small perturbations, we can argue as in the proof
of Theorem 3 to deduce that there exist e0, k > 0 such that

||DM — ω(u) — εu\\2 > k\\u\\2

if 0 < ε < ε0 and u e ^(D). It follows easily that there is an M > 0 such
that ||w||2 < M if u is a solution of (13) with 0 < ε < ε0. Thus we have an
a priori bound.

We now prove that, if (13) is solvable for every ε > 0, then it is also
solvable for ε = 0. Suppose uε is a solution for each ε > 0. We can write
the components u] = v- + wt

ε

9 where v- e N(Ώ) and w* e Λ^D)-1. Since
^ I ^ D ) 1 ^ a s compact inverse (cp. [4] or [12]) and since ||wε||2 ^ M for all ε,
it follows easily from the equation satisfied by w/, that {w/

ε}0<ε<ε is
compact in L2(Ω). (It is at this stage that we use the fact that we have
one-dimensional wave equations.) Thus, by choosing a subsequence if
necessary, we can ensure that wt

ε -> w® strongly, uε -> u® weakly and
VG(wε) -^ z weakly as ε -> 0. We can then use the Minty trick to
complete the proof. (A similar argument appears in [4] or [12].) It is here
that we use G' is monotone.

Thus, to prove that (12) has a solution, it suffices to solve (13) for
0 < ε < ε0. Let P be the orthogonal projection onto N(Ώ). The equation
P(VG(v + w) + ε(v + w) - / ) = 0 (where v e N(D) and w e NiΠ)-1)
can be uniquely solved for v as a function of w. One way to see this is to
note that, since (vG)'( j) > 0 fory e Rn, the Gateaux derivative T(v, w)
(in v) of the left hand side of this equation satisfies T(v, w) > εl for all υ9

w. One can then use Browder's theorem as in §2. (Alternatively one can
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use monotonicity.) Moreover, it is well-known and easy to prove that the

unique solution v(w) depends continuously on w and maps bounded sets

to bounded sets. Our equation (12) now reduces to

(14) w = 3t(I- P)(vG(v(w) + w) + εw - / ) ,

where Sft is the inverse of •|y V ( [= ] )±. As we commented earlier, @t is compact

and hence the right hand side of (14) defines a completely continuous

mapping on Λ^D)-1. This equation will have a solution if we can deform

the right hand side to a compact linear operator while retaining the a

priori bounds (by degree theory as in Schwartz [15]). We can do this by

deforming vG to K (that is, by using the deformation tK + (1 - t) v G )

and by deforming/to zero. The equation corresponding to (13) will then

be linear. Hence v will depend linearly on w and thus the equation

corresponding to (14) will be linear. Moreover, the bound for \\uε\\2 is

easily seen to hold uniformly during the deformation. In addition, it is

easy but tedious to see that v(w) changes continuously during the defor-

mation and the bound for v holds uniformly in the deformation. (Note

that, since G is convex, K is positive definite.) Hence we finally see that

(12) has a solution for a l l/ in L2(Ώ)n.
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