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SPECTRAL SETS AS BANACH MANIFOLDS

ANGEL LAROTONDA AND IGNACIO ZALDUENDO

Let 4 be a commutative Banach algebra, X its spectrum, and M a
closed analytic submanifold of an open set in C”. We may consider the
set of germs of holomorphic functions from X to M, O( X, M). Now let v
be the functional calculus homomorphism from O(X, C") to A", and
Ay = v(O(X, M)).

It is proven that 4,, is an analytic submanifold of 4", modeled on
projective A-modules of rank = dim M.

1. Introduction. Let 4 be a commutative complex Banach algebra
with identity, and let X be the set of all characters of A, considered as a
compact subset of the topological dual 4’ with the weak*-topology.

If U is an open neighborhood of X, and B a complex Banach space a
map f: U — B will be called holomorphic if it is locally bounded and all
its complex directional derivatives exist. The set of all such functions
which are also bounded on U will be denoted by H*(U, B), or simply
H>*(U), when B is the complex field. These are locally convex spaces with
the topology of uniform convergence. We define O( X, B) and 0( X) to be
the inductive limit of these spaces as U ranges over all open neighbor-
hoods of X. O( X) is then a topological algebra. We recall (see [2] or [7])
that there exists a continuous algebra epimorphism, the holomorphic
functional calculus

v:0(X)—> A
such that: the composition of » and the Gelfand map
0(X)—> A4 - C(X)
is the restriction map f— f|,, and the composition of the linear map
a+~> aandvy
A->0(X)-> 4

is the identity map of 4. Here a denotes the germ of the holomorphic map
defined on 4’ by vy = y(a).

In [6], Raeburn has generalized previous results of Taylor and

Novodvorskii ([7],[S]). He uses a generalization of the morphism v,
extending the holomorphic functional calculus to a linear map

S:0(X,B) > A ® B.
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If M c B denotes a Banach submanifold, ¢( X, M) is defined and so is
the set

Ay ={S(f):fe0(X,M)} c 4®B.

Raeburn shows that if M is a discrete union of Banach homogeneous
spaces the set 4,, is locally path connected and the generalized Gelfand
map

A, C(X, M)
induces a bijection on the set of components

In this note, in §3, we take B = C” and M a closed submanifold of an
open set of C”, and prove that the set A4,, is in fact an analytic
submanifold of A4”. This was first stated by Taylor in [8]. 4,, is modeled
on projective A-modules of rank = dim M. We also prove that 4,, and
AM = {a € A™ sp(a) C€ M} have the same homotopy type. Note that
with B = C",wehave S =» X --- X yand 4 ® B = 4".

In order to do this we first prove in §2 a version of the constant rank
theorem.

2. The constant rank theorem. In this paragraph we give a version
of the constant rank theorem valid for 4-modules; the whole paragraph is
an adaptation of the results in [4].

We will be dealing with submodules of the free module A", and
A-module morphisms 7: A” = A™. A submodule E of 4" will be called
A-direct if it is closed and there is another closed submodule E’ of A” such
that A" = E & E’; obviously, this is equivalent to the fact: E = Ker p
(resp: E = Im p), for some continuous A-linear projector p: A" — A".

Note that in this case E is a projective module, but not necessarily
free.

If T: A" - A™ is an A-module morphism, we say that T is A-direct
(also called “split”) if Ker T and Im T are A-direct.

Assume that

A"=E, ®E, F, @F=A4"

for some closed submodules E,, E,, F,, F,; if T: A" - A™ is an A-mor-
phism we shall use the notation

T = [Tll TIZ]' [El] I:Fl}
= . ﬁ
T21 T22 E2 FZ
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with 7}, € Hom ,(E}, F) (i, j = 1,2), meaning that if
x=x+x, (x,€E,x,€E,),
then
T(x) = [Tll(xl) + T12(x2)] +[T21(x1) + Tzz(xz)]

is the expression of 7(x) as a sum of elements in F; and F,.
We shall need the following elementary lemma, which we state
without proof.

