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COUNTEREXAMPLE TO A CONJECTURE
OF H. HOPF

HENRY C. WENTE

The purpose of this paper is to produce an immersion of a compact
oriented two-dimensional surface of genus one into Euclidean 3-space
with constant mean curvature H Φ 0. We thus provide a counterexample
in dimension 3 to the following conjecture of H. Hopf.

Conjecture of H. Hopf. Let Σ be an immersion of an oriented, closed

hypersurface with constant mean curvature H Φ 0 in Rn. Must Σ be the

standard embedded (n — l)-sphere?

Two important results relating to this conjecture are due to A. D.

Alexandrov and H. Hopf. A. D. Alexandrov [1] showed that the conjec-

ture is true if Σ is an embedded hypersurface in Rn. This extended an old

result of J. H. Jellett [10] (see also [15] p. 354), who showed the conjecture

to be valid in the case where Σ is a two-dimensional star-shaped surface in

R3. H. Hopf himself [8] showed the conjecture to be true when Σ is an

immersion of S2 into R3 with constant mean curvature.

A negative answer to the Hopf conjecture in dimensions greater than

three was recently supplied by Wu-Yi Hsiang [9]. He constructed a

counterexample in R4. He considered 3-dimensional immersions into R4

which were invariant under the action of 0(2) X 0(2), a subgroup of the

isometry group for R4. If one identifies R4 with C X C so that a point in

R4 has coordinates (zv z2) where zt = xi + iyt and the action of 0(2) X

0(2) to be given by (zv z2) -> (eιθzv el0ίz2), then the orbit space is

R4/O(2) X 0(2) = {(xl9 x2)\xι > 0, x 2 > 0} and a surface of constant

mean curvature with the desired symmetry is determined by a generating

curve lying in the orbit space. Such a curve will generate a closed surface

if it terminates on the positive xλ and x2 axes. Hsiang succeeded in

showing that there exist such curves which generate an immersion of S3

into R4 of constant mean curvature which is not a standard sphere. This

method does not carry over to the classical dimension and so the Hopf

conjecture for R3 remains unresolved.

Our counterexample is contained in the following theorem.

COUNTEREXAMPLE THEOREM. There is a conformal immersion of R2

into R3 with constant mean curvature H Φ 0 which is doubly-periodic with

respect to a rectangle in R2. If w = u + iυ = (w, v) represents a typical
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point in R2 and we label points in i?3 by x = (x, y, z), then we construct a

function x(u, v) satisfying

(1.1) (a) Δx = 2H(\U A xv) some H Φθ

(b) | x j = | x j , (xH x u ) = 0

(c) |χJ#0.

These equations say that x(u, υ) is an immersion of R2 into R3 with constant

mean curvature, H. Finally, there are positive numbers A, B with

(1.2) \{u + A,v) = x(w, v + B) = x(w, υ)

for all (u, v) e R2. In fact, we produce a countable number of isometrically

distinct immersions.

If x(w, v) is a solution to (1.1) (1.2), then we may write the first

fundamental form ds2 = E(du2 + όfo2). Now set E = (a2/4)e2ω where

H = a~ι Φ 0 then as we shall see in the next section, ω(w, u) will be a

doubly-periodic solution of the P.D.E.

(1.3) Δω + sinhcocoshω = 0

where Δco = ωuu + ωυv is the Laplace operator. Conversely, if ω is a

doubly periodic solution to (1.3), then the Gauss and Mainardi-Codazzi

Equations may be used to construct a mapping x(w, υ) satisfying the

constant mean curvature equations (1.1) and such that the lines of

curvature are parallel to the coordinate axes in R2. This mapping is

generally not doubly periodic. These surfaces do possess some symmetry

properties, however. We use a continuity argument to show that for

certain rectangles (A, B) the resulting surface is doubly periodic giving us

our desired counterexample.

In §11 we develop our construction procedure. In §111 we give the

continuity argument leading to the existence of doubly periodic immer-

sions. In §IV we discuss the needed results concerning solutions to the

D. E. (1.3). In particular we will study "large" solutions to the D. E. of

the form

(1.4) Δω 4- 2λ sinh ω = 0, ω = 0 on 3Ω

where Ω is a rectangular domain. Our treatment is based on recent work

of V. Weston [18] and J. L. Moseley [12,13]. Weston studied large positive

solutions to Δco 4- λeω = 0 on a smooth domain Ω c ί 2 with ω = 0 on

3Ω. Subject to certain restrictions on Ω he showed the existence of a

branch of "large" solutions parameterized by λ as λ -» 0. Moseley [12]
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then adapted Weston's method to equations of the form

Δω + λ[eω + σ(w)e~ω] = 0

which includes the case of interest here. For us the domain is not smooth.

In §IV we shall see that the Integral Equation method of Weston and

Moseley will work for us.

Finally in §V, we shall discuss the shape of these surfaces and shall

give some indication of their form.

II. The differential geometry. Much of the following development

may be found in Eisenhart [4, p. 297] or in the lecture notes of H. Hopf

[8]. Suppose that x: Ω c i?2 -> i?3 is a conformal representation of a

surface of constant mean curvature H. x(w, v) then satisfies (1.1) and the

first fundamental form is given by

(2.1) I = dx - dx = E(du2 + dv2)

where using the classical convention E = G = |x J 2 and F = (xu x0) = 0.

The second fundamental form is given by

(2.2) II = -(dx d£) = L du1 + 2Mdu dv + Ndv2

Here £ = (xu A xυ)/\xu A xυ\ is the unit normal vector with the orienta-

tion determined by the mapping x(w, v). For this mapping we have

(2.3) (a) K = kxk2 = (LN - M2)/E2

(b) H= (kλ + k2)/2 = (L + N)/2E

where kv k2 are the principal curvatures, K is the Gauss curvature, and H

is the mean curvature. For this system the Mainardi-Codazzi equations are

(2.4) (a) Lv-Mu = EVH

(b) MV-NU=-EUH.

However, EH = (L + N)/2 so that the system (2.4) may be rewritten

(2.5) (a) [(L-N)/2]U + MV = EHU

(b) [{L-N)/2)υ-Mu=-EHυ.

Therefore, if H = constant we find that

(2.6) φ(w) = [(L - JV)/2] - xM
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is a complex analytic function of w = u + iυ9 and it is easily checked that

(2.7) \φ(w)\ = \k1-k2\E/2.

We assume that x(w, υ) is an immersion so that E > 0.

Now suppose further that x(u, v) is a doubly periodic immersion of

R2 into i?3. In this case φ(w) is a doubly periodic analytic function on C

and so is a constant. This leads to two possibilities.

Case 1. |φ(w)| = 0. Here we have kγ = k2 so that the entire surface is

umbilic. The only closed bounded surface with this property is the round

sphere. We thus would have a conformal map of a torus T2 onto a sphere

S2 c R3. This is impossible.

Case 2. \φ(w)\ > 0. We now have kx — k2 Φ 0 and the surface is free

of umbilic points. The lines of curvature are given by the form

(2.8) -Mdu2 +(L- N) dudv + Mdv2 = 0.

But L — N and M are constant and not both zero. Therefore the lines of

curvature are a family of mutually orthogonal straight lines in the u — v

plane.

If the lines of curvature happen to be parallel to the coordinate axes,

then we have M = 0, kλ = L/E, k2 = N/E from which we obtain

(2.9) ξB=-M«. lv=-k*0.

We also note that in Case 2 the mean curvature H Φ 0 (there is no closed

bounded minimal surface) and so by choice of orientation we may

suppose H is positive. We select H = 1/2.

In conformal coordinates Gauss's Theorem Egregium may be written

(2.10) K =-[{EJE)u +{Eυ/E)v]/2E.

