THE DIOPHANTINE EQUATION $ax + by = c$ IN $Q(\sqrt{5})$
AND OTHER NUMBER FIELDS

DAVID ROSEN

Solving in rational integers the linear diophantine equation

(1) \[ax + by = c, \quad (a, b) | c, a, b, c, \in \mathbb{Z} \]

is very well known. Let $d = (a, b)$, and put $A = a/d, B = b/d, C = c/d$, then equation (1) becomes

(1') \[Ax + By + C, \quad (A, B) = 1, A, B, C, \in \mathbb{Z}. \]

The purpose of this note is to discuss the solutions of this equation when A, B, C are integers in $Q(\sqrt{5})$ and the solutions are integers in $Q(\sqrt{5})$.

What makes the discussion interesting is that an algorithm which mimics the continued fraction algorithm that solves the rational integer case can be implemented.

A brief summary of the continued fraction algorithm for the rational case is as follows: To solve (1'): find the regular simple continued fraction for A/B; i.e.

\[
\frac{A}{B} = r_0 + \frac{1}{r_1 + \frac{1}{\ddots + \frac{1}{r_n}}}.
\]

which we write as $A/B = (r_0; r_1, \ldots, r_n)$. Since A/B is rational, the continued fraction is finite. The $(m + 1)$th convergent of a continued fraction is denoted by $P_m/Q_m = (r_0; r_1, \ldots, r_m)$. If $A/B = P_n/Q_n$ then the penultimate convergent P_{n-1}/Q_{n-1} provides a solution to $Ax + By = 1$ because of the well-known relation.

(2) \[P_n Q_{n-1} - Q_n P_{n-1} = (-1)^{n+1}. \]

It suffices therefore to take $x = (-1)^{n+1}Q_{n-1}, y = (-1)^n P_{n-1}$. To solve (1) we take $x = (-1)^{n+1}dCQ_{n-1}$ and $y = (-1)^{n+1}dCP_{n-1}$.

It is well known that the integers in $Q(\sqrt{5})$ have the form $s + t\lambda$, where $s, t \in \mathbb{Z}$ and $\lambda = (1 + \sqrt{5})/2$. (See Hardy and Wright [1] or Niven and Zuckerman [3] for a complete discussion of this algebraic number field.) The elements in $Q(\sqrt{5})$ are of course the quotients of integers in the
field. In order to mimic the solution procedure above we would require a continued fraction development that essentially parallels the ordinary continued fraction representation of real numbers, that is the elements of \(Q(\sqrt{5}) \) should have a unique finite continued fraction representation and every other real number has a unique infinite continued fraction representation. Such a representation exists and the continued fractions will be referred to as \(\lambda_5 \)-fractions [4].

These continued fractions were presented by the author in connection with studies on the Hecke groups [4], and are one example of the more general \(\lambda_q \)-fractions where \(\lambda = 2 \cos(\pi/q) \). It was shown in [4], that every finite \(\lambda_q \)-fraction is an element in the algebraic number field \(Q(\lambda_q) \), and Leutbecher [2] showed that only in the case \(q = 5 \), every element in \(Q(\sqrt{5}) = Q(\lambda_5) \) has a finite \(\lambda_5 \)-fraction. Hence a real number is an element of \(Q(\sqrt{5}) \) if and only if it has a finite \(\lambda_5 \)-continued fraction representation and every real number has a unique \(\lambda_5 \)-fraction representation. Thus we will show that the algorithm that solves the rational integer case (which is the case \(q = 3 \)) will work in the \(Q(\sqrt{5}) \) case.