LEMMA 2.1. Let P,, P, be A-direct submodules of A" of the same rank.
Then P, C P, implies P, = P,.

THEOREM 1. Suppose T,: A" — A™ is an A-direct morphism and let E,
and F, be closed submodules of A" and A™ respectively such that

A"=E & KerT,, ImT,® F,=A"

SR
y &| |KerT, FE,
then the following are equivalent
(i) T is A-direct, A" = E, ® KerT and A” = ImT & F,.
(i) @ € Iso( E;, Im Ty)) and & = ya™'B.
(ii1) There exist A-linear automorphisms u: A" — A", v: A™ = A™ such
that T, = vTu and

If

ulE, =idg  o|F, =idg.
(iv) T is A-direct, o € Iso( E,, Im T) and rk(Im T},) = rk(Im T).

Proof: Suppose (i) and consider the diagram

E, X KerT 5 ImT X F,

o1 Ly
T
A"=E ®KerTy, — ImT,®F,=A"

where ¢ is the isomorphism v — (v,, v,); here v; (resp: v,) is the projec-
tion of v onto E, (resp: Ker 7") with kernel Ker T (resp. E;). We define ¢
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in a similar way. Then we have

R E;
*=lo o) Ker T, | KerT

p O (ImT Im 7,
¥ = : -
v 1 F, E,
with 7 € Hom ,(Ker T, E,), » € Hom,(Im 7, F,) and 6 €
Iso,(Ker T;,, Ker T'), p € Iso,(Im T, Im 7;). On the other hand we also

have
[A 0] [ E, ] [ImT]
w= : -
0 0] LKerT F,
with A € Iso,(E,,ImT).
The commutativity of the diagram implies

p OffA Ofj1 7| |a B

v 1]lo oflo @] |y &/
hence pA = a (which implies that « is an isomorphism) and § = vAT =
y AN HYpA7r = ya !B, and we have (ii). Now assume (ii): if

A O E, Im 7,
T, = : R
© 10 0] |KerT, F,

with A € Iso,( E,, Im T;)) we define
1 -aB E, E,
u= : -
0 1 Ker T, Ker T,
At 0| |ImT, Im T,
v = : -
—ya ' 1 F, F,

and a routine calculation gives (iii).
Now suppose we have (iv) and define the automorphism S: A™ — A™

by
1 0| [ImT, Im 7,
S = 1 : - .
—ya 1 F, F,

and

and
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Then we have the composition

T' = ST = a B | E Im T,
70 0 8- ya | | Ker T, F,

which is also A-direct. Note that Im(7’) = S(Im 7'), hence Im(7’) and
Im(T') have the same rank; from this it follows that rk(Im 7"’) = rk(Im T7j)).
But Im(T") D a( E,) = Im(7T;); Lemma 2.1 gives Im(7T") = Im(7})
and this fact implies § — ya™'8 = 0. This proves (ii)
(iii) = (i) is simple; in fact, it is obvious that 7 is A-direct. It is also
clear that u(Ker 7;)) = Ker T, hence

A" = v Y(ImT, ® F,) = v'(Im T,) ® v"'(F,)

I

vIT,(A") ® F, = Tu(A") ® F, = ImT & F,,
A" =u(KerT,® E,) = u(KerT)) ® E, = Ker T @ E,.

In order to complete the proof, we only need the inference (i) = (iv):
a € Iso(E;,Im T;) as in (i) = (i1). The rest is obvious, so the proof is
complete.

We shall be concerned now with a generalization of the results in §1
of [6], we shall follow the definitions of this reference.

Let Q be an open set in A", F: 1 - A™ an holomorphic map, and
a € Q; we denote the differential of F at a by DF(a).

A linear representation of F in a is an object (u, U, v, V, T') where

(1) U is a neighborhood of 0 € 4", u is biholomorphic from U onto

u(U), a neighborhood of a contained in 2, and u(0) = a.