Suppose that the lines of curvature are parallel to the coordinate axes, that

kx < k2, and that kλ + k2 = 2H = 1. It follows that -1 < k1/k2 < 1 and

so there is a unique value ω with kλ = Csinhω, k2 = Ccoshω where

C = C(u, v) is to be determined. However kx + k2 = C[coshω + sinhω]

= Ceω = 1 allows us to conclude that C = e~ω. Hence

(2.11) kx = £~ωsinhω < k2 = e~ωcoshω

K = e~2ωsinhω cosh ω.

Since φ(w) is a constant it follows from (2.7) that (k2 — kx)E is constant

and therefore E = λe2ω for some constant λ. We substitute this into (2.10)

and obtain

(2.12) Δω + λsinh co cosh ω = 0.
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By stretching the domain via a homothety we may force λ to equal 1, and

so for suitably stretched coordinates we have

(2.13) Δω 4- sinhωcoshω = 0.

We want to reverse this procedure. Start with a solution ω(u, v) of (2.13)

and from it construct an immersion of a surface with constant mean

curvature H = 1/2. This procedure is indicated in Eisenhart [4, p. 297].

The Reverse Procedure. Let ίlAB c R2 be the open rectangular domain

(0, A) X (0, B) and suppose ω(u, v) is a positive solution to the P.D.E.

(2.13) which vanishes on the boundary. The following theorem applies.

THEOREM 2.1. Let ω(u, v) e C2(ΏAB) Π C°(ΏAB) be a positive solu-

tion to the D.E.

(2.14) ωuu + ωυυ + F(ω) = 0

on ΏAB which vanishes on the boundary, where F(ω) is an odd smooth

function, F(-ω) = -F(ω) and where we also assume that F(ω) is positive

for ω positive. The following assertions are true.

(a) By odd reflection over adjacent rectangles ω{u,v) can be extended as

a doubly periodic solution to (2.14) of class C2 on R2 satisfying

(2.15) ω(u + 2A, v) = ω(u9 v + 2B) = ω(u, v)

ω(-w, v) = ω(u,-v) = -ω(ι/, v)

(b) The solution ω(w, v) is symmetric about the bisecting lines u = A/2,

v = B/2.

(2.16) ω(A — u, v) = ω(u, B — v) = ω(u, v)

ω(A/2 — u, v) = ω(A/2 + u, v) etc.

(c) For a fixed v,0 < v < B, ω(u, v) is a strictly increasing function of

u, 0 < u < A/2, and for a fixed u, 0 < u < A, ω(u, v) is a strictly increas-

ing function ofv,0<v< B/2.

(d) ωv(u,0) is a strictly increasing function of u,0 < u < A/2 and

ω M (0, v) is a strictly increasing function ofv,0<v< B/2.

Proof. See Lemmas 4.5-4.6.

Suppose we have a smooth (analytic, in fact) doubly periodic solution

to (2.13) satisfying the symmetry properties listed in Theorem 2.1. We
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recover the immersion x(u, v) as follows, where the constant mean curva-

ture H = 1/2. We set

dv2)(2.17)

We write

E =

^v —

e2

e~

ds2 = E{du2

inhω, k2 = t

= <?ωsinhω

= e ω coshω, M = 0.

K = kvk2 = (LN - M2)/E2 and

H = (L + N)/2E = ( ^ + A:2)/2 = 1/2.

Our first and second fundamental forms are

(2.18) ds2 = e2ω(du2 + dυ2)

-dx - dξ = e ω [(s inhω)ώ/ 2 + (cosh ω) dv2].

It is straightforward to check that the Gauss Equation (2.10) and the

Mainardi-Codazzi Equations (2.4-2.6) are satisfied. These equations (by a

Theorem of Bonnet) see [3, p. 311] are precisely the integrability condi-

tions that guarantee the existence of a mapping x(w, v) whose first and

second fundamental forms are given by (2.18). If E = G = e2ω, F = 0

then the equations to be integrated may be written

(2.19) xuu = ωuκu-ω^v + U

where kγ and k2 are given by (2.17) and ξ = (xM Λ xt,)/|xM Λ xv\. Our

discussion gives us the followng theorem.

THEOREM 2.2. Let ω(u, v) be a solution to (2.13) on R2.

Let the first and second fundamental forms be given by (2.18). There is a

solution x(w, υ) to the system (2.19) whose fundamental forms are given by

(2.18). The lines of curvature are parallel to the coordinate axes and the

principal curvatures are kλ = £~ωsinhco and k2 = e~ωcoshco with mean

curvature H = 1/2. The solution x(w, υ) is unique to within a Euclidean

motion in R3.
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Proof. Follows from the previous discussion. This result may be found

in Eisenhart [4].
Now suppose x(u, υ) is the parametric surface of constant mean

curvature H = 1/2 obtained from Theorem 2.2. by integrating the system

(2.19) where ω(w, v) is a solution to (2.13) on R2 which is doubly periodic

relative to the fundamental rectangle [0,2^4] X [0,22?] satisfying the sym-

metry properties listed in Theorem 2.1. We are interested in the symmetry

properties of x(w, v) itself.

THEOREM 2.3. Let x(u, v): R2 -» R3 be a parametric surface obtained

by integrating the system (2.19), satisfying the conclusions of Theorem 2.2

where ω(u, v) is a solution to (2.13) and satisfying the symmetry conditions

listed in Theorem 2.1. The surface x(w, v) possesses the following symmetry

properties.

I. The curve x[(m 4- (1/2))A, v] lies in a plane Π m (m is an integer)

whose normal vector is xu[(m 4- (1/2)) A, v] and

(2.20) x [ ( m + (1/2)) A - u,υ] = « m ° x [ ( m +(1/2))A 4- u,υ]

where £%m\ R3 -> i? 3 is the reflection map about the plane Tίm. In particular

this implies that

(2.21) x(w, υ) = &0°x(A - w, υ) = 9t_x <>χ(-A - u, υ).

The planes Π m are all parallel. Therefore x(u 4- 2 A, v) = x(u, v) + c where

T(x) = x + c is a translation T = £ί$0° 3t_λ in a direction normal to each

Π m and carries Π m into Π m + 2 . If e is a unit normal vector to Π w ,

e = xu(A/2,0)/|xM(v4/2,0)| then we may write

(2.22) x(u 4- 2A, v) = X(M, V) 4- Tβ

for some real number T.

II. x(w, /5) (I an integer) is a plane curve lying in a plane Γ7 whose

normal is given by ξ(w, IB) = constant. In particular Γz _L Π w / o r α// /, m.

III. 77ze curves x(mA, v) satisfy the identity x(mA,v) 4- ζ(mA, v) = cm

where cm is a constant vector. Thus x(mA, v) c S(cm,l) = the unit sphere

with center cm. The centers cm all lie on an axial line I with direction parallel

to the vector e given in I, and coc2 = re.

IV. The curve x[u,(n 4- (1/2))Z?] lies in a plane ΩΛ. This plane is

orthogonal to each Π m , its normal is given by xv[u,(n 4- (1/2))Z?], and each

Ωw contains the axial line I. As in I we have x(w, v) = #^0 °x(u, B - v) =

Ί0r_1oχ(u, B — v) where i^n is the reflection in R3 about the plane Ω,7. It

follows that

(2.23) x(κ, v 4- 2B) = 9t oχ(w, ϋ)
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where 8% ° x is a rotation through an angle 0, with the line I as the axis of

rotation. A positive rotation is determined by the oriented normal xυ(u, B/2)

to Ωo, and θ is the angle between the planes Ωo and Ω2. 8% ° x = Wo ° H^_γ ° x

in fact.

