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NECESSARY AND SUFFICIENT CONDITIONS
FOR CERTAIN HOMOLOGY 3-SPHERES
TO HAVE SMOOTH Z -ACTIONS

ERricA FLAPAN

We derive necessary and sufficient conditions for a broad class of
homology 3-spheres, obtained as the gluing of two knot complements, to
have Z ,-actions.

We explore when a homology sphere, obtained as the gluing of two
knot complements has any smooth periodic diffeomorphisms.

Introduction. Myers [6] has given examples of homology spheres
with no P.L. involutions. He constructed these examples by gluing to-
gether particular types of knot complements. Initially, we construct differ-
ent types of periodic homology spheres out of different types of periodic
knots. One of our constructions yields homology spheres with orientation
reversing involutions in a simpler manner than that of Siebenmann and
Van Buskirk [8]. Next, we prove the necessity of our conditions and are
then able to construct infinitely many non-periodic homology spheres. In
addition, we establish conditions for such a homology sphere to be the
branched cyclic cover of a knot.

We shall use the following notation. Let K, and K be distinct knots
in S3. Let N(K,) be a tubular neighborhood of K. Let

0,= S% - Int N(K,).

Let /, € 9Q,; be an oriented longitude for Q, in the sense that /, bounds a
surface in Q,. Let m, C 0Q, be an oriented meridian for Q, in the sense
that m, bounds a meridional disk in N(K,;). Let M(K,, K;) be the
irreducible homology 3-sphere obtained by gluing each /, on Q, to a m, on
Q,,i#j. Then Q, N Q; = T a torus. We work throughout in the smooth
category.

Our main result will be:

THEOREM 3. Let K, and K, be distinct prime knots having Property P
and neither being a companion of the other. In addition suppose K, is not a
torus knot or a cable knot. Let p be a prime number, and N, a tubular
neighborhood of K .
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1. M(K,, K,) has an orientation reversing Z -action h iff K, is strongly
positive amphericheiral and K ; is strongly negative amphicheiral.

2. M(K,, K,) has an orientation preserving Z -action h with fix(h) = S !
iff K; and K ; are both strongly invertible.

3. M(K,, K,) has a free L ,-action iff K, has a free Z -action leaving a
(1, s) curve on N, invariant and K, has a free L -action leaving an (s,1)
curve on 0N, invariant, for some s which is knot a multiple of p.

We begin with some definitions.

DEFINITION 1. A knot is strongly negative amphicheiral if there is a
smooth involution g of S* which is orientation reversing and g takes K to
itself with opposite orientation.

DEFINITION 2. A knot is strongly positive amphicheiral if there is a
smooth involution g of $* which is orientation reversing and g takes K to
itself with the same orientation.

DEFINITION 3. A knot is strongly invertible if there is an orientation
preserving involution g of $* and g takes K to itself with opposite
orientation.

REMARK. If % is an involution such that #( K) = — K then 4 fixes two
points on K.

DEFINITION 4. A knot K has a free Z -action if there is an order p
diffeomorphism of S3, leaving K invariant yet which is fixed point free.

DEFINITION 5. A knot K has a symmetry if there is a periodic
diffeomorphism leaving K invariant yet fixing a simple closed curve
disjoint from K.

DEFINITION 6. A ( p, g) curve on a torus is a curve wrapping around p
times longitudinally and ¢ times meridionally.

DEFINITION 7. fix( /) shall denote the fixed point set of 4.

We begin to construct periodic homology spheres by understanding
the behavior of an action in a tubular neighborhood of the knot.

LEMMA 1. Let K be a knot in S* with a tubular neighborhood N, and let
p be a prime number. Suppose K has an orientation preserving, order p,
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diffeomorphism h such that h(N) = N and h fixes some point of N. Then h
fixes 4 points of ON and h is an involution with h(K) = — K.