(i) V is a neighborhood of 0 € 4™, v is biholomorphic from ¥ onto
v(V), a neighborhood of F(a) and v(0) = F(a)

(iii) T: U — A™ is the restriction of an A-linear map, and v™'Fu = T.

(iv) Du(x) and Dv( y) are A-linear mapsifx € U,y € V.

We will say that the holomorphic map F: € — A™ is locally A-direct at
a € Q if there are closed sub-modules E;, C 4", F, C A” and a neighbor-
hood U of a such that, for all x € U,

(i) DF(x) is A-linear

(i) A" = E; ® Ker DF(x)

(ii)) A” = Im DF(x) ® F,.

We have now the following:

LEMMA 2.2. Let Q be an open set in A", F: Q& — A™ holomorphic and
a € Q. If F is locally A-direct at a, then there is a linear representation
(u,U,v,V,T) of Fina, with T A-direct.
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Proof. Without loss of generality we can assume that ¢ = 0 and
F(a) = 0; then there exist a neighborhood €, C € of 0 € 4” and closed
submodules E; C A", F, C A™ such that

A" = E, & Ker DF(x), A™ =1m DF(x) ® F,

for all x € Q. Also, DF(x) is A-linear if x € Q,,.
Let E, = Ker DF(0), F;, = Im DF(0); we denote x,, x, (resp: y;, »,)
the components of x € 4" (resp: y € A™) in the decomposition E; ® E,
(resp: F, @ F,). In a similar way we write F(x) = f,(x) + f,(x), with
D,fi(x) D,fi(x)

fl(x) =y 1 andffl(x) = 12'
l: 1:|
Llfz(x) L2f2(x) 12

We have
and so we can simplify the notation writing &, ,(x) = D,f,(x) (i, j = 1,2).
Recall that Theorem 1 gives
(a) aj,(x): E; — F| is an isomorphism, and
(b) ay(x) = apy(x)agy(x) lay(x) for all x € Q.
Define the following 4-linear maps
S E, —» F, S = a;,(0),
T: A" > A™, T(x)=S(x;),
C:Am—‘)Ana C(y)zs_l(yl)’
P: A" > A", P(x) = x,,
Q:Am—')Ama Q(.y):.yZ
Now define the holomorphic map 4: £, — A" by
h=cF+ P.
We have: Dh(x) is an A-linear map if x € Q. In fact,

ST 0| ay(x)  an(x) 0 0
D“”=[o o”%xn aﬂﬂ]+h J

_ [S'lau(x) S'lan(x)}

E,
E,

DF(x) =

0 1

hence by the inverse function theorem 4: @, — €2, is biholomorphic for
suitable neighborhoods of 0 € A".

Note that the differential of the map Fh~'P: P~}(Q,) — A™ vanishes
identically, that is

D(Fr7'P)(x)=0  (x € P7(2,)).
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In fact we can compute this differential as the composition
DF(h™'P(x))Dh(h~'P(x))"'P; the calculation leads (with x’ = A~'P(x))
to

a;,(x’) azz(x') 0 1 0 1

_ S 0}j0 O P
- au(x’)au(x')-lS ojjfo 1]

where we use the identity a,, = a;,a77a,;.

Hence we have proved

(¢) Fh~'P vanishes identically in a neighborhood of 0 (for instance, in
the connected component of 0 in P~1(Q,)).

Finally we define the holomorphic mapping g: ¢ ™(2,) = 4™

g=Fnlc+ Q.

[au(x') an<x'>HaH<x'rls —au<x'>-‘a21(x)Ho 0

Then if x = h~'c(y) we compute
1 0
‘]{12(95)0‘11(36)_1 1

and this shows that g: €, — @, is a biholomorphic map, where 2] and
are small enough neighborhoods of 0 € 4™. Also Dg(y) is A-linear for
every x € .