Proof. The theorem follows from the symmetry properties of the
curvature function ω(w, υ) as listed in Theorem 2.1. Since M = 0 and
ωu(A/2, o) = 0we have from (2.19)

xuv(A/2, v) = ω*M/2, υ)xu(A/29 v).

From this we may conclude that xu(A/2, v) = a(v)bQ where <x(v) is a
positive scalar function and b0 is a constant vector, b0 = xu(A/2,0) for
example. It follows that x(A/29 v) lies in a plane Π o with xu(A/2,0) = b0

as a normal vector. Furthermore, from the symmetry properties (2.15)
(2.16) of ω(w, υ) it follows that by integrating the system (2.19) the
surface x(w, v) will satisfy the symmetry property x(A/2 — u, v) =
&0 °x(A/2 + w, v) where 01 ̂  is the reflection about the plane Π o .

Identical statements apply to the curves x[(m + (1/2))A, v] with
corresponding planes of symmetry Π m thus showing (2.20) and (2.21), and
to the curves x[u,(n + (1/2))B] contained in the planes of symmetry Ωn

orthogonal to Π m .
Now look at the curve x(w, 0). We have /q(w,0) = e"ωsinhco = 0.

Therefore, by (2.19), ξM(w,0) = 0 or ξ(w,0) = constant. From this it
follows that x(w, 0) is a curve lying in a plane Γo which has ξ(w,0) as its
normal vector. Thus Γo is a tangent plane to the surface along the entire
curve x(u, 0). Furthermore Γo is orthogonal to the planes Π m .

We now show that xM(w,0) is an even function of u. It will then
follow that the planes Π_1 and Π o are parallel, hence all Π m are parallel.
Since ξ(w,0) is a constant unit vector we may suppose that ξ(t/,O) =
(0,0,1), thatxM(n,0) = (F(w),G(w),0).Now|xw(w,0)| = | x > , 0 ) | = 1 so
that x,(w,0) = (-G(u), F(u),0) where F2 + G2 = 1. From (2.19) we see
that D.E. for xuu is xuu(u, 0) = -ωv(u, 0)xv(u, 0). This gives us the system
of O.D.E.'s for F and G, F'(t) = ωv(t90)G(t)9 G'(t) = -ωv(t,0)F(t)
where ωv(t,0) is an odd function of t. Let f(t) = F(-t), g(t) = G(-t). It
is easy to check that the pair (/(*)> g(0) i s a solution to the system if
(F(t), G(t)) is a solution. Now (/(0), g(0)) = (F(0), G(0)) and so by the
uniqueness theorem for O.D.E.'s we conclude that F(-t) = F(t) and
G(-t) = G(t) and so xM(u, 0) is an even function of u.

Now consider the curve x(0, v). Here we have the D.E. ξι?(0, v) =
-/:2(0, ^ίx^ίO, v) = -x^(0, t;). From this we obtain x(0, y) + 4(0, v) = c0

= constant.
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Therefore the curve x(0, v) lies on the unit sphere S(c0,1) with center

c 0 and radius 1. The same result holds for the curve x(mA, v) which lies

on the sphere of radius 1 and center cm.

Our discussion has shown that the planes Π w are parallel. We

conclude that x(u + 2 A, v) = x(u, v) + c where the translation vector

c = c2 - c0.

It now follows that the planes Ωrt containing the curves

x(u,(n + (1/2))B] also contain the centers cm of the spheres S(cm, 1). As

shown above we have

x(w, υ) = r o oχ(«, B - υ) = iT_x°x(u,-B - v)

where iΓ09 iΓ_λ are reflections about planes Ωo, Ω_x respectively. It follows

that x(u,v + 2B) = & °x(w, v) where9ί = τΓ0 o ΊΓ_γ is a rotation through

an angle θ about the axis / where / is the line determined by the centers of

the spheres *S(cm, 1). We may choose the positive direction of rotation to

be determined by the normal vectors xυ(u, B/2) to Ωo. D

Letting / be the line containing the centers cm with direction given by

xu(A/290) we have shown that x(u + 2A9 v) = X(M, υ) + c where c =

c 2 — c 0 is parallel to /, and x(u, υ + 2B) = <% oχ(u,υ) where St is a

rotation through an angle θ around the axial line /. This parametric

surface will describe a closed surface if the translation constant c = 0 and

if the rotation angle is a rational multiple of 2ττ. We discuss this possibil-

ity in §111.

III. Existence of closed surfaces. Consider the set of solutions

co(w, υ) to (2.13) positive on the interior of the rectangle Ω ^ = (0, A) X

(0, B) and vanishing on the boundary. This is a two parameter family of

functions, and by the discussion of §11 each solution in the family allows

us to generate an immersion X(M, υ) R2 -> R3 of constant mean curvature.

At this point it is convenient to identify rectangular domains of

similar shape by conformally mapping all similar rectangles onto a chosen

rectangle from each class. This leaves us with a one parameter family of

rectangular domains. The second parameter becomes an eigenvalue ap-

pearing in the transformed P.D.E.

LEMMA 3.1. Let φ: R2 -> R2 be the map (u\ vf) = φ(u, v) =

(u]/λ, V]/λ). A function W{u\ υ') is a solution to the P.D.E. Wu,u, + WvΊ),

+ h(W) = 0 for some C2 - function h(W), iff W{u, υ) = W°Φ(u, v) is a

solution to AW + \h{W) = Wuu + Wvv + \h(W) = 0.
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Proof. Immediate.

We shall select rectangles of various shapes by the Schwartz-Christof-
fel transformation of a rectangle onto the unit disk.

The Schwartz-Christoffel Map. For 0 < a < π/2 the transformation

dt

i J^

J(t2 - elia){t2 - e-2ιa)

dt

(3.1)

2(cos2a)t2 + 1

is a conformal map of the unit disk D in the z-plane onto the rectangle
Ω(α), centered about the origin and symmetric with respect to the
coordinate axes. The points z = ±eia

9 ±e~ia are mapped onto the vertices
of the rectangle. We note t h a t / ( 0 = (A(a), B(a))

dt(3.2) (a) A(a) = £

(b) B(a) =

t4 - 2(cos2α)ί2 + 1

ώ

t4 + 2(cos2α)ί2 + 1

with limita_>0A(a) = + oo and limita_+0B(a) = π/2. (See Figure 1.) We
shall write w = f(z9 α) if the dependence of the mapping on a is being
considered. We note that the inverse map z = g(w, a) to w = f(z, a) has
an extension analytic in w to all of C while the map w = /(z, a) is analytic
in z on the open unit disk 2), continuous on D, and of class Lip(|, D) (i.e.
Lipschitz (or) Holder continuous with Lipschitz exponent 1/2) where the
Lipschitz constant depends continuously on the parameter a.

In §IV we shall prove the following theorem.

THEOREM 3.1. There is a real valued function Ψ(z, α, λ) such that for
any av a2 with 0 < aλ < a2 < π/2 there exists λ = λ(av a2) > 0 the
domain of Ψ will include the set D X [<xv a2] X [0, λ] with the following
properties.

1. Ψ(z, α, λ) is continuous in its variables except when z = 0, λ = 0.
For λ = 0 we have Ψ(z, α,0) = 41n(l/|z|).

2. // we set Σ(w, α, λ) = Ψ[g(w, α), a, λ] where z = g(w, a) is the
inverse of the Schwartz-Christoffel map, then Σ(w, a, λ) is a positive
solution to

(3.3) ΔΣ + λ(eΣ - e~Σ) = ΔΣ + 2λ sinh Σ = 0
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on the rectangle Ω(α), and vanishing on the boundary. This solution neces-

sarily has all of the symmetry properties described in Lemma 2.1 and so has

a {real) analytic extension to the entire w-plane. For λ = 0, Σ(w, α,0) =

41n(l/|g(w, a)\) is harmonic except at w = 0 and at the reflection points

with respect toΏ(a) when extended analytically to R2.