What are the \(\lambda_q \)-fractions? These are continued fractions of the form

\[
r_0 \lambda + \frac{\epsilon_1}{r_1 \lambda + \frac{\epsilon_2}{r_2 \lambda + \cdots}}
\]

where, in general, for fixed \(q, \lambda = 2 \cos(\pi/q), q \in \mathbb{Z}^+ \) and \(q \geq 3, \epsilon_i = \pm 1, \) and \(r_i \in \mathbb{Z}^+, i \geq 1, r_0 \in \mathbb{Z}. \) The continued fraction is developed by a nearest integer algorithm. If \(\xi \) is a real number we seek the nearest integral multiple of \(\lambda. \) This means, if \(\{ \} \) denotes the nearest integer, then we write \(\{ \xi/\lambda \} = r_0, \) where we specify \(-1/2 \leq r_0 - \xi/\lambda < 1/2; \) i.e. \(r_0 \) is uniquely determined by the inequality.

\[
(3) \quad r_0 \lambda - \frac{\lambda}{2} < \xi \leq r_0 \lambda + \frac{\lambda}{2}.
\]

Hence \(\xi = r_0 \lambda + \epsilon_1/\xi_1, \) where it is seen that \(\xi_1 = \epsilon_1/(\xi - r_0 \lambda) > 0, \) since \(\epsilon_1 > 0 \) if \(r_0 \lambda < \xi \) and \(\epsilon_1 < 0 \) if \(r_0 \lambda > \xi. \) If \(\xi = n\lambda + \lambda/2 = (n + 1)\lambda - \lambda/2, \) then because of inequality (3) \(r_0 = n \) and \(\epsilon_1 = 1. \) Then \(r_0 \lambda - \lambda/2 < \xi \leq r_0 \lambda + \lambda/2 \) implies \(\xi_1 \geq 2/\lambda > 1 > \lambda/2 \) and hence \(r_1 = \{ \xi_1/\lambda \} \geq 1. \) Continuing in this way we find that \(\xi_m > \lambda/2 \) which implies that \(r_m \geq 1 \) \((m \geq 1). \) Henceforth, \(\lambda \)-fraction will refer to \(\lambda_5 \)-fraction. The \(\lambda \)-fraction is unique provided that the following few simple rules indicated in [4] are obeyed.
(i) If \(\lambda - 1/r\lambda \) occurs, then \(r \geq 2 \).
(ii) If
\[
\frac{\varepsilon_1}{\lambda - 1} = \frac{\varepsilon_2}{2\lambda - 1} + \varepsilon_2
\]
occurs, then \(\varepsilon_1 = \varepsilon_2 = 1 \).

We point out that in \(Q(\sqrt{5}) \),
\[
\lambda - \frac{1}{2\lambda - 1} = \frac{2}{\lambda}.
\]

(iii) If the \(\lambda \)-fraction terminates as
\[
\frac{\varepsilon}{\lambda - 1},
\]
then \(\varepsilon = 1 \). In \(Q(\sqrt{5}) \), \(\lambda - 1/\lambda = 1 \), which yields the equation
\[
\lambda^2 - \lambda - 1 = 0.
\]

A \(\lambda \)-fraction satisfying these criteria is called a \textit{reduced} \(\lambda \)-fraction. Similar criteria will yield unique \(\lambda \)-fractions. Because of (4) the rolled up finite continued fraction produces the quotient of two polynomials in \(\lambda \) which can be reduced to the form
\[
(a + b\lambda)/(c + d\lambda), \quad a, b, c, d \in \mathbb{Z}.
\]

This in turn can be put in the form
\[
(a' + b'\lambda)/c'
\]
by multiplying numerator and denominator by the conjugate of \(c + d\lambda \), which is \((c + d) - d\lambda\). One finds that \(a' = ac + ad - bc \), \(b' = bc - ad \), \(c' = c^2 + cd - d^2 \) — the norm of \(c + d\lambda \).