Proof. Since fix(h) # @, by Smith Theory fix(4) is a circle. Assume
fix(h) € Int N. Now fix(4) is not knotted by the Smith Conjecture [13].
But KX is knotted, so by Schubert [7] fix(#) must have order zero in N. Let
D be a meridional disk of N which misses fix(%). Let X be the orbit space
of N induced by 4. Now apply Dehn’s Lemma in X to modify D so that
hi(D) N D = & foralli < p. Let B be the component of N — U?_ k(D)
which contains fix(4). Let S be the 2-sphere bounding B. Now A(B) = B
so h(S) = S. Now fix(h) NS = & so by Smith Theory for S?, & must be
orientation reversing. But this is not possible, since /4 is orientation
preserving. Thus fix(h) C Int N. So fix(h) N AN # @. Let r be the num-
ber of points in fix(4) N dN. Let Y be the orbit space of dN induced by 4.
Then dN is the p-fold branched cover of y with r branch points. So by the
Riemann-Hurwitz formula px(Y) =r(p — 1). Now Y is an orientable
2-manifold and r(p — 1) > 0. So Y is a 2-sphere. Now 2p = r(p — 1).
Thus (p — 1) divides 2 or p. In other words p —1=2o0rp—-1=1. If
p = 3 then r = 3. But r is the number of times fix(4) crosses 0 N. Hence r
must be even, since dN separates. Therefore p = 2, so r = 4. Now h takes
a meridional disk of N to a meridional disk, and a Seifert surface to a
Seifert surface. Thus A(/) is isotopic to +/, where / is a longitude. Let A4
be an arc in Y connecting two branch points. Let ¢ be the complete lift of
A to dN. Then c is a simple closed curve in dN such that #(¢) = —c. Now
since h is orientation preserving A(/) must in fact be isotopic to —/.
Finally 2(K) = — K since by hypothesis #(K) = +K. O

LEMMA 2. Let K be a knot in S* with a tubular neighborhood N, and let
p be a prime number. Suppose h is a free Z ,action of K such that
h(N) = N. Then h(c) = c for some (r,1) curve ¢, and h(c") = ¢’ for some
(1, s) curve ¢’, and rs = 1 ( p).

Proof. 1t follows from Hartley [3, Theorem 1.1 and the subsequent
sentence] that & leaves some (r, 1) curve ¢ invariant.

Now by applying Dehn’s Lemma in the orbit space of N we can find
a meridional disk D such that /(D) N D = @&. Let m = 3D, and let A’ be
one component of IN — UZ_ ! h'(m). Let a’ be an arc in A’ from some
point x’ € m to h’(x’) such that a’ goes less than once around A4’. Define
¢’ =UP_} h'(a’). Then ¢’ is a (1, s) curve.



258 ERICA FLAPAN

The essential intersection of ¢ and ¢’ must consist of s — 1 points.
Now h permutes these points since 4(c) = ¢ and h(c’) = ¢’. Thus p
dividesrs — 1. Sors = 1 ( p). a

THEOREM 1. Let K, and K, be knots in S*, and let p be a prime number.

1. If K, is strongly positive amphicheiral, K, is strongly negative
amphicheiral, and both knots are prime, then M( K, K,) has an orientation
reversing involution h with fix(h) = S°.

2. If K, and K, are both strongly invertible then M(K,, K,) has an
orientation preserving involution h with fix(h) = S'.

3. If K, has a free L -action leaving a (1, s) curve invariant and K, has
a free 1 ,-action leaving an (s,1) curve invariant, then M(K,, K,) has an
orientation preserving Z -action h which is fixed point free.