3. The partial derivatives Σu, Σv are continuous funtίons of (w, a, λ)

on any domain Ω(α) X [al9 a2] X [0, λ] except for (w, α, λ) = (0, α,0).

Proof. To be given in §IV.

Each solution Σ(w, α, λ) to (3.3) defined on Ω(α) depending continu-

ously on α, λ as stated in Theorem 3.1 allows us to construct an immer-

sion X(M, V): R2 -> R3 of a surface with constant mean curvature H = 1/2

using the recipe of §11. Let Σ(u\ v') be a solution to (3.3) on the rectangle

Ω(α), set (u\ v') = φ(w, υ) = (u/ \/5λ\ υ/ ]/ΐλ) and define σ(u9 v) =

Σ o φ(u, v). It follows from Lemma 3.1 that σ(w, υ) is a solution to

(3.4) Δσ + sinhσ = 0

which is positive on the rectangle Ω(α, λ) and vanishing on the boundary.

Ω(α, λ) is the rectangle symmetric with respect to the coordinate axes

with first quadrant vertex at (]/2λA(a), }/2λB(a)). Finally we set ω(u, v)

= σ(w, υ)/2 and find that ω(u, v) is a positive solution to

(3.5) Δω + sinhωcoshω = 0 onΩ(α, λ).

We are now in a position to construct the immersion x(u,v) [which

depends on λ and a as well] using the method of §11. The fundamental

rectangle Ω(α, λ) is presently centered about the origin. A simple transla-

tion will put it into the standard position of §11 where two of the sides lay

on the coordinate axes.

Label the vertices of Ω(α, λ) by (A(a, λ), B(a, λ)) where A(a,X)

= }/2λA(a), B{a, λ) = ]/2λB(a) and suppose we have constructed our

surface x(w, v) with the fundamental rectangle as Ω(α, λ) centered about

the origin. For this surface we have the parallel planes Π o containing the

curve x(0, v) with normal xM(0? v) and Π 1 containing the curve

x(2A(a, λ), v) parallel to Π o (See Theorem 2.3, keeping in mind that we

have shifted the fundamental domain). [See Figure 2.]

We wish to identify values (α, λ) for which Π o = Hv To do this it is

convenient to look at the expanded surface y(w, v) = x(u, υ)/ ]/ϊλ and to

consider these surfaces as functions of (u\ v') relative to the fundamental

rectangle Ω(α).

(3.6) y(u\v') = χoφ-\u\v')
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where (u\ v') = φ(u9 v) = (u/i/2λ, ι>/y/2λ). The surface y(u\ υf) has

mean curvature H = ]/ΐλ /2 and so is being flattened out as λ -> 0. The

fundamental equations (2.19) for the surface y(u\ v') become the follow-

ing (where we now drop the cumbersome (u\ vf) notation and replace it

by(w, υ)).

(3.7) yuu=Wuyu-Woyo + U

+ Wuyv

ζv = -k2yυ.

M = 0, N =

Here MK s Σ/2 and so by (3.3) Wis a solution to

(3.8) ΔίF 4- 2λsinh WKcosh MΓ - 0

and limit^Q W(u, v, α, λ) = 21n(l/|g(w, α)|), using Theorem 3.1. Here

H (̂w, y, α, λ) is a positive solution of (3.8) on the fundamental rectangle

Ώ(a) vanishing on the boundary. It has been extended smoothly to all of

R2, satisfying the symmetry properties listed in Theorem 3.1. Also

W(u, v, a, λ), Wu(u, v, α, λ), Wv(u9 v9 a, λ) are continuous in its varia-

bles down to the limit λ = 0.

Now select that solution y(w, v9 α, λ) to (3.7) for which at (u, v) =

(0, -£(«)), y = 0, yu = (1,0,0), yv = (0, -1,0), ξ = (0,0, -1). Because of

the continuous dependence of W9 Wu9 Wυ on (α, λ) the solutions

y(w, v, α, λ) will have a continuous dependence on (α, λ) as solutions to

(3.7) down to the limit λ = 0.

Our choice of initial conditions for y(u, υ9 ex, λ) causes the plane ΠQ

containing the curve y(0, υ9 α, λ) to be the plane x = 0, while Π{ is that

plane parallel to ΠQ containing the curve y(2^4(α), v, α, λ).

DEFINITION 3.1. We define a function S(a, λ) by setting Π{ to be the

plane x = 2S = 2S(a, λ) which is parallel to ΠQ. We then have 2S =

T / ^2λ" where T is the directed distance between the planes Π o and Π x for

the original surface.

THEOREM 3.2. The function S(a, λ) which is defined on an open set Uin

the (α, λ) plane {where for each 0 < ax < a2 < π/2 there exists λ(av a2)

> 0 such that [al9 a2] X (0, λ] c U) has a continuous extension toO < a <

τr/2, λ = 0. S( α, 0) is a strictly increasing function on the interval (0, ττ/2)
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with limit S(a, 0) = -oo as a -> 0+ and S(a, 0) positive for a > π/4. In

particular there is exactly one value α*, 0 < α* < π/4 with S(a*, 0) = 0.

Proof. From Theorem 3.1 we know that the functions W(u, v, α, λ),

Wu(u, v, α, λ), Wv(u, v, a,λ) are continuous in a horizontal strip

-32?(ά)/2 < v < -B(ά)/2 and for |α - ά| < σ, 0 < λ < λ 0 for some

λ 0 > 0 and σ > 0, with W(u, υ, α,0) = 21n(l/|g(w, α)|). It follows that

the functions y(w, ?;, α, λ) solving the system (3.7) with initial conditions

y = 0, yu = (1,0,0), y? = (0, -1,0), ξ = (0,0, -1) at («, ϋ) = (0, -B(a)) are

continuous in all of its variables along with the first and second partial

derivatives with respect to w, v.

We consider the curve y(u, -B(ά), α, λ). By Theorem 2.3(111) this is a

plane curve lying in the plane Γo which by our choice of initial conditions

is the plane z = 0. Γo is a tangent plane to the surface with £ = (0,0, -1)

the oriented unit normal.

Write y(w, -B(a), a, λ) = (F(u, a, λ), G(u, α, λ),0>. From our ini-

tial conditions we have ^(0, α, λ) = G(0, α, λ) = 0, Fu(0y a, λ) = 1,

Gu(0, α, λ) = 0, and F(2A(a), α, λ) = 2S(a9 λ). However, by the symme-

try of the surface we also have S(a, λ) = F(A(a), α, λ). Clearly, S(a, λ)

is a continuous function on the set U U {(α, λ)|0 < a < π/2, λ = 0). It

remains to investigate the function S(a, 0).

We look at the map y(w, v) = y(w, υ, a,0) when λ = 0 and write

y(w,-£(«)) = (x{u\y(u)) = (F(u)9G(u)). Let φ(u) be the angle of

inclination of this curve. I claim that φ = 2Θ where θ is the angle on the

unit circle in the z-plane measured from the point x = -i to the image

g(u - B(a)i) = e110""^ the inverse of the Schwartz-Christoffel mapping.

(See Figure 3.)