In order to complete the proof, set u = A~ and v = g; we must show
that the identity

Dg(y) =

gTh = F

holds in some neighborhood of 0 € A”; but this follows from (c) and the
computation

gTh = (Fh7'c + Q)T(cF + P) = Fh™'cQF

= Fh™%cF = Fh™}(h — P) = F — Fh'P.

THEOREM 2. Let Q be an open subset of A", and F: @ — A" an
holomorphic retraction that is locally A-direct at x for all x € ). Then Im F
is a Banach analytic manifold, and for all x € Im F the tangent space
T.(Im F) at x is Im DF(x).

Proof. For every F(x) € Im F there is, by Lemma 2.2, a linear
representation (u,, U, v,, V., T,) of F with T, A-direct.
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Forall x” € U,

T.= DT, (x') = Dv;l(Fux(x’)) . DF(ux(x’)) - Du (x')

= [ Do (T.(x))] ™ - DF(u,(x")) - Du,(x").

Dv (Z) and Du,(Z’) are A-linear isomorphisms, so Im T, =
Im DF(u (x")), for all x’ € U,. But F is A-direct at x, so there is a
neighborhood of x where Im DF(a) = Im DF(b), for a, b in this neigh-
borhood. Hence the Im 7, for z in this neighborhood are all 4-isomorphic
to a fixed 4-module P. Call h,: Im T, - P these A-isomorphisms. For
every x € Im F, x = F(x), and U, V, may be chosen so that u (U,) =
v,.(V,). Thenv: V. NImT, - v (V) N Im F is a bijection: it is one to
one over all of V, and if v,(z) € Im F, say v, (z) = u,(z’),

v,(z) = Fo(2) = Fu,(2') = v,Tu;(u,(2") = 0,(T.(2"))

sov.(z) € v, (V,NImT,).

Now define the chart near x € Im F: (v (V,) N Im F, h v;'). These
charts are compatible. To see this, suppose

U,=0v(V)Nnu,(V,)NImF+ @
we then have
(ho;") (o) o (U,) = by (UL).

But (2 v;")(hw:") ™t = hp v k7t is holomorphic. The same goes for the

oy “xTx
other composition. The tangent space T, (Im F) is given by

Im( Dv, (0)h3') = Dv,(0)(Im T,) = Im(Dv,(0)T,) = Im D(v,T)(0)
= Im D(Fu,)(0) = Im(DF(u (0))Du (0)) = Im DF(x).

3. A,, as an analytic manifold. Here we will apply the results in the
preceding paragraph to Taylor’s 4,, [7] where M is a closed submanifold
of an open set of C”.

For a € A", let a denote the function A" — C" defined by a(y) =
(v(ay),...,v(a,)) for all y € A”. Note that with the supremum norm
in both A" and C”", |a(y)| < |lv|llla]. We will sometimes write ¢" for
¢ X .-+ X ¢. We denote by 8, the classical holomorphic functional cal-
culus of Arens and Calderon [1]. All other functional calculus morphisms
and their restrictions will be denoted by ».

We will need the following lemma.

LEMMA 3.1. Let W be an open subset of C". Then A, is an open subset
of A".
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Proof. Leta € A, and f € O( X, W) such that a = v(f). Since f( X)
is a compact subset of W, there is an ¢ > 0 such that for every ¢ € X, the
polydisc { z € C": |f(¢) — z| < €} is contained in W. Now let U = {b €
A" |la — b|| < €}. ?)(X) C W, because

f(¢) = b(s)|=la = b(¢)| <lla — b]| < e.
Then b-Y(W) is a neighborhood of Xin 4’,s0b € O(X,W),and b € 4,,.
The sets 4,,, with W open, are now appropriate domains for holo-
morphic functions. We will need to lift holomorphic functions in C” to
holomorphic functions in A4”. This will be done as follows. Let h:
W — C” be holomorphic, and define 4,: A, > A” by A,(a) = v(he°f),
ifa=r(f).