Proof. 1. Let N, be a tubular neighborhood of K, such that #,(N,) = N,
where 4, is an orientation reversing involution with 4,(K;) = +K, and
h,(K,) = —K,. By Smith Theory, since the s, are orientation reversing,
fix(h,) = S° or fix(h,) = S°. Suppose fix(#;) = S* Then by Smith The-
ory for K,, h, fixes either zero or two points of K,. Now K, cannot be
contained in one component of S — fix(h,) since h, must trade these
components. Thus fix(%,) N K, consists of two points. Hence K, is com-
posite, contrary to hypothesis. So fix(k,) = S° for both i. Now we can
assume we have picked N, such that fix(4,) N ON, = & for both i. Thus
h,JON, covers its induced orbit space, which must be a Klein bottle. So
hy|0N, and h,|0N, are equivalent actions. Let /; be a longitude and let m,
be a meridian for N,. Now 4, takes a meridional disk to a meridional disk
and a Seifert surface to a Seifert surface. So h,(m,) is isotopic to +m, and
h,(1,) is isotopic to +/,. Now since hy(K,) = + K, we must have s (/)
~ +1,, and since h is orientation reversing h,(m,) ~ —m. Similarly
h(K,) = — K, implies that 4,(/,) ~ —/}, and so h,(m;) ~ +m, since h,
is orientation reversing. Let Q, = S* — Int(N,). Now we can glue Q, to
Q, along their boundaries longitude to meridian to obtain M(K,, K,);
and M(K,, K,) has an orientation reversing involution 4 where
h|Q, = h,. By Smith Theory for homology 3-spheres, fix(h)= S?* or
fix(h) = S°. But fix(h) = fix(hy|Q,) U fix(h,|Q,); thus fix(%4) cannot be
S2.So fix(h) = S° as desired.

2. Suppose K, and K are strongly invertible. Let /4, be an orientation
preserving involution of S* such that 4 (K,) = —K, and h,(N,) = N, for
some tubular neighborhood N, of K,. Then h, fixes two points on K, for
each i. Now by Lemma 1 #, fixes 4 points on dN,, and so 9N, is the
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two-fold branched cover of its orbit space, which is a 2-sphere. Now the
action induced by A; on 9N, is equivalent to reflecting both meridionally
and longitudinally. Let Q, = §* — Int(N,). Now glue Q, to Q, longitude
to meridian to obtain M(K,, K,); and M(K,, K;) will have an orienta-
tion preserving involution 4 where k,|Q; = h|Q,. Now by Smith Theory
for homology spheres fix(h) = S* or fix(h) = &. Now fix(4) includes the
4 points fixed on ON,, thus fix(h) # @. So fix(h) = S*.

3. Suppose each K, has a smooth free Z -action &,. Let N, be a tubular
neighborhood of K, such that A#,(N;) = N, and there is a (1, s) curve c,,
and an (s, 1) curve ¢; on 0N, such that &,(c;) = c,. Pick numbers r, and r;
such that (h7) is just a 27 /p rotation along c,. Now glue the

Q,= 5° - Int(N))

together longitude to meridian attaching c, to ¢;. Now M(K,, K;) has an
orientation preserving Z -action h where h|Q, = h}|Q,. Also, hj is fixed
point free since p is a prime, so 4 is fixed point free as well. O

REMARKS. 1. The construction in the first case of Theorem 1 provides
a simpler method of obtaining an irreducible homology 3-sphere with an
orientation reversing involution than that of Siebenmann and Van Buskirk
[8].

2. We can find knots satisfying the conditions of case 3 of Theorem 1
by lifting knots in the appropriate lens spaces.

Now that we are able to construct homology spheres with Z -actions
with different types of fixed point sets we want to know whether the
conditions on knot pairs in Theorem 1 are, in fact, necessary. That is, if
M(K,, K;) has a Z action in what sense do K, and K|, inherit the action?
We show that with a few added hypotheses our conditions are necessary.
The first hypothesis we will add is that one knot complement contains no
essential annulus. According to Simon [9, Lemmas 2.1 and 2.2] if the knot
is not a composite, torus or cable knot then its complement contains no
essential annulus.