To see this we write w = u + iv and let h(w) = x(w) + iy(w) where

y(w, α,0) = (x(w, α), y(w, α),0) and we have suppressed the dependance

of h on a. The system (3.7) when λ = 0 may be written in the complex

form as

(3.9) Λ"(w) = 8(w)h'(w)

where δ(w) = Wu - iWυ and W(w9 a) = 21n(l/|g(w,α)D so δ(w) is a

complex analytic function of w. It follows that δ(w) = -2g'(w)/g(w) =

d(-2\n(g(w)))/dw. An integration of (3.9) gives h\w) = K/[g(w)]2. But

h'(-B(a)i) = 1 zxiά g{-B{a)i) = -i whence K= -1

(3.10) h'(w) = -l

By definition g(u - B(a)i) = e'( t f~w/2) from which we obtain

A'(w - B(a)i) = -1A 2 ^-^ = e-2/i?.
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But h\u - Bi) = x'(u) - iy'(u) = e~iφ since \yu(u, -B(a))\2 = E = 1.
Since φ(0) = 0(0) = 0 we conclude that φ = 20.

Along the line u = -B(a) the function W(u, υ, «, λ) solving (3.8)
vanishes. This implies that along υ = -B(a), \dy/du\ = JE = 1. We have
y(w, -B(a), α, 0) = (x(u)9 y(u),0). If we parameterize this curve by arc
length we find

(3.11) x{5)= fΊ^)ds= fcosφ(s)ds= f cos{2θ(s)) ds
Jo \ as I JQ JO

y(s)= f sinφ(s)ds= f sin{2θ(s)) ds.

We now introduce the angle θ as parameter (3.11)

From the Schwartz-Christoffel map (3.1) we have

dt
u + iυ = w =

- 2(cos2α)ί2 + 1 '

where we shall now set z = -ie'θ. If we also put υ — -B(a) then we obtain

du/dθ = elθ/[eAiβ + 2(cos2α)ί>2;ί> + l ] 1 / 2 = (2 cos 2Θ + 2cos2α)"1 / 2.

Substitute this into (3.11) recalling that ds/du = 1 and we find

(3.12) χ(9) = f C O S 2 Θ -dθ
2cos2α) 1 / 2

ia\ ίθ sin 20
Jo (2 cos 20 + 2cos2α) 1 / 2

Now S(a, 0) = x(π/2 - α) = S(β) where we set β = π/2 - α.

(3.13) S(a,0) = f - ^ ^ —dθ = S(β).
Jo (2cos20- 2cos2β) 7

We need to show that S(β) is strictly decreasing in β, that limit S(β) =
-oo as β -> ίr/2, and S(β)is positive for /? < ττ/4.

If we introduce a new variable of integration by setting sin 0 =
sin β sin t, where 0 < θ < β and write k = sin /? we obtain

(3.14) S(β)= Γ

i r

dt
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The first integral is a decreasing function of β while the second is
increasing in β. Therefore, S(β) is a strictly decreasing function of /?,
0 < β < π/2.

From (3.13) we see that for β < ττ/4, S(a,0) is positive. For β =
π/2(a = 0) the limiting trace curve (x(θ)9 y(θ)) is given by

(3.15) (a)

= \[2 sin θ - In \sec θ + t a n θ\]

Thus we see S(π/2) = limit JC(0) = -00 as θ -» ττ/2 D

Let α*, 0 < α* < π/4, be the unique a with S(a*90) = 0. By continu-
ity of the function S(a, λ) there is a closed rectangle [al9 a2] X [0, λ] with
aλ < α* < α2 and λ > 0 so that S(av λ) < 0 and S(α2, λ) > 0 for 0 < λ
< λ, ^(α*, 0) = 0, and S(a, 0) increasing for α1 < α < α2.

LEMMA 3.2. Lei X be the set of {a, λ) in the closed rectangle [al9 a2] X
[0, λ]for which S(a, λ) = 0, where S is a continuous function, S(al9 λ) < 0,
S(a2, λ) > 0, and for exactly one α*, ax < α* < α2 we /ẑ ê S(α*,0) = 0.
Let Y be that component of X which contains (α*,0). Y is a connected set
which separates the set {ax} X [0, λ] where S < 0 from the set { a2} X [0, λ]
where S > 0. In particular, for any λ' e [0, λ], 7 Π {(α, λ)|λ = λ'} w «o/

Proof. Extend the domain of S to the rectangle [av a2] X [-X, λ] by
setting S(a, -λ) = 5(α, λ). By identifying the points (α, λ) with (α, -λ)
we may assume that S is continuous on a cylinder. By extending the
domain of S slightly to the left of aλ and slightly to the right of a2 we may
assume that S is constant in λ on each end of the cylinder. Identify the
left and right hand ends of the cylinder with the south and north poles of
the sphere S2 and we see that our Lemma is equivalent to the following
assertion.

Assertion. Let/be a continuous real valued function of the sphere S2.
Suppose/ < 0 at the south pole and/ > 0 at the north pole.
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Let A be the open component of / < 0 containing the south pole and
B be the open component of / > 0 containing the north pole. There is a
connected subset X of f'\0) which separates A from B.

Sketch of proof. Let O be that component of (A)c which contains the
north pole, oo. Clearly o o e δ c O and O is an open connected set since
any component of an open set is open.

The following assertions can now be established in a fairly straightfor-
ward manner.

(i) 30 = o Π A, hence/ = 0 on 30.
(ii) O is simply connected

(iii) 90 is connected. It now follows that X = 90 is a connected
subset of/~1(0) which separates^ from B.

Note. In §IV it will be shown that the function S(a, λ) is continu-
ously differentiable for λ positive. If this property were to persist down to
the boundary λ = 0, then it would follow that X = S'-^O} is the graph of
a differentiable function a = a(λ) with α(0) = α* since Sa would be
positive in a neighborhood of (α*, 0).

Now go back to the surface x(w, v, α, λ) as constructed in Theorem
2.3 with the fundamental rectangle Ω(α, λ) lying in the first quadrant and
vertex at (A, B) = (2i/5λΛ(α),2i/2λ^(α)). For (α, λ) with S(a, λ) = 0
the surface closes up in the w-direction, the planes Π w are all identical,
and x(w + 2A, υ) = x(w, v). From Theorem 2.3-IV we know that there is
an axial line / and an angle of rotation 20 so that x(w, v + 2B) =
0t °x(u, υ) where 91 is a rotation through an angle 2Θ about the axis /. This
angle 20 is a continuous function of (α, λ) for λ > 0. We can measure this
angle by examining the curve x(0, v).

Instead of x(«, v, α, λ) it is more convenient to look at the expanded
surface y(w, υ, α, λ) = x(w, v9 α, λ)/ ]/2λ with the domain also blown up
by the same factor. This surface y(w, v, α, λ) will satisfy the system (3.7).
Let us assume, as before, that the fundamental domain Ω(α) is centered at
the origin, with sides parallel to the coordinate axes and first quadrant
vertex at (A(a), B(a)). Let initial conditions for y(w, υ, α, λ) be chosen so
that for u = A(a), v = 0 we have y = 0, yu = (1,0,0), y, = (0,-1,0),
4 = (0,0,-1).

The image of the line v = 0 under the mapping y lies in a plane ΩQ
while the image of the line v = 2B(ά) lies in a plane Q[. The two planes
intersect on the axial line /'. The curve y(A(a), v, α, λ) lies on a sphere
with center CQ G /' and radius (1/ J2λ). 0(α, λ) is the angle between ΩQ
and Q[.
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THEOREM 3.3. For any al9 a2 with 0 < aλ < a2 < π/2 and 0 < λ <
λ(α1 ? α2) the function G(a,λ) = θ(a,λ)/^/lλ extends continuously to
[al9 a2] X [0,λ) w/YA G(α,0) given by

(3.16) G(α,0) = 2
y2cos20 - 2cos2α

Proof. The proof is analogous to that of Theorem 3.2. The curve
[a)9 v9 α, λ), 0 < v < B(a) lies on the sphere S[c'Q91/ \/2λj. The

point y(A(a), B(a), α, λ) determines a plane Ω' containing the line /'
which meets the plane ΩQ at the angle 0(α, λ)/2.