LEMMA 3.2. A, is a well-defined holomorphic function. For all a = v(f)
€ Ay, DA,(a) is an A-module homomorphism given by v( Dh( f)).

Proof. First, we will see that v(f) = »(g) implies v(ho f) = v(hog).

For this, let b,,...,b, € A be elements that finitely determine f and g,
in other words, there is an open set € in C* and there are F and G in
O(2, W) such that the following diagram commutes

i)‘l(ﬂ) f(re_S_p;-g) W _h) cn

2}:’ - F(resp. G)

v(f) = v(g) means that 6,(F) = 0,(G), so sp(0,(F)) = sp(6,(G)) € W.
Since h € O(W,C™), we may write Hob(F)(h) = by (6,(h). Then h(F(b)) =
h(G(b)),s08,(ho F)=0,(heG)andv(hof)=v(heog).

To prove that 4, is holomorphic, let a € 4, and b € 4A". It will be
enough to prove the existence of

(1) () = lim +[4,(a + Ab) — 4,(a)].

Let a =v(f), b=r(g) Then a+ Ab=vr(f+ Ag), and (1) is
lim, A" [r(he(f+ Ag) — hof)]. Since the functional calculus is con-
tinuous, the limit (1) will exist if im, _,, A" [ho(f + Ag) — h o f] exists in
O(X,C™). We must see that A'[ho(f+ Ag) — ho f] converges uni-
formly over a neighborhood of X as A — 0. For this, set ¢ > 0, and if
A€ Cwith|A\|<eandy € X, let

SO0y = {%[h(fm #Ag(1) = ()] = o5 /(). iEA 0.

0 if A = 0.
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h is holomorphic, so lim,_,,S(A, y) = 0 for each y € X. Then there are
8, > 0 and neighborhoods V, of y such that [S(A, ¢)| < & for A € C with
Al < 8, and all ¢ € V.. Being X compact, there are vy,,...,y, € X such
that V,, i =1,...,p, cover X. Let § = min{§,: 1 <i<p}, and V=
ULV, Then for all A € C with [A\| <8 and ally € ¥, S(X, ) <&, 50 4,
is holomorphic. We shall denote the limit of A™'[Ao(f+ Ag) — ho f] as
A — 0, by Dh(f)(g)-

DA,(a) is more than just a linear morphism. It is A-linear. To prove
this we must show that the diagram

o(x,0)"" x o0(x,0)" - 0(x,0)"
v vl v
Amxn X A" — A" commutes.

Here the horizontal arrows indicate matrix multiplication.

As all the arrows are continuous, and P(A4)* is dense in ¢( X, C)* for
all k, where P(A) is the algebra of polynomials in Gelfand transforms of
elements of A, it will be enough to show that »(p - gq) = v(p) - v(q),
wherep,;, q; € P(A). Let

p.; = 2a’(k), wherea"/(k) —aik, -+
(k)

—_ —_ ——k]
q;= 2 a/(k’), wherea’(k’) —alki -
(k')

v(p-q)= V( 2 Py 2 Py,

j=1 j=1

xh

i

( Y Y aik) L ak)..... Y Y a(k) sz‘(k'))

Jj=1(k) (k") J=1 (k) (k")

Il

(z Y (k) D al(k), ., 3 Tam(k) zaw«)).

Jj=1 (k) (k") Jj=1 (k) (k")
On the other hand,
@ ) 5l0) = [ Erp)p@)s £ r(pupla), |
j=1 j=1
But

() = ) =3 Za(0)) = Tat(k),

(k) (k)
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and
(@), = o(a) = | Za0) = Zai(k).
(k") (k)
So
=[x (k) T al(k)..... > (Z)ar"f(mzaf(k')) )
Jj=1(k (k") Jj=1(k (k")
Then

D4, (a)(b) = v(Dh(f)(g)) = »(Dh(f)) - »(g) = »(Dh(f))(b).