LEMMA 3. Suppose K, is a prime knot which is not a torus knot or a
cable knot, and suppose K is any knot. Let Q, be the closed complement of
K. Then every incompressible torus in M(K,, K,) is isotopic to one disjoint
from T = 3Q,.

Proof. Let T’ be an incompressible torus in M. Isotop T” so that T
and 7" meet transversely in a minimal number of components. Suppose
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some component J of 7N T’ bounds a disk D’ in T’. Pick J to be
innermost, i.e. D’ N T = dD’. Since T is incompressible, J also bounds a
disk D in T. Now since M(K,, K,) is irreducible, D U D’ bounds a 3-ball
B. By pushing D’ across B we can remove J from 7' N 77, thus contradict-
ing minimality. So there is no component of 7N T’ which bounds a disk
in 7°. Hence 7° N Q, consists of properly embedded incompressible
annuli. But by Simon [9, Lemmas 2.1 and 2.2] any such annulus must be
boundary parallel in Q,. So again we could remove the boundaries of
this annulus by an isotopy of 77, and so contradict minimality. Thus
InT = @. O

REMARK 3. Let 4 be a periodic diffeomorphism of a 3-manifold M,
then, as is well known, we can choose a Riemannian metric for M which
makes s an isometry. (Take the average of the h-transforms of any
Riemannian metric.)

LEMMA 4. Let K, be a prime knot other than a torus knot or a cable
knot, and let K, be any knot. Let Q, be the closed complement of K,. Let h
be a periodic diffeomorphism of M(K,, K,). Then T = 0Q, is isotopic to a
surface S such that either h(S) = Sorh(S)N S = 4.

Proof. By Theorem 1.1 of Freedman, Hass and Scott [2] since
M(K,, K,) is P*irreducible there is a least area immersion f: T — M
which is homotopic to the inclusion i: T — M. Since i is incompressible
f must also be incompressible. Now by Alexander duality, since
H,(M(K,, K;)) = 0 every closed surface in M(K,, K,) is two-sided. By
[2, Theorem 5.1] f is an embedding. Hence f(7T') is a two-sided least area
incompressible embedded torus. Since 4 is an isometry, A( f(T)) is also a
two-sided least area incompressible embedded torus.

Since 7 and f(7T') are homotopic incompressible surfaces in an irre-
ducible 3-manifold, by Waldhausen [12, Corollary 5.5] T and f(T) are
ambient isotopic. Thus we can apply Lemma 3 to f(7") to conclude that
h( f(T)) can be isotoped disjoint from f(7"). Now apply Theorem 6.2 of
[2] to conclude that either A( f(T')) = f(T) or h(f(T)) N f(T)= &; and
let S = f(T). O

DEerINITION 8. If 4 is a periodic diffeomorphism of M(K,, K;) and
h(Q,) = Q,, then we say A is “good”.

THEOREM 2. Suppose K, and K, are distinct prime knots having
property P and neither is a companion of the other. In addition suppose K , is
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not a torus knot or a cable knot. Then if M(K,, K,) has a periodic
diffeomorphism h then M(K,, K,) has a good diffeomorphism h’ which is
conjugate to h.

Proof. By the conditions on K, and K; we can apply Lemma 4 to
get an isotopy f, of M(K,, K,) such that f, is the identity and either
h(f(T)) = f(T) ot h(f(T) Nf(T) = B. Let k' = f;'ohof,. Then
h’ has the same order as 4 and either W' (T)=T or W (T)NT = 3.
Suppose A (T)NT = &. Recall, Q; is the closed complement of K,
in S>. Assume 4'(T) C Int(Q,). If (Q,) € Int(Q,) then

0, = (1)"(Q,) € Int(Q,).
This contradiction implies that 2'(Q,) £ Int(Q,) and hence

h'(Q,) € Int(Q,) < 87,

since h'(Q,) # Q, by Property P. Now 4’(T) is essential in M(K,, K;) so
it is essential in Q, by Waldhausen [11, satz 1.9]. Let ¥ be the component
of S* — h'(T) containing K. Thus

VUR(Q,) =S and VN K(Q,) = h(T).