The limit λ -> 0 of the curve y(A(a), v,a, λ) is the plane curve
y(A(a)9 v9 a9 0) = (f(A(a)9 υ9 a), g(A(a), υ9 α), 0) where (/(«, v9 a)9

g{u, v9 α),0) is the limiting surface, using (3.9) as discussed in the proof
of Theorem 3.2. We obtain

(3.17) limit0(α, λ) [l/72λ ] = 2g(A(a)9 B(a)9 a).
λ —>o

By essentially repeating the calculations of (3.10)-(3.14) in the proof of
Theorem 3.2, we find

g(A(a)9B(a)9a)= I = = 9
Jo V2cos2^ — 2cos2α

giving us (3.16).
Since y(w, υ, α, λ) depends continuously on its variables down to

λ = 0, we see that G(α, λ) = θ(a, λ)/ yfΐ\ is continuous on any rectan-
gle [al9 a2] X [0, λ], with G(α,0) given by (3.16). D

The parametric surface will define a closed surface if the function
S(a, λ) equals zero and the rotation function θ(a, λ) is a rational part of
ΊT.

Let [al9 a2] X [0, λ] with 0 < aλ < a2 < m/2 and λ(av a2) > 0 be a
rectangle as described in Theorem 3.2 and Lemma 3.2 with α1 < α* < a2

and S(a*,0) = 0. Since α* < π/4 we may suppose that our rectangle
about (α*,0) is chosen so that G(α, λ) is positive on this rectangle. It
follows that the angle function 0(α, λ) = JTkG(a9 λ) is continuous on
the closed rectangle, positive if λ is positive, and equals zero when λ = 0.

Now Y c [al9 a2] X [0, λ] is that component of S"1{0} containing
(α*,0), which by Lemma 3.2 contains more than the single point (α*,0).
It follows that there exist points (<*', λr) in 7 with λ' > 0 with S(a'9 λ') = 0
and θ(a\ λ') positive. Since Yis a connected set and θ is continuous on Y
there will exist points (α, λ) in Y with λ > 0 and S(a9 λ) = 0, θ(a9 \)/2π
a positive rational number. The resulting surface x(w, v9 a, λ) is a closed
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surface. We have shown

MAIN THEOREM. There exists (a, λ) with 0 < a < π/4 and λ > 0 so

that the surface x(u9 v, a, λ): R2 -> R3 is a doubly periodic immersion with

constant mean curvature H = 1/2. This determines an immersion of a torus

T2 into R3 with constant mean curvature. Furthermore, if (a, λ) are chosen

so that S(a, λ) = 0 and θ(a,λ) = π/n where n is a positive integer, then

the corresponding immersion will contain 2n rectangular zones of positive

Gaussian curvature and In zones of negative Gaussian curvature.

IV. The differential equation. We now proceed with a discussion of

Theorem 3.1 on existence of solutions to (3.3). The proof is based on the

method used by V. Weston [18] on solutions to the P.D.E. Δω + λeω = 0

on a region Ω with ω = 0 on 3Ω. This method was subsequently extended

by J. Moseley [12,13] to include differential equations of the form

Δω 4- λ(eω + σe~ω) = OonΩ with Dirichlet boundary data. Here σ is an

analytic function on Ω. So if we set σ = -1 it is seen that the results of

Weston and Moseley should apply to our situation where Ω is the

rectangle Ω(α). In their papers Weston and Moseley impose certain

conditions on the domain Ω to insure that their procedure works. Except

for the condition that its boundary be smooth, these conditions are met by

rectangular domains. Their method does carry over to this case, as we

shall show. However, some alterations in the argument are necessary and

for this reason we shall carry through the proof in some detail.

In this section we shall change notation slightly, keeping it in agree-

ment with the papers of Weston and Moseley. We let D be the unit disk in

the z-plane where z = xλ + ix2, x = (JC1? x2). Ω is a domain in the

w = yλ + iy2 plane with v = (yv y2).

We let w =/(z) be a conformal map of D onto Ω so that for us

f(z)=f(z, a) will be the Schwartz-Christoffel map (3.1) of D onto the

rectangle Ω(α). /(z, a) is continuous on D X (0, ττ/2) and is analytic in z

for z G D. The inverse map z = g(w,a): Ω(α) -> D has a meromorphic

extension to the entire w-plane which is analytic in a neighborhood of

Ω(α). As noted earlier, for each a, f(z, a) is a Lipschitz (Holder continu-

ous) map of class Lip(l/2, D) with Lipschitz constant depending continu-

ously on a.

Let ύ(y) be a solution to Δύ + \h{ύ) = 0 on Ω. Then it follows that

u(x) = ύ°f(x) is a solution to Δu + λ\f\z)\2h(u) = 0 on D. We may
convert these P.D.E.'s to integral equation form by using the Green's

kernel for the Laplace operator.

(4.1) u(yQ) = λ( k(y,yo)h[ύ(y)]dy
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where k(y, y0) is the Green's kernel for the Laplace operator on Ω with

zero boundary data. Similarly, the transformed function u(x) = u[f(x)]

satisfies

(4.2) u(xo) = λ[ k(x9x0)\f'(z)\2h[u(x)]dx
JD

where k(x9 x0) = (-l/2ττ)ln(|z - zo |/|l - zoz|)

If w = f(z) is the Schwartz-Christoffel map of D onto Ω(α), [we shall

often suppress the dependence on a] then a straightforward calculation

reveals the following

(4.3) (a) /(z ,α) i soddinz

(b) f(z, a) is real for z real, f(z, a) =f(z, a).

(c) f(z, a) = z + 2(cos2α)z3 +

so that/(0, a) = 0,/'(0, a) = l,/"(0, a) = 0, \f w(0, α)| < 2.

THEOREM 4.1. (In large part, due to Weston and Moseley.) There exists

an open set 0 in the (a, λ) plane and a continuous map (α, λ) —• u(x, α, λ)

from 0 into C(D), the space of continuous functions on D with the uniform

norm, such that

(a) For each choice ofO < aλ < a2 < π/2 there exists λ = λ(α1? a2) >

0 with [al9 a2] X (0, λ] c 0.

(b) u(x, a, λ) = Oforx e dD

(c) u(x, α, λ) is a solution of the operator equation

(4.4) u(x09a,λ) = λ[ k(x, xo)\f'{z9 a)\\e« - e~u) dx EE K[U](X0).
JD

(Following the notation of Weston and Moseley, we shall write the right hand

side o/(4.4) as K[u](x0) = Kλ[u](x0) or simply K(u).)

(d) On any subdomain of D which excludes a neighborhood of z = 0

u(x, α, λ) converges to 4 ln(l/|z|) as λ -> 0.

Proof. The proof is in two parts. In Part I we construct an approxi-

mate solution which behaves in the correct asymptotic manner as λ -» 0.

In Part II we use a modified Newton iteration procedure on the ap-

proximate solution to obtain a sequence converging to the exact solution.

Step 1. Construction of the approximate solution.

We start with a well-known result of Liouville that a function ύ(w)

defined by

(4.5) λe-» 2 2 f
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where F(w) is a complex analytic function with at most simple zeros and
poles is a solution to Δδ + λeu = 0. It is clear that F(w) can have at most
simple zeros. That F(w) can have at most simple poles follows from the
identity |Ψ'(w)|/(l 4- \Ψ(w)\2) = | F'(w)\/(l + | F(w)\2) where Ψ(w) =
1/F(w). Therefore, if w = /(z) and if we set u(x) = ϋ° f(z) where z =
xx + ix2, x = (xv x2), w = yλ + iy2,y = (yv y2) then we have

(4.6) λe"<*> = S\f(z)\-2\F(z)\2/(l + \F(z)\2f

is a solution to Δt/ + λ\f'(z)\2eu = 0 on β, where F(z) is an analytic
function on D with at most simple zeros and poles. We rewrite (4.6) in the
form

(4.7) e-«/2 = (λ/8)1/2 |/'(z)|(l + \F(z)\2)/\Γ(z)\ [Weston].