As observed on p. 550 of [4] consecutive convergents \(P_{n-1}/Q_{n-1} \) and \(P_n/Q_n \) of a \(\lambda \)-fraction satisfy a determinant relation similar to (2):
\[
P_nQ_{n-1} - P_{n-1}Q_n = (-1)^{n-1}\varepsilon_1\varepsilon_2 \cdots \varepsilon_n = 1.
\]

Finally we remark that the units in \(Q(\sqrt{5}) \) are \(\lambda^\nu \) which can be written in terms of consecutive Fibonacci numbers. If \(F_n \) is the \(n \)th Fibonacci
number, then $\lambda^n = F_{n-1} + F_n \lambda$. This can be proved as follows:

Let $F_0 = 0$, $F_1 = 1$, $F_2 = 1$ then $\lambda^1 = 0 + \lambda$, $\lambda^2 = F_1 + F_2 \lambda = \lambda + 1$, which is a consequence of (4). By induction then if $\lambda^k = F_{k-1} + F_k \lambda$, then

$$\lambda^{k+1} = F_{k-1} \lambda + F_k \lambda^2 = F_k + (F_{k-1} + F_k) \lambda = F_k + F_{k+1} \lambda,$$

as desired. If $n < 0$ one determines first from (4) that $1/\lambda = \lambda - 1$; hence $\lambda^{-2} = (\lambda - 1)^2 = 2 - \lambda$. By induction, one determines that $\lambda^{-n} = -F_{n+1} + F_n \lambda$ if n is odd and $\lambda^{-n} = F_{n+1} - F_n \lambda$ if n is even. To show that λ^n is a unit, we observe that the norm of $F_k + F_{k+1} \lambda$ is $F_k^2 + F_k^2 F_{k+1}^2 - F_{k+1}^2$. But the last expression is precisely the determinant relation (2) for the consecutive convergents. $F_k/F_{k+1}, F_{k+1}/F_{k+2}$ of the regular continued fraction $(1;1,1\cdots) = \lambda$. Thus each λ^n, $n > 0$, is indeed a unit. For n negative $= -m$, the norm $N(1/\lambda^m) = 1/N(\lambda^m) = \pm 1$ too, so λ^n is a unit for all integers n. We now state and prove the main theorem.

Theorem 1. Let $p, q, r \in \mathbb{Z}(\sqrt{5})$, and suppose that, except for units, p, q, r are relatively prime. Then the diophantine equation $px + qy = r$ has integer solutions in $Q(\sqrt{5})$. If x_0, y_0 is a particular solution, then any other solution has the form $x = x_0 + qt, y = y_0 - pt$. If $(p, q) = d$ and $d|r$, then

$$\frac{p}{d}x + \frac{q}{d}y = \frac{r}{d}$$

is solvable in $Q(\sqrt{5})$.

Proof. As in the rational integer case, we first solve $px + qy = 1$. This is done by expanding p/q in its unique λ-fraction. The penultimate convergent will supply the values for x and y. To solve $px + qy = r$ multiply the x and y values by r.

As in the rational case we note that if a particular solution is x_0, y_0 then an infinity of solutions is obtained using the usual trick namely putting $x = x_0 + qt, y = y_0 - pt$, which satisfies the equation for all $t \in Z(\lambda)$. Moreover if a and b is any solution $\in Z(\sqrt{5})$, i.e., $pa + qb = r$ then $a = x_0 + qt, b = y_0 - pt$, for some t. This is clear because from $pa + qb = r$ and $px_0 + qy_0 = r$ we obtain $p(x_0 - a) + q(y_0 - b) = 0$. Hence $p(x - a) = -q(y_0 - b)$. Since $(p, q) = 1$, it follows that $p|(y_0 - b)$. Thus $pl = y_0 - b$. But now $p(x - a) = -qpl$, hence $x - a = -ql$. This result has a bearing on the Hecke group $\Gamma(\lambda)$ in determining which solutions to $px + qy = 1$ provide a substitution that belongs to $\Gamma(\lambda)$.

Finally, the last statement of the theorem follows easily from the first statement since $p/d, q/d, r/d$ are relatively prime.
There is one wrinkle in this method which does not arise in the rational case. The \(\lambda \)-fraction when rolled up and reduced to the form (5) may not be identical with the original fraction unless a suitable unit is factored out from numerator and denominator.