Hence ¥ must be a solid torus. Let J be the core of V. Then J is isotopic
to K, since K, has Property P. Now since #’(T') is essential in Q,, we
must have either K, is a companion of K, or K, is K itself. Either case
contradicts our hypotheses. We now use the same argument to show that
h'(T) ¢ Int(Q,). Thus A'(T') = T. Now since both knots have Property P,

h’(Qi) = Qi' O

REMARKS.

4. Since /; bounds a Seifert surface in Q,, A(/,) must also. So on T,
h(l,) is isotopic to +/,. But since the /; are identified with the m , for
i # j, h(m)) is isotopic to +m,.

5. By the above remark we can interpret the conclusion of Theorem 2
as saying that if M(K, K,) has a period p diffeomorphism 4, then K, and
K; each have a period p diffeomorphism 4.

LEMMA 5. Let K be a knot in S* with a tubular neighborhood N and let p
be a prime number. Suppose h is a symmetry of K such that h(N) = N; and
that for some (r, s) curve c on ON, r # 0, h(c) = c. Then s is a multiple of p.

Proof. By Edmonds and Livingston [1, Corollary 2.2] K bounds a
Seifert surface which is invariant under 4. By intersecting this surface with
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dN we can find a longitude / such that A(/) = /. Now ¢ and / must
intersect essentially in s points; and 4 permutes these essential intersec-
tions. Thus p must divide s. a

THEOREM 3. Let K, and K, be distinct prime knots having Property P
and neither being a companion of the other. In addition suppose K is not a
torus knot or a cable knot. Let p be a prime number. Then:

1. M(K,, K,) has an orientation reversing Z -action h iff K is strongly
positive amphicheiral and K ; is strongly negative amphicheiral.

2. M(K,, K) has an orientation preserving L ,-action h with fix(h) = S 1
iff K, and K ; are both strongly invertible.

3. M(Ky, K,) has a free Z -action iff K, has a free Z ,-action leaving a
(1, s) curve, on the boundary of a tubular neighborhood, invariant; and K,
has a free Z ,action leaving an (s,1) curve, on the boundary of a tubular
neighborhood, invariant, and s # 0 ( p).

Proof. We have already established the sufficiency of the conditions
in Theorem 1. We now establish necessity. Let 4 be an order p diffeomor-
phism of M(K,, K,). By Theorem 2 we can assume that 4,(Q;) = Q,,
where Q; is the closed complement of K. By Remarks 4 and 5 each K, has
an order p diffeomorphism 4, such that 4,|Q, = h|Q,.

Case 1. If h is orientation reversing. Then since p is a prime, in fact
p = 2. By Remark 4 h(l,) is isotopic to +/, on T. Now /, is identified with
m ;, where m  is a meridian for Q. Since h is orientation reversing if A(/,)
is isotopic to +/, then h(m,) is isotopic to —m,. Thus h(/)) is isotopic to
—1,. Hence h(K,;) = +K, but h(K;) = — K. So K, is strongly positive
ampbhicheiral, whereas K, is strongly negative amphicheiral.

Case 2. Now suppose h is orientation preserving and fix(h) = S'.
First, assume fix(h) N 0Q, = . Then for some i, say i = 0, fix(h) € Q,.
Thus fix(%,|Q,) = @. Now if h, fixed any point of N, = S* — Int(Q,)
then by Lemma 1, 4 would fix points on 9Q,. Hence fix(h,) = @. So A, is
a free Z -action on K;. Now by Lemma 2 there is an (s, 1) curve ¢ on 3Q,;
such that h,(c) = c. Now ¢ is also a (1, s) curve on 9Q, and h(c) = c.
But fix(h) € Q, so h, is a symmetry of K,. Thus by Lemma 5 s is a
multiple of p. This is impossible, so fix(h) N 0Q, # &. Now by Lemma 1
h is an involution and both K are strongly invertible.