So that DA,(a) = v(Dh(f)) € A"*" is an A-module morphism, for all
a€ Ay,

Note that A4, could have been well-defined by putting A4,(a) =
v(h ° @), but this definition will not do for our later purposes.

Now let M be a closed submanifold of an open set of C”, of
dimension k. We recall that by [3; Ch. VIII, C] there is an open
neighborhood W of M and an holomorphic retraction r: W — M. Hence
we also have A,: 4, — A,,, the image of 4, being contained in 4,,
becausero f € O( X, M) for all f € O( X, W). Of course the image of 4, is
exactly 4,,, for if a € 4,,, then A,(a) = v(r° f) where f € O(X, M) so
rof=f,and 4,(a)=v(ref)=v(f)=a € Im A, Now we obtain our
main theorem.

THEOREM 3. If M is a closed submanifold of an open set of C", of
dimension k, then A,, is a Banach manifold modeled on projective A-modules
of rank k.

Proof. By Theorem 2, it will clearly be enough to verify that A4, is
A-direct at a for all a in a neighborhood of 4,,.

Since r is a retraction, Dr(r(z))e Dr(z) = Dr(z) for all z € W.
Therefore Im Dr(z) € Im Dr(r(z)), but the rank of the matrix Dr(z) is at
least that of Dr(r(z)) for z near r(z), so that actually Im Dr(z) =
Im Dr(r(z)) for z in an open neighborhood of M. This means that
dimIm Dr(z) = k, and dim Ker Dr(z) = n — k near M. C" can be writ-
ten as the direct sum

C" = Im Dr(r(z)) ® Ker Dr(r(z)) = Im Dr(z) & Ker Dr(r(z)).
Because of the continuity of Dr, we may also write C” = Im Dr(z) &
Ker Dr(z), for z near M. Note also that Dr(r(z))| Im Dr(r(z)) is the

identity, so that Dr(z)| Im Dr(z) is an automorphism of Im Dr(z) near
M. We may suppose the neighborhood of M where all this is true to be W;
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just discard the old W. For allz € W,
Dr(z) - 0] | Im Dr(z)
Ker Dr(z)

Im Dr(z)
Ker Dr(z)

. -

b

is an automorphism of C”. Define a: W — GL,(C) by a(z) = the matrix
of a, in the canonical basis of C". We will show that «a is an holomorphic
function. For this, let z, € W. There is a neighborhood U of z, and there
are holomorphic functions v;: U — C”", 1 < i < n, such that
0,(2),...,0,(2) is a basis of Im Dr(z) and v, (2),...,0,(z) is a basis of
Ker Dr(z) for all z € U. Let B, € C*** be the matrix of Dr(z)|Im Dr(z)
in the basis v,(z),...,v,(z) and let ¢(z) be the matrix which changes the
canonical basis of C" to v,(z2),...,0,(z). Then

-0
a(z)=c(z)-1.[ﬁf.:. .].c(z)
0 -1

and it will be enough to verify that B, is an holomorphic function of z in
U, but this follows from the equations

k
Dr(Z)(U,-(Z)),= Zﬁzuvi(z).v l—<—-lat-£k
s=1
We therefore have 4,: 4, = Ag ) = GL,(4). But

Aa(x)llm DA (x) = DAr(x)|Im DA, (x)

for all x € 4,,. To see this, let b = v(Dr(g)(h)) € Im DA,(x), where
= »(g). Now A (x)(b) = v(a°g) - v(Dr(g)(h)) = v(a° g - Dr(g)(h)),
but for all y near X,

a(g(Y))hm Dr(g(v) = D"( g(y))llm Dr(g(v))>

$O
A, (x)(b) = »(Dr(g) - Dr(g)(h))
= »(Dr(g)) - v(Dr(g)(h)) = DA,(x)(b).
Then
DA, (x)|tm pa,(x): Im DA,(x) — Im DA,(x) is an automorphism.
We prove that A” = Im DA,(x) ® Ker DA,(x) forallx € 4,,:
0= Ker( DA, (x)|im DA'(X)) = Im DA,(x) N Ker DA,(x).

If ¢ € A", there exists b € Im DA,(x) such that DA,(x)(b) = DA, (x)(c).
Then ¢ =b + (¢ — b), with b € Im DA ,(x) and ¢ — b € Ker DA4,(x).
Ker DA ,(x) is closed, so the direct sum is topological.
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We now know that Im DA ,(x) is a projective A-module.
We shall see that its rank is k.
First we must prove that for all x € 4, and ¢ € X,

¢"(Im DA,(x)) = Im Dr(¢"(x))
and
¢"(Ker DA,(x)) = Ker Dr(¢"(x)).
Take
DA,(x)(b) € Im DA,(x) - (DA, (x)(5)) = 7{DHE)B))(9)
= (Dr(%)(d))(¢) = Dr(¢"(x))(¢"(b)) € Im Dr(¢"(x)).
Now take b € Ker DA ,(x).
Dr(¢"(x))(¢"(b)) = ¢"(DA4,(x)(b)) = ¢"(0) = 0,

so ¢"(b) € Ker Dr(¢"(x)), and we have proven both left-to-right inclu-
sions. We have A” = Im DA,(x) ® Ker DA,(x), and ¢" is surjective, so

C" = ¢"(Im DA4,(x)) + ¢"(Ker DA,(x)),
but because of the inclusions we have just proven, this sum is direct. Then
C" = ¢"(Im DA,(x)) ® ¢"(Ker DA,(x))
= Im Dr(¢"(x)) ® Ker Dr(¢"(x)),
so the inclusions are actually equalities.
Now let x€ A4, P=ImDA,(x), Q=KerDA,(x), and ¢ € X.
Then rk,P =1k, P, =1k, (A, ®,P) 15, by Nakayama’s Lemma the
¢ ¢

same as dim[(4, ® ,P) ®, ¢C], when C (and also ¢"( P)) has the 4 ,-mod-
ule structure induced by ¢. We then have the 4 ,-module morphism

q: (A¢ ®,P) ®,C - ¢"(P);

‘I(Z(Z:—: ®Pij) ® )\j = Z ZAJ:EZU; ¢”(Pij)'

Let v,,...,v, has a basis for ¢"(P) = Im Dr(¢"(x)), and let b,,...,b,
€ P such that ¢"(b,)=v, for i=1,...,k. Then 1/1®b,)®1, i=
1,...,k, are C-linearly independent: if 0 = X*_ \,(1/1 ® b,) ® 1, then

k k
0=4g(0)= Y A¢"(b)= X\,
i=1 i=1

and A, =0fori=1,...,k.

Therefore rk , P = dim¢[(4, ®,P) ®,C] > k.

In a similar manner, and since ¢"(Q) = Ker Dr(¢"(x)), rk,0 >
n—k.Butrk,P + 1k,Q =n,sork,P = kV¢ € X. Thentk P = k.
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To complete our proof, let a € A4,, and write:

P(x) O(x)]| [ Im D4,(a) [ Im DA, (a)

R(x) S(x)} KerDA,(a)} - [KerDA,(a)J'
Since DA,(a) is an indempotent, DA,(a) |y, pa (. 18 the identity, and

P(a) = 1. But Im DA,(a) is a Banach space, so by the continuity of P,

P(x) is an automorphism of Im DA (a) for all x in a neighborhood U of

a.

DA, (x) =

We have then verified conditions (iv) of Theorem 1 for all x € U.
Therefore, A, is A-direct at x for all x in a neigborhood of 4,,.

Observe that the tangent space 7,(A4,,) at a is Im DA, (a). These are
of course projective A-modules of rank k, but they need not be isomor-
phic on different connected components of 4,,. In fact, some of these
modules may be free while others may not.

