RELATIONS BETWEEN THE MAXIMUM MODULUS AND MAXIMUM TERM OF ENTIRE FUNCTIONS

P. Lockhart and E. G. Straus

In memory of Ernst Straus

Relations between the maximum modulus $M(R)$ and the maximum term $\mu(R)$ of an entire function are investigated. There are no upper bounds for $M(R)$ in terms of functions of R and $\mu(R)$ which are valid for all R. There are such bounds as functions of $R, \varepsilon, \mu(R)$ and $\mu(R+\varepsilon)$ for all $\varepsilon>0$.

1. Introduction. For an entire function $F(z)=\sum a_{n} z^{n}$, we define the maximum modulus

$$
M(R)=\max _{|z|=R}|F(z)|
$$

the maximum term

$$
\mu(R)=\max _{n}\left|a_{n}\right| R^{n}
$$

and the central index $N(R)$, which is the largest integer N so that

$$
\mu(R)=\left|a_{N}\right| R^{N} .
$$

If we set $L=\log R$ and plot $\log \mu(R)$ as a function of L, then the graph of a monomial $f(z)=a_{n} z^{n}$ is a straight line of slope n which passes through the point $\left(0, \log \left|a_{n}\right|\right)$. Hence the μ-graph of an entire function is convex polygonal line with edges that have increasing nonnegative integral slope. This implies that the L-coordinates of the vertices of a μ-graph have no limit point other than $+\infty$. In particular,

$$
N(R)=\frac{d \log \mu(R+)}{d L} .
$$

We introduce one more quantity, $\nu(R)$, the number of indices n for which $\mu(R)=\left|a_{n}\right| R^{n}$. Clearly $\nu(R)=1$ except when R corresponds to a vertex of the μ-graph, where

$$
2 \leq \nu(R) \leq 1+\frac{d \log \mu(R+)}{d L}-\frac{d \log \mu(R-)}{d L}=1+N(R)-N(R-) .
$$

The Wiman-Valiron Theory (see e.g. [1], [2]) concentrates on "normal" values of R where the behavior of $\mu(R)$ and $M(R)$ are closely related. In this note we are interested in relations which hold for all R, or at least for all sufficiently large R.

In $\S 2$ we characterize the graphs which can arise as μ-graphs of an entire function. We also show that for any given function $\phi(R, \mu(R))$ it is possible to have arbitrarily large R with

$$
\nu(R)>\phi(R, \mu(R)) .
$$

From this fact it follows immediately that there is no upper bound for $M(R)$ by a function of R and $\mu(R)$. On the other hand, in $\S 3$ we use the convexity of $\log \mu$ as a function of L to give an upper bound for $M(R)$ as a function of R, ε and $\mu(R+\varepsilon)$.
2. The μ-graphs and M-graphs of entire functions. As mentioned above, the μ-graph of an entire function is a convex polygonal line whose edges have (increasing) integral slopes. The converse is also true.
2.1. Theorem. Every convex polygonal line in the $(L, \log \mu)$-plane whose edges have nonnegative integral slopes has the property that every Taylor series $\sum a_{n} z^{n}$ with $\max _{n}\left|a_{n}\right| R^{n}=\mu(R)$ is the Taylor series of an entire function.

Proof. Let the L-coordinates of the vertices be $L_{1}<L_{2}<L_{3}<\cdots$ and the slopes to the right of L_{i} be N_{i}. Let $\lambda_{t}=\log \mu\left(R_{t}\right)$, where $\log R_{t}=L_{l}$. If $L_{k} \leq L<L_{k+1}$, then $N=N_{k}$ and

$$
\begin{align*}
\log \left|a_{N}\right|+N L= & \log \mu(R)=\lambda_{1}+N_{1}\left(L_{2}-L_{1}\right) \tag{2.2}\\
& +\cdots+N_{k-1}\left(L_{k}-L_{k-1}\right)+N_{k}\left(L-L_{k}\right)
\end{align*}
$$