Consider the following example: Solve

\[
(8) \quad (3 + 7\lambda)x + (5 - 2\lambda)y = 6 + 5\lambda.
\]

One can verify that

\[
\frac{3 + 7\lambda}{5 - 2\lambda} = 5\lambda + \frac{1}{\frac{20\lambda - 1}{\lambda - 1}}.
\]

The right side, when rolled up and reduced using (4), becomes

\[
\frac{487 + 788\lambda}{97\lambda + 60}.
\]

The numerator is \((34 + 55\lambda)(3 + 7\lambda)\) and the denominator is \((34 + 55\lambda)(5 - 2\lambda), (55\lambda + 34 = \lambda^{10}).\)

The penultimate convergent is

\[
5\lambda + \frac{1}{20\lambda - 1} = \frac{196\lambda + 100}{20\lambda + 19}.
\]

Hence \(x = (20\lambda + 19)\) and \(y = -(196\lambda + 100)\) solves \((487 + 788\lambda)x + (97\lambda + 60)y = 1\). It follows that \(x' = (20\lambda + 19)(5\lambda + 6) = 214 + 315\lambda\) and \(y' = -(196\lambda + 100)(5\lambda + 6) = -(2656\lambda + 1580)\) solves \((487 + 788\lambda)x' + (97\lambda + 60)y' = 6 + 5\lambda\). Thus to solve (8) we incorporate the common unit factor \((34 + 55\lambda)\) with \(x'\) and \(y'\). Then \((3 + 7\lambda)x'' + (5 - 2\lambda)y'' = 6 + 5\lambda\) has as solution

\[
(9) \quad x'' = (214 + 315\lambda)(34 + 55\lambda) = 24601 + 39805\lambda
\]

\[
y'' = -(1580 + 2656\lambda)(34 + 55\lambda) = -(199800 + 3223284\lambda).
\]

Knowing one solution thus gives all solutions; \(x = x'' + pt, y = y'' - pt\) where \(t \in \mathbb{Z}(\sqrt{5})\) and we assume that \((p, q) = 1\).

It is interesting to observe here that solving one diophantine equation automatically solves a class of equations. Recalling that the units \(\lambda^n\) can be written as integers in \(\mathbb{Z}(\sqrt{5})\) and noting that

\[
\lambda^n = F_{n-1} + F_n\lambda\) times \(\lambda^{-n} = F_{n+1} - F_n\lambda\) or \(-F_{n+1} + F_n\lambda) = 1
\]
then a solution to $px + qy = n$ provides a solution to $(F_{n-1} + F_n \lambda)px' + (F_{n-1} + F_{n} \lambda)qy' = n$. Clearly, the solution is $x' = (F_{n+1} - F_n \lambda)x$, $y' = (F_{n+1} - F_n \lambda)y$ or $x' = (-F_{n+1} + F_n \lambda)x$, $y' = (-F_{n+1} + F_n \lambda)y$, depending on the parity of n. As an example, the equation

$$(7 + 10\lambda)x' + (-2 + 3\lambda)y' = 6 + 5\lambda,$$

which is

$$\lambda(3 + 7\lambda)x + \lambda(5 - 2\lambda)y = 6 + 5\lambda,$$

is solved by $x' = 15204 + 24601\lambda$, $y' = -(123484 + 199800\lambda)$. This solution is obtained from (9) by dividing x'' and y'' by λ, i.e., multiplying by $\lambda - 1$.

The above procedures could be extended to other number fields if a suitable continued fraction representation were available. A continued fraction representation for the number fields $Q(2 \cos(\pi/q))$ similar to the foregoing was developed in [4], but as Wolfart showed [5] the only possible q's for which all the rational elements in $Q(\lambda_q)$ have a finite λ_q-fraction are $q = 3, 5, 9$. It appears therefore that it is true only for the fields $q = 3$ and $q = 5$; while for $q = 9$ the question is still open. For other values of q, equation (1) can be solved in $Z(\lambda_q)$ provided a/b has a finite λ_q-fraction. The formal statement is:

Theorem 2. If $\lambda_q = 2 \cos(\pi/q)$, q an integer ≥ 4, then if $a, b \in Z(\lambda_q)$, then the diophantine equation $az + by = 1$ has solutions in $Z(\lambda_q)$ if and only if $(a, b) = d$ and $d|c$, d is not a unit; and if a/b has a finite λ_q-fraction representation.

For $q = 4$, $\lambda_4 = \sqrt{2}$, and for $q = 6$, $\lambda_6 = \sqrt{3}$. The finite λ_4- and λ_6-fractions when rolled up have the form $a\sqrt{r}/b$ or $a/b\sqrt{r}$, $r = 2, 3$. Thus not all elements of $Q(\sqrt{r})$ are realizable as finite λ_4 or λ_6 continued fractions. However, consider

$$7x + 3\sqrt{2}y = 4 + 9\sqrt{2}.$$

We find the λ_4 continued fraction for $7/3\sqrt{2}$ which turns out to be $7/3\sqrt{2} = \sqrt{2} + 1/3\sqrt{2}$. Clearly

$$\frac{p_2}{q_2} = \frac{7}{3\sqrt{2}}, \quad \frac{p_1}{q_1} = \frac{\sqrt{2}}{1},$$

and $7 \cdot 1 - \sqrt{2} \cdot 3\sqrt{2} = 1$ so $x = 1$ and $y = -\sqrt{2}$ solves $7x + 3\sqrt{2}y = 1$.

Hence $x' = 4 + 9\sqrt{2}$, $y' = -\sqrt{2}(4 + 9\sqrt{2}) = -(18 + 4\sqrt{2})$ solves the original equation and of course there are an infinite of solutions of the
form \(x'' = 4 + 9\sqrt{2} + (18 + 4\sqrt{2})t, \quad y'' = -(18 + 4\sqrt{2}) + (4 + 9\sqrt{2})t, \quad t \in \mathbb{Z}(\lambda_4). \)

This same procedure will work for any of the algebraic fields \((2\cos(\pi/q)). \) Examples can be easily found by first taking a finite \(\lambda_\beta \)-fraction and using the numerator and denominator for the coefficients. For example in \(\lambda_7, \) compute
\[
2\lambda + \frac{1}{\lambda - 1} = 2\lambda + \frac{3\lambda}{3\lambda^2 - 1} = \frac{6\lambda^3 + \lambda}{3\lambda^2 - 1}.
\]

In \(\lambda_7, \)
\[
\lambda - \frac{1}{\lambda - 1} = 1
\]
so the rational elements will be of the form
\[
\frac{a\lambda^2 + b\lambda + c}{d\lambda^2 + e\lambda + f}.
\]
The equation \((6\lambda^3 + \lambda)x + (3\lambda^2 - 1)y = 1\) is solved by \(x = 2\lambda, \ y = -(2\lambda^2 + 1), \) since
\[
(6\lambda^3 + \lambda)2\lambda + (3\lambda^2 - 1) - (2\lambda^2 + 1) = 6\lambda^4 + \lambda^2 - (6\lambda^4 + \lambda^2 - 1) = 1.
\]

We remark that there are other ways of solving the linear diophantine equation in \(Q(\sqrt{5}) \), but the algorithm presented above bears such a striking similarity to the usual algorithm for the rational case that it gives \(Q(\sqrt{5}) \) a special status. The author knows of no other algebraic field in which a continued fraction can be similarly developed.

It seems that Pell’s equation \(x^2 - dy^2 = 1 \) should also be solvable in \(Q(\sqrt{5}) \) but there are still some difficulties in showing that \(\sqrt{a} \) is a periodic \(\lambda_5 \)-function. However, if \(\sqrt{a} \) is periodic then Pell’s equations can be solved as in the rational case.

References

Received August 4, 1983 and in revised form July 16, 1984.

Swarthmore College
Swarthmore, PA 19081