Case 3. Here h is a free Z -action of M(K,, K;). So as in Case 2 we
can apply Lemma 1 to conclude that 4, is a free Z ,-action for both i. Now
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apply Lemma 2 to &, to get a (1, s) curve ¢ on 0Q, which is invariant
under A,. Now c is also a (s,1) curve on 00, and is thus invariant under
hy[0Q; = hy|dQ,. Also by Lemma 1, s has a multiplicative inverse in
Z/pZsos = 0(p). O

REMARK 6. Note, in case 1, that fix(k) # S? since the knots are prime.
Hence by Smith Theory fix(h) = S°.

COROLLARY 1. Let K, and K, be distinct prime knots having Property P
and neither being a companion of the other. In addition suppose K is not a
torus knot or a cable knot. If M(K,, K,) is any finite cyclic branched cover
with branch set S, then both K, are strongly invertible.

Proof. 1If M(K,, K,) were a finite cyclic branched cover of a knot
then M(K,, K,) has a covering translation f and fix(f) = S*. Let 4 be f
raised to a power, if necessary, so that the order of % is a prime. Now f
was orientation preserving so A is orientation preserving. Now by Smith
Theory since fix(f) C fix(k) in fact fix(h) = S*. Now apply Case 2 of
Theorem 3. O

DEFINITION 9. A knot is simple if its complement in S* contains no
essential torus.

REMARK 7. A simple knot has no companions. So if the K, are simple
non-torus knots, it is enough to assume Q, # @, in the proof of Theorem
2, we do not actually need Property P. Hence also in Theorem 3.

COROLLARY 2. Let K, and K, be simple knots with non-homeomorphic
exteriors. Suppose at least one of the knots is non-amphicheiral, one is
non-invertible, and one has no free Z -action. Then M(K,, K,) has no
periodic diffeomorphisms.

Proof. Observe that a torus knot has free Z -actions. So if K, is the
knot with no free Z -actions then K, is not a torus knot. Since the knots
are simple they are prime, neither is a companion of the other, and neither
is a cable knot. Hence we can apply Theorem 3. O

This corollary easily provides examples of irreducible homology 3-
spheres with no smooth Z ,-actions. We show how to get an infinite
collection of such homology spheres. Let K, be the 5, knot. Then K|, is
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2-bridge so it is simple by Kawauchi [5] and is non-amphicheiral. The
Alexander polynomial of K is Ag (¢) = — 2t% + 3t — 2 so by Hartley [3]
K, has no free Z ,-actions. Now, if g, r and s are distinct odd numbers
bigger than one then the pretzel knot K(g, r, s) is non-invertible by
Trotter [10]. Since it is prime and 3-bridge, by Kawauchi it is simple. So
we let K, = K(q,r,s). Now let n = gs + gr + rs, then K(q, r, s) has
Alexander Polynomial

o= {5 (2

By our conditions on ¢, r, s we have n > 71 so A K * A X, and thus
Qo # Q;- Now for distinct » the knots K(gq,r,s) will have distinct
Alexander polynomials and hence their complements are non-homeomor-
phic. Let M(K,, K,) be one such homology sphere and let M(K,, K;) be
another. Then since 5, and K(g,r,s) are simple M(K,, K;) and
M(K,, K{) each have precisely one incompressible torus. Suppose
M(K,, K{) = M(K,, K,), then there is a homeomorphism

h: M(K,, K{) > M(K,, K;)

taking the incompressible torus 7" to the incompressible torus 7. Now
since Q, # Q, we must have h(Q;) = Q, hence the n for K| must be the
same as the n for K. So for the infinite collection of distinct n we will get
infinitely many different non-periodic homology 3-spheres.
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