A nice reduction due to Moseley is the following [12, p. 937]. We set

(4.8) 1/F(z) = (λ/8)1 / 2/ [/'(0Λ2(0] dt

where v(z) is an analytic function to be chosen so that the right hand side
is single valued, Equation (4.7) now becomes

(4.9) * - « / 2 β | φ ) | 2

+ λ

Next we write υ(z, λ) = z/G(z, λ) where G(z, λ) = 1 + λGx(z) +
• 4- λ"Gn(z). The functions G^(z) are to be complex analytic on D. We
obtain

( 4 1 0 ) e

\G(z,λ)\2

We intend to choose G(z, λ) to be analytic in D and continuous on D.
Furthermore since/(z) = f(z, a) in an old analytic function of z satisfy-
ing the conditions (4.3), it is necessary that G\,(0, λ) = 0 if the integrated
term is to be single valued. This will be the case if G(z, λ) is even in z. We
shall require

(4.11) (a) G(-z,λ) = G(z,λ)

(b) G(JΓλj=G(z,λ).

If G{z, λ) does satisfy these conditions then u(x) will be a function on D
satisfying the symmetry condition

(4.12) (a) u(-z, λ) = u(z, λ)
(b) u(z,λ) = u(z,λ).
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The function ue(x, λ) = u(x, λ) satisfying (4.10) is an exact solution to
the exponential D.E. Δu + X\f'(z)\2eu = 0. We now search for an
approximate solution toΔt/ + X\f'(z)\2(eu — e~u) = Oby setting

(4.13) u(x, λ) = ue(x9 λ) + H(x, λ) (Moseley)

where ue(x, λ) is of the form (4.10) and H(x, λ) = XHx(x) + X2H2(x) 4-
• 4- XnHn(x). In order to obtain a sufficiently accurate starting solution
we shall need to find an approximate solution of order 3.

Note. This disagrees with Moseley [12] where an approximate starting
solution of order 2 is deemed sufficient. However, there seems to be a
miscalculation at one point causing the discrepancy. Order at least 3
seems necessary. As we shall see the method breaks down for order
greater than 3, so our situation is fortuitous.

We establish the following.

LEMMA 4.1. There exist functions Gt(z) i = 1,2,3 which are complex
analytic on D, continuous on D and which are symmetric {i.e. satisfy (4.11)).
There exist real-valued functions HXz) e C2(D) Π C°(D) satisfying the
symmetry conditions (4.12), so that the following are true. If we set G(z, λ)
= 1 + XGx(z) + X2G2(z) + λ3G3(z) and H(z, λ) = XHλ{z) + X2H2(z) +
X3H3(z) and define

(4.14) uo(z,X) = ue(z,X)+H(z9X)

where ue(z, λ) is given by (4.10), then uo(z, λ) will satisfy the conditions
I. i/0(z, λ) G C2(D) Π C°(D) and is symmetric satisfying (4.12).
II. \uo(z, λ) | G 0(λ4) on \z\ = 1 as X -> 0 (i.e. there exists M with

\uo(z, λ) | < Mλ4/0r|z| = landO < λ < λ).
III. //we set K(u) to be the integral operator (4.4) then \\u0 — K(uo)\\

e O(λ3ln(l/λ)) wΛerβ||ϋ|| = sup\v(z)\for z e 5 .
IV. y4i λ -» 0 /Λe function e~

uo(z>λ)/2 => | z | 2 uniformly on D (hence
uo(z, X) => 41n(l/|z|) uniformly on subregions of D which exclude a neigh-
borhood of z = 0.)

The bounds in II and III w/// depend continuously on a.

Proof of Lemma. We need six equations in order to determine Gt(z)
and Ht(z). Following the procedure of Weston [18] and Moseley we write

N =
t,X)f'(t)

dt

2

and K = \G(z,λ)\
2

, 2

so that ίT" ' / 2 = (|z|2 + (λ/S)N)/K. Now set

(4.15) E(z, λ) = [ΔII + λ|/'(z)| V - e-«)]^2[|z|2 +(λ/8)iv]2.
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A direct calculation gives us

E(z,λ) = (ΔH)K2(\z\2 +(λ/8)N)2

(|z|2 +(λ/8)JV) e-H\.

Our first requirement is to choose G(z, X) and H(z, λ) in (4.16) so that
dkE(z, λ)/dλk = 0 for λ = 0, z E ΰ , and A: = 1,2,3. This gives us
E(z, λ) e O(λ4) for each z e D. Our second requirement is that \u(z, λ) |
e 0(λ 4 ) on \z\ — 1. The calculations are tedious but feasible. We sketch
the work here.

ΔH = λΔ//! + λ 2Δ# 2 + λ3Δ#3

\ f\

where

\ 2 + G~2) +\G1

+ λ 3 [(G 3 + G3) + GXG2

κ2 = l + λ[2(G! + G7)]

where β = 2(G2 + ~G~2) + 2IGJ2 + (Gx +

ί:4 = 1 + λ[4(G! + Gj)] + λ2[2β + A(Gλ + Gj 2 ] + •

X2[H2 +{H2/2)]

3 + HXH2 + (i/3/6)] + •

XH, + X2[-H2 +{H2/2)]

H1H2-{H?/6)]+ •••

= f [l + 2λGx + λ2(2G2 + G2) + ] -dt

ff 2(where %(z) = 2G1(z), %{z) = 2G2(z) + G2(z), etc
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The functions P (z) will be single-valued if Ψ/(0) = 0 which will be
the case if G/(0) = 0. We may set the constants cκ = 0, to obtain

(4.18) (a)
f'{t)

dt

(b) [|z|2+(λ/8)Λr]2

Hz|4+(|z|>0|2/4)λ

+ (|P0Γ/64)]

We substitute these expansions into (4.16), compute the coefficients of λ,
λ2, λ3 in the expression for E(z9 λ), and set them equal to zero.

We also want \u(z, λ) | e O(λ4) for \z\ = 1. This is equivalent to

e-ue/2 _ eH/i o n | Z | = j t 0 o r (}er 3. But e~u*/2 = [\z\2 + (λ/8)N]/K

where K = \G\2 by (4.10). We obtain the condition

(4.19) |G|2 =

to order 3 on \z\ = 1. We now have a total of six conditions. They are

U 2 , .4
(4.20) (I) ΔH^lf'^Wz] = 0 onZ>

(II) Gx + Gx = |P0|
2/8 - Hx/2 on \z\ = 1

(III) Δif2 + |/f{iVM4 + [2|zΓ(G1 + Gx) - kΓ|P0|

(IV)

(V) \z\\AH3)

= 0 on D

-H2/2

|V|2
on|z| =

+|z| V0|
2/4)(Δ//2)

+
H2 + H2/2]

|/>0|
4/64](Δ/f1)

= 0 onD
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where

Q = 1(G2 + G2) + 2\Gλ\
2 + (Gx + Gy)2 and

/ =|z|6(PoΛ + ?oΛ)/2 + 3|zΓ|P0Γ/32 - H

(VI)

= (P 0 P 2 + P 0P 2)/8 + |Λ|2/8 -

- [τ/3/2 - HλH2/4 + i / ^ δ ] on |z| = 1.

To find sufficiently smooth solution of this set of equations we shall

use the following " well-known" theorems both of which may be found in

Courant-Hilbert, Vol. II [2].