Now consider for any Banach algebra A, the category M(A) whose
objects are analytic manifolds modeled on projective A-modules, with
morphisms holomorphic functions whose differentials are 4-module mor-
phism, and the ordinary composition. Let M be the category of closed
analytic submanifolds of open subsets of finite products of C. Then we
have:

PROPOSITION 3.3. A, is a covariant functor from M to M(A).

Proof. A,, is defined for every object in M and is an object of M(A),
by Theorem 3. Now let M and N be two objects of M and h: M — N an
holomorphic function. # can be extended to an open neighborhood W of
M for example by Ao r. If h is such an extension, then we can define Aj as
before Lemma 3.2. Now define 4, to be the restriction of 4; to 4,,, for
any extension /4 of 4. Obviously, Im 4, = 4;(A,,) C Ay, and if &, and &,
are two extensions of h, and a € 4,,,a = v(f) with f € O( X, M), then

Ahl(a) = V(h1°f) =v(hof) = v(hyof) = Ahz(a)’
so A, is well defined. The rest of the Proposition is easily verified.

There are many holomorphic functions in 4" whose differentials are
A-module morphisms, but which are not of the form A4, for any 4. As an
example, take a € 4 such that there are x € 4, and ¢, Y € X with
¢(x) = Y(x) # 0 and ¢(a) # Y(a); and consider L,: 4 — A defined by
L,(y)=ay. L,is A-linear, but L, # A, for all h: if L, were A,, ax =
L,(x)=A,(x)=v(heX),soover X, ax = ho X, and then

¢(a) - ¢(x) = h(e(x)) = h(¥(x)) =¥ (a)¥(x).
Hence, ¢(a) = ¢(a), contrary to our assumptions.
Finally, we wish to compare 4,, and A™.
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PROPOSITION 3.4. A™ = 4,, + Rad(A4)".

Proof. Let "= {f€ O(X,C): f|y=0}. Then »(A") = Rad(A4): if
feN, v(fly=rlx=0, so »(A#) C Rad(A4); on the other hand, if
a € Rad(A), a =vr(a) with a|X = 0. We identify also Rad(A4)” with
v(A"). Note that AM c A, for if a(X)=sp(a) C M, then a €
O(X,W). Now take a € A™, and put a = 4,(a) + (a — 4,(a)). A,(a) €
A, and

a—A,(a)=v(a)—v(rea)=v(a—roa) e Rad(4)",

because a — reoa € A#". For the other inclusion, let b € 4, and ¢ €
Rad(A4)". ¢ = v(g), with g € #"". Then

sp(b+c)=b+c(X)= b+’\)(X
= (b + g)(X) = b(X) = sp(b) C M.

COROLLARY 3.5. AM and A,, have the same homotopy type. If A is
semisimple, then AM = A,,. (See also [T; 2.8].)

Proof. Let 1: A,, > A™ denote the inclusion. 4, o is the identity on
A,, and it is easily verified that ¢ o 4, is homotopic to the identity on 4.

4. An example. We wish to consider briefly an example of a
spectral set. Suppose A is semisimple, and the manifold M is given as the
zero set of a holomorphic function

w5 ck,

It has been established in the last paragraph that 4,, is a Banach
manifold. This would have been a much simpler matter in this particular
case, but a bit more can be said. Lift F to an analytic function

Ay, Z A*
and the zero set of A, is exactly 4,,, To see this, let a € 4,,; then
a=vp(f) with fe O0(X, M), and Ag(a) =v(Fof)=»(0)=0, so a €
A70). Now if Ap(a)=0, »(Fea)=0 and Fod =0 over X. Hence
F(sp(a)) = {0}, and sp(a) € M. We then have 4,, C A7'(0) € A, but
since A is semisimple, all three are the same.

Now take W = GL,(C), and G a Lie subgroup of W which is the zero
set of analytic functions, for instance an algebraic group. Then the
corresponding zero set of the same functions in GL,(A4) is a Lie subgroup
of GL,(A4).

It can in fact be shown that all Lie groups give rise to Banach Lie
groups, and that these have tangent spaces which are free 4-modules.
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