Hence

$$
\begin{align*}
\frac{\log \left|a_{N}\right|}{N}=\frac{\lambda_{1}}{N}-\frac{1}{N}\left[L_{k}\left(N_{k}-N_{k-1}\right)\right. & +L_{k-1}\left(N_{k-1}-N_{k-2}\right) \tag{2.3}\\
& \left.+\cdots+L_{2}\left(N_{2}-N_{1}\right)+L_{1} N_{1}\right]
\end{align*}
$$

To show that $(1 / N) \log \left|a_{N}\right| \rightarrow-\infty$ we pick the largest l so that $2 N_{l} \leq N$. Then for sufficiently large N, (2.3) yields

$$
\frac{1}{N} \log \left|a_{N}\right|<\frac{\lambda_{1}}{N}-\frac{1}{N} L_{l}\left(N_{k}-N_{l}\right) \leq \frac{\lambda_{1}}{N}-\frac{1}{2} L_{l} \rightarrow-\infty .
$$

Since $l \rightarrow \infty$ as $N \rightarrow \infty$.
For those indices n for which $n \neq N(R)$ we have $N_{k-1}<n<N_{k}$ and

$$
\log \left|a_{n}\right|+n L_{k} \leq \log \left|a_{N_{k-1}}\right|+N_{k-1} L_{k}
$$

Hence

$$
\begin{align*}
\frac{1}{n} \log \left|a_{n}\right| & \leq \frac{N_{k-1}}{n}\left(\frac{\log \left|a_{N_{k-1}}\right|}{N_{k-1}}\right)-L_{k}\left(1-\frac{N_{k-1}}{n}\right) \tag{2.4}\\
& \leq \max \left(\frac{\log \left|a_{N_{k-1}}\right|}{N_{k-1}},-L_{k}\right)
\end{align*}
$$

Thus $(1 / n) \log \left|a_{n}\right| \rightarrow-\infty$ and $\sum a_{n} z^{n}$ is an entire function.
It is clear that two Taylor series $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ have the same μ-graph if and only if
(i) $\left|a_{N}\right|=\left|b_{N}\right|$ for all N which are slopes of edges of the graph.
(ii) $\left|a_{n}\right| \leq s_{n},\left|b_{n}\right| \leq s_{n}$ where $\log \mu=n L+\log s_{n}$ is a line of support but not an edge of the μ-graph.

Thus the set of entire functions with the same μ-graph is infinite dimensional.

We now turn briefly to the M-graph which we get by plotting $\log M(R)$ as a function of L. By the Hadamard Three-Circle Theorem we know that this is a convex curve and by Cauchy's inequality we know that $\mu(R) \leq M(R)$ with equality only when $F(z)$ is monomial. Thus the M-graph lies strictly above the μ-graph unless they are both a single straight line.

By Parseval's inequality we have

$$
\sum\left|a_{n}\right|^{2} R^{2 n} \leq M(R)^{2}
$$

so that

$$
\begin{equation*}
\mu(R) \sqrt{\nu(R)} \leq M(R) \tag{2.5}
\end{equation*}
$$

In asking which entire functions have the same M-graph we note that for any real α, β we have

$$
\begin{equation*}
M(R, F)=M\left(R, e^{i \alpha} F\right)=M\left(R, F\left(e^{i \beta} z\right)\right)=M(R, \bar{F}) \tag{2.6}
\end{equation*}
$$

where \bar{F} is given by the Taylor series whose coefficients are the complex conjugates of those of F.
2.7. Definition. Two entire functions $F(z)$ and $G(z)$ are equivalent if they are obtained from each other by a combination of the operations in (2.6).

This brings us to some conjectures which one of us has raised some time ago.
2.8. Conjectures. (i) If two entire functions have equal M-graphs then they are equivalent.
(ii) If two entire functions have both equal M-graphs and equal μ-graphs then they are equivalent.
(iii) If two entire functions have Taylor coefficients of equal absolute values and equal M-graphs then they are equivalent.
(iv) If F has a Taylor series with nonnegative real coefficients and $M(R, G)=M(R, F)$ then G is equivalent to F.

It is surprising that even Conjecture (iv) does not seem to be immediately obvious. However, following Valiron [2], we have the following.
2.9. Theorem. For every μ-graph there exists a unique equivalence class of entire functions with maximal $M(R)$. This class contains a function $G(z)$ with nonnegative real Taylor coefficients, hence this maximal $M(R)$ satisfies $M(R)=G(R)$ which is a totally monotonic analytic function of R.

Proof. Define $G(z)=\sum g_{n} z^{n}$ where

$$
\log \mu=\log g_{n}+n L
$$

is a line of support of the μ-graph, provided the μ-graph has a line of support with slope n, and $g_{n}=0$ otherwise. Thus $g_{n}=0$ only for those indices which are less than the slope of the initial edge of the μ-graph and -in case the μ-graph is a finite polygon-those n which exceed the slope of the final edge.

If $F(z)=\sum a_{n} z^{n}$ and $\mu(R, F)=\mu(R, G)$ then clearly $\left|a_{n}\right| \leq g_{n}$ for all $n \geq 0$. Hence

$$
\begin{equation*}
M(R, F) \leq \sum\left|a_{n}\right| R^{n} \leq \sum g_{n} R^{n}=M(R, G) \tag{2.10}
\end{equation*}
$$

Equality in (2.10) implies $\left|a_{n}\right|=g_{n}$ for all n and the existence of a β so that

$$
\arg a_{n} e^{i n \beta}=\alpha, \quad \text { a constant for all } n
$$

Thus $e^{-i \alpha} F\left(e^{i \beta} z\right)=G(z)$.
An examination of trinomials, say $F_{\alpha}(z)=e^{i \alpha}+2 z+z^{2}$, shows that there is no function of minimal $M(R)$ associated with a general μ-graph, because the values of α for which $M\left(R, F_{\alpha}\right)$ is minimal vary with R.

We close this section with one final observation and question. It is obvious that $\liminf _{R \rightarrow \infty} M(R) / \mu(R) \geq 1$ for all entire functions and that equality holds for all polynomials and for many transcendental functions with highly lacunary power series.

On the other hand inequality (2.5) shows that

$$
\limsup _{R \rightarrow \infty} M(R) / \mu(R) \geq \sqrt{2}
$$

for all transcendental entire functions and that

$$
\limsup _{R \rightarrow \infty} M(R) / \mu(R)=2
$$

for transcendental entire functions with highly lacunary power series.
2.11. Problem. What is

$$
\gamma=\inf \limsup _{R \rightarrow \infty} M(R) / \mu(R)
$$

where the inf is taken over all transcendental entire functions?
We have seen that $\sqrt{2} \leq \gamma \leq 2$ and the upper limit appears to be the likely value of γ.

Finally, we observe that the maximal growth fucntion $G(z)$ which belongs to a μ-graph with infinitely many edges satisfies

$$
\begin{equation*}
M(R)=G(R)>\mu(R)(N(R+)-N(R-)+1) \tag{2.12}
\end{equation*}
$$

where $N(R)$ is the slope of the μ-graph.
For any function $\phi(R, \mu(R))$ and any sequence $R_{1}<R_{2}<R_{3}<\cdots$ with $R_{n} \rightarrow \infty$ we can find a μ-graph so that

$$
N\left(R_{n}+\right)-N\left(R_{n}-\right)>\phi\left(R_{n}, \mu\left(R_{n}\right)\right)
$$

Thus inequality (2.12) yields the following.
2.13. Theorem. There is no bound for $M(R)$ which is a fixed function of R and $\mu(R)$.
3. Upper bounds for $M(R)$ in terms of $\mu(R)$ and $\mu(R+\varepsilon)$. In contrast to Theorem 2.13 we have the following.
3.1. Theorem. For every $R>\varepsilon>0$ we have

$$
\begin{equation*}
M(R)<\left(\frac{4 R+\varepsilon}{\varepsilon}\right)\left(1+\log \frac{\mu(R+\varepsilon)}{\mu(R)}\right) \mu(R) \tag{3.2}
\end{equation*}
$$

Proof. We set $\log (R+\varepsilon)=L+\delta_{1}+\delta_{2}$ so that

$$
\begin{equation*}
\delta_{1}+\delta_{2}=\log \left(1+\frac{\varepsilon}{R}\right) \tag{3.3}
\end{equation*}
$$

It suffices to prove (3.2) for the maximal function $G(z)$ associated with $\mu(R)$. Now set $N_{1}=N\left(R e^{\delta_{1}}\right)$. Then

$$
\begin{equation*}
\sum_{n=0}^{N_{1}-1} g_{n} R^{n} \leq N_{1} \mu(R) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{aligned}
N_{1} & \leq \frac{1}{\delta_{2}}\left(\log \mu\left(R e^{\delta_{1}+\delta_{2}}\right)-\log \mu\left(R e^{\delta_{1}}\right)\right) \\
& \leq \frac{1}{\delta_{2}}(\log \mu(R+\varepsilon)-\log \mu(R))=\frac{1}{\delta_{2}} \log \frac{\mu(R+\varepsilon)}{\mu(R)} .
\end{aligned}
$$

So (3.4) yields

$$
\begin{equation*}
\sum_{n=0}^{N_{1}-1} g_{n} R^{n} \leq \frac{1}{\delta_{2}} \log \frac{\mu(R+\varepsilon)}{\mu(R)} \mu(R) \tag{3.5}
\end{equation*}
$$

Now for $n \geq N_{1}$ we have, by the convexity of the μ-graph.

$$
g_{n} R^{n} \leq \mu(R) e^{-\left(n-N_{1}\right) \delta_{1}}
$$

Thus

$$
\begin{equation*}
\sum_{n=N_{1}}^{\infty} g_{n} R^{n} \leq \mu(R) /\left(1-e^{-\delta_{1}}\right) \tag{3.6}
\end{equation*}
$$

It remains to choose

$$
\begin{align*}
& \delta_{1}=\log \left(1+\frac{\varepsilon}{R}\right) /\left(1+\log \frac{\mu(R+\varepsilon)}{\mu(R)}\right) \tag{3.7}\\
& \delta_{2}=\log \left(1+\frac{\varepsilon}{R}\right) \log \frac{\mu(R+\varepsilon)}{\mu(R)} /\left(1+\log \frac{\mu(R+\varepsilon)}{\mu(R)}\right)
\end{align*}
$$

Then (3.5) and (3.6) yield

$$
\begin{equation*}
M(R) \leq G(R) \leq\left(\frac{4 R+\varepsilon}{\varepsilon}\right)\left(1+\log \frac{\mu(R+\varepsilon)}{\mu(R)}\right) \mu(R) \tag{3.8}
\end{equation*}
$$

as was to be proved.
Note that Theorem 3.1 is similar to the inequality

$$
\begin{equation*}
M(R)<\mu(R)\left(2 N\left(R+\frac{R}{N(R)}\right)+1\right) \tag{3.9}
\end{equation*}
$$

of Valiron [2]. However the quantity $R / N(R)$ need not be small and so (3.2) cannot be directly deduced from (3.9). However it is obvious that any bound for $M(R)$ in terms of $\varepsilon, R, \mu(R), \mu(R+\varepsilon)$ can also be expressed in terms of $\varepsilon, R, \mu(R)$ and $N(R+\varepsilon)$.

References

[1] W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull., 17 (1974), 317-358.
[2] G. Valiron, Fonctions entiéres d'orde fini et fonctions méromorphes, L'Ensiegnement Math. Ser. II, IV (1958), 1-150.

Received September 25, 1984. Research of the second author was supported in part by NSF Grant \# MCS 79-03162

University of California, Los Angeles
Los Angeles, CA 90024

