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RELATIONS BETWEEN THE MAXIMUM MODULUS

AND MAXIMUM TERM OF ENTIRE FUNCTIONS

P. LOCKHART AND E. G. STRAUS

In memory of Ernst Straus

Relations between the maximum modulus M(R) and the maximum
term μ(R) of an entire function are investigated. There are no upper
bounds for M(R) in terms of functions of R and μ(R) which are valid
for all R. There are such bounds as functions of R, ε, μ(R) and
μ(R + ε) for all ε > 0.

1. Introduction. For an entire function F(z) = Σanz
n, we define

the maximum modulus

M(R) = max \F(z)\9
\z\-R

the maximum term

μ(R) = max \an\Rn

n

and the central index N(R), which is the largest integer N so that

μ(R)=\aN\R».

If we set L = logi? and plot logμ(jR) as a function of L, then the
graph of a monomial/(z) = απzΛ is a straight line of slope « which passes
through the point (0, log)αJ). Hence the μ-graph of an entire function is
convex polygonal line with edges that have increasing nonnegative integral
slope. This implies that the L-coordinates of the vertices of a μ-graph have
no limit point other than -f oo. In particular,

N ^ = dlogμ(R+)
dL

We introduce one more quantity, v(R), the number of indices n for
which μ(R) = |α |̂jR". Clearly v(R) = 1 except when R corresponds to a
vertex of the μ-graph, where

2 < ,(*) < 1 + dl°^}τ

R + ) - dl°^}τ

R -] = 1+ N(R) - N(R -).
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The Wiman-Valiron Theory (see e.g. [1], [2]) concentrates on "normal"

values of R where the behavior of μ(R) and M(R) are closely related. In

this note we are interested in relations which hold for all R, or at least for

all sufficiently large R.

In §2 we characterize the graphs which can arise as μ-graphs of an

entire function. We also show that for any given function φ(i?, μ(R)) it is

possible to have arbitrarily large R with

v(R)>φ(R,μ(R)).

From this fact it follows immediately that there is no upper bound for

M(R) by a function of R and μ(R). On the other hand, in §3 we use the

convexity of log μ as a function of L to give an upper bound for M(R) as

a function of /?, ε and μ(R + ε).

2. The μ-graphs and M-graphs of entire functions. As mentioned

above, the μ-graph of an entire function is a convex polygonal line whose

edges have (increasing) integral slopes. The converse is also true.

2.1. THEOREM. Every convex polygonal line in the (L, logμ)-plane

whose edges have nonnegative integral slopes has the property that every

Taylor series Σanz
n with maxn\an\Rn = μ(R) is the Taylor series of an

entire function.

Proof. Let the L-coordinates of the vertices be Lx < L2 < L3 <

and the slopes to the right of Li be Nr Let λ, = log/x(i?,), where

log Rt = Lr If Lk < L < Lk+l9 then N = Nk and

(2.2) l o g M + NL = logμ(Λ) = λx + Nτ(L2 - Lλ)

+ +Nk_ι(Lk-Lk_1) + Nk{L-Lk).

Hence

N N

To show that (l/iV)log|a^| -» — oc we pick the largest / so that 2Nι < N.

Then for sufficiently large N9 (2.3) yields

jf l o gKI < 77 - jξLξ{Nk - N,) < ̂  - \ L { - - oo.

Since / -» oo as N -> oo.

For those indices n for which n Φ N(R) we have Nk_λ < n < Nk and

j + nhk < log|fl^_J + Nk_1Lk.
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Hence

( 2 . 4 )

/ g l ^ I
< max " , -Lk

\ Iyk-ι

Thus (l//?)log|aw| -> — oo and Σtf^z" is an entire function.

It is clear that two Taylor series Σanz
n and Σbnz

n have the same

μ-graph if and only if

(i) \aN\ = \bN\ for all N which are slopes of edges of the graph.

(ii) \an\ < sn, \bn\ < sn where logμ = nL + log^n is a line of support

but not an edge of the μ-graph.

Thus the set of entire functions with the same μ-graph is infinite

dimensional.

We now turn briefly to the M-graph which we get by plotting

log M(R) as a function of L. By the Hadamard Three-Circle Theorem we

know that this is a convex curve and by Cauchy's inequality we know that

μ(R) < M(R) with equality only when F(z) is monomial. Thus the

M-graph lies strictly above the μ-graph unless they are both a single

straight line.

By ParsevaPs inequality we have

so that

(2.5) μ{R)ft(R) < M{R).

In asking which entire functions have the same Λ/-graph we note that

for any real α, /? we have

(2.6) M(R, F) = M(R, eiaF) = M(R, F(eιβz)) = M(R, F),

where F is given by the Taylor series whose coefficients are the complex

conjugates of those of F.

2.7. DEFINITION. TWO entire functions F(z) and G(z) are equivalent if

they are obtained from each other by a combination of the operations in

(2.6).

This brings us to some conjectures which one of us has raised some

time ago.

2.8. Conjectures, (i) If two entire functions have equal M-graphs then

they are equivalent.
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(ii) If two entire functions have both equal M-graphs and equal
μ-graphs then they are equivalent.

(iii) If two entire functions have Taylor coefficients of equal absolute
values and equal M-graphs then they are equivalent.

(iv) If F has a Taylor series with nonnegative real coefficients and
M(R, G) = M(R, F) then G is equivalent to F.

It is surprising that even Conjecture (iv) does not seem to be im-
mediately obvious. However, following Valiron [2], we have the following.

2.9. THEOREM. For every μ-graph there exists a unique equivalence class
of entire functions with maximal M(R). This class contains a function G(z)
with nonnegative real Taylor coefficients, hence this maximal M(R) satisfies
M(R) = G(R) which is a totally monotonic analytic function of R.

Proof. Define G(z) = Σgnz
n where

log μ = log gn + nL

is a line of support of the μ-graph, provided the μ-graph has a line of
support with slope n, and gn = 0 otherwise. Thus gn = 0 only for those
indices which are less than the slope of the initial edge of the μ-graph and
—in case the μ-graph is a finite polygon—those n which exceed the slope
of the final edge.

If F(z) = Σanz
n and μ(R9 F) = μ(R, G) then clearly \an\ < gn for all

n > 0. Hence

(2.10) M(R9 F)<Σ \an\Rn < ΣgnR" = M(R, G).

Equality in (2.10) implies \an\ = gn for all n and the existence of a β so
that

arg ane
inβ = α, a constant for all n.

Thuse-'°F(eiβz) = G(z).
An examination of trinomials, say Fa(z) = eia + 2z + z2, shows that

there is no function of minimal M(R) associated with a general μ-graph,
because the values of a for which M(R, Fa) is minimal vary with R.

We close this section with one final observation and question. It is
obvious that liminίR^O0M(R)/μ(R) > 1 for all entire functions and that
equality holds for all polynomials and for many transcendental functions
with highly lacunary power series.

On the other hand inequality (2.5) shows that

limsupM(R)/μ(R) > yfϊ



RELATIONS BETWEEN M( R ) AND μ ( R ) 483

for all transcendental entire functions and that

limsup M(R)/μ(R) = 2
R~*oo

for transcendental entire functions with highly lacunary power series.

2.11. Problem. What is

γ = inflim sup M(R)/μ(R)
R-*oo

where the inf is taken over all transcendental entire functions?
We have seen that yfl < γ < 2 and the upper limit appears to be the

likely value of γ.
Finally, we observe that the maximal growth fucntion G(z) which

belongs to a μ-graph with infinitely many edges satisfies

(2.12) M(R) = G(R) > μ(R)(N(R +) - N(R - ) + 1),

where N(R) is the slope of the μ-graph.
For any function φ(R, μ(R)) and any sequence Rx < R2 < R3 <

with Rn --» oo we can find a μ-graph so that

N(Rn+)-N(Rn-)>φ{Rn,μ(Rn)).

Thus inequality (2.12) yields the following.

2.13. THEOREM. There is no bound for M(R) which is a fixed function of
Randμ(R).

3. Upper bounds for M(R) in terms of μ(R) and μ(R 4- ε). In
contrast to Theorem 2.13 we have the following.

3.1. THEOREM. For every R > ε > 0 we have

(3.2)

Proof. We set log(R + ε) = L + δ1 + δ2 so that

(3.3) δ1 + δ2 = l

It suffices to prove (3.2) for the maximal function G(z) associated
with μ(R). Now set Nλ = N(Re8*). Then

(3.4) Σ g«Rn < Nιμ(R)



484 p. LOCKHART AND E. G. STRAUS

and

+ ε)-log Ju( JR)) = 7 Γ l o g

So (3.4) yields

(3.5) Y
« = 0

Now for n > Nx we have, by the convexity of the μ-graph.

Thus
00

(3.6) Σ gnR" s

It remains to choose

(3.7) 8, -

Then (3.5) and (3.6) yield

(3.8)

as was to be proved.

Note that Theorem 3.1 is similar to the inequality

(3.9) M(R)

of Valiron [2]. However the quantity R/N(R) need not be small and so

(3.2) cannot be directly deduced from (3.9). However it is obvious that

any bound for M(R) in terms of ε, R, μ(R), μ(R + ε) can also be

expressed in terms of ε, R, μ(R) and N(R + ε).
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