PRIVALOV'S THEOREM [2, p. 401], Let F(z) = U(z) + iV(z) be an

analytic function on the unit disk. Suppose that U(z) is continuous on D and

that on 3Z>, U(z) is a Lipschitz (Holder) continuous function with exponent

μ, 0 < μ < 1. (i.e. U(z) G Lip(μ, dD). There exists a constant M with

\U(zx) - U(z2)\ < M\zx - z2γ for zl9 z2 e dD). Then F(z) itself_ is

Lipschitz (Holder) continuous on D with exponent μ(i.e. F(z) G Lip(μ, D)).

Let Ω c R2 be a bounded domain with piecewise smooth boundary Γ

(Ω is a rectangle). Let 0 < μ < 1 and m > 0 an integer be given. C m + μ (Ω)

in the Banach space of real-valued functions u(x) G Cm(Ω) Π C°(Ω) with

norm ||fi| | f f l+μ = \\u\\m + Hμ[Dmu] where

HfilU = L.U.B.[ |M(^) | + dp\Dιu(p)\ + + </;|^(/>)|]

with the L.U.B. over all p G Ω and over all partial derivatives of the

indicated order, dp = distance (/?, 3Ω), and

over all/?, ^ G Ω and J ^ = min(dp, dq).

SCHAUDER'S THEOREM [2, p. 339]. Let f ^ Cμ(Ω). 77zm> w

solution u(x) G C 2 + μ (Ω) /o ίΛe system Δw = / α π J u = 0 on 3Ω.
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We solve the equations (4.20) I-VI in succession to obtain functions

G,(z), //, (z), i = 1,2, 3, so that the following are also true.

(4.21) (a) H,(z) and G^z) are "symmetric". That is G\z)

satisfies condition (4.11) and H{(z) satisfies

(4.12).

(b) G{(z) is analytic on D and G((z) is continuous

on/>withG,(z) G Lip(l/2, T>)

(c) H,(z) = A\f(z,a)\ +p,(z) where/?,(z) is a

h a r m o n i c p o l y n o m i a l a n d

A , ( w ) G C 2 + 1 / 2 [ Ω ( α ) ] c C 2 ( Ω ( α ) ) n C ( ^

f(w) = 0 on 9Ω(α). Here/(z, α) is the

Schwartz-Christoffel map of D onto Ω(α).

(d) #,(*) G θ(|z| 8~ 2 /) around z = 0.

Start with (4.20-1). Transform the D.E. for H^z) to the domain Ω(α)

to obtain the D. E. ΔAx(w) = |g(w)|4 = Ψx(w). Since g(w) (the inverse of

the Schwartz-Christoffel map w = /(z)) is analytic in a neighborhood of

Ω(α), we have Φλ(w) G Cμ(Ω(α)) for any μ, 0 < μ < 1. Thus there is a

unique solution ^ ( w ) G C2+/x(Ω(α)) to the system ΔAx(w) = %(w),

Aλ |3Ω = 0. Since Ψ(w) satisfies the symmetry conditions, A(w) does also.

Now Aι[f(z)] is a solution to the D.E. (4.20-1) and the right-bound side of

this D. E., is of order O(|z|)4 around z = 0. Therefore, there is a harmonic

polynomial px(z) of degree 5 such that Hγ(z) = Aι[f(z)] + pλ(z) is a

solution (4.20-1) and Hx{z) G O ( | Z | 6 ) around z = 0 (see [12, p. 945] for

proof of existence of p(z)).

(Λ.lO-ll^SincQ f(z) G Lip(l/2, 5 ) it follows that P0(z) (see (4.17))

G Lip(l/2, Z>) as well. Therefore the right-side of (4.20-Π) is of class

Lip(l/2, 9Z)). We may now apply Privalov's Theorem to claim the ex-

istence of an analytic function Gλ(z) satisfying (4.20-II) with Gλ{z) G

Lip(l/2, i)). Furthermore, since the conditions on |z| = 1 are symmetric,

the arbitrary additive constant may to chosen so that Gλ(z) is symmetric.

In particular, G((0) = 0.

(4.20-III). We have a P.D.E. for H2(z) where Hγ(z) is a solution to

(4.20-1) and Gγ(z) solves (4.20-II). We proceed as in Case I. Transform

the D. E. to the domain Ω(α) to obtain an equation ΔA2(w) = Ψ2(
w)

where Ψ2 is the non-homogeneous part of the equation composed with
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z = g(w) and the f\z) term drops out. Since Hx{z) e 0( |z | 6) around
z = 0 we see that ^ ( w ) e 0 ( M 2 ) around w = 0. Furthermore, an
inspection of each term in the expansion for Φ2(w) reveals that ^2(w) e

C1 / 2(Ω(α)) c C°(Ω(α)). Therefore, by the Schauder Theorem, there ex-
ists a solution of ΔΛ2(M>)

 = ^i(w) o n Ω(α)? ^2 ^ 0 on ΘΩ(α) where
yί2(w) e C 2 + 1 / 2(Ω(α)). Also Λ2(w>) will satisfy the desired symmetry
conditions.

As in Case I, we have A2[f(z)] is a solution to (4.20-IΠ) of class
C2(D) Π C°(5) vanishing on 3D, where the right side of the D.E. is of
order <9(|z|2) around z = 0. Thus there is a harmonic polynomialp2(z) of
degree 3 such that H2(z) = ^42[/(z)] + Pi(z) i s a solution to (4.20-ΠI),
H2(z) e O(|z|4) around z = 0, and H2{z) satisfies the symmetry condi-
tions.

(4.20-1 V). On \z\ — I, Hx and //2 are smooth functions while P0(z),
Px(z), Gλ{z) are in Lip(l/2, D). We may apply Privalov's Theorem to
obtain a function G2(z) e Lip(l/2, £)) which is complex analytic in D
satisfying (4.20-IV), which satisfies the symmetry conditions (4.11), and
also <?£(0) = 0.

(4.20-V). We proceed as in cases I and III. In the domain Ω(α) we
obtain a D.E. of the form ΔA3{w) = %(w). We claim that %(w) e
C1 / 2(Ω(α)), is symmetric in Ω(α) with %(w) e O(|w|°) around w = 0.
An inspection of the (many) individual terms comprising ^ ( w ) reveals
that this is the case. In particular note that H2(z) e 0( |z | 2 ), ΔJΪ^z) e
O(|z|4), //2(z) e O(|z|4), ί ί^z) e O(|z|6) so that when we divide by the
coefficient |z | 4 of Δ/f3(z) we find that Ψ3(M/) e O(l) near w = 0. We also
find that ^ ( w ) e C1/2(Ω(α)) and is symmetric. Let ^ ( w ) be the solu-
tion to ΔA3(w) = Ψ3(w) with ^43(M;) = 0 on 3Ω(α) where ^43(w) e
C 2 + 1/2(Ω). Now set i/3(z) = ^ 3[/(z)] +^ 3(z) wherep3(z) is a harmonic
polynomial of degree 1 chosen so that H3(z) e O(|z|2) around z = 0. As
in previous cases we find that H3(z) e C2(Ω) Π C°(Ω) is a symmetric
solution to (4.20-V) with smooth boundary values.

(4.20-VI). We have Gx(z), G2(z) e Lip(l/2, 5 ) from which it follows
that />,.(*), i « 1,2,3, are in Lip(l/2, 5 ) while ify(z) ί = 1,2,3, are
smooth functions on \z\ = 1. We can find a complex analytic function
G3(z) satisfying (4.20-VI) where G3(z) is symmetric and in class
Lip(l/2, D).

We have constructed functions G{z, λ), H(z, λ) and hence using
(4.10) and (4.14) an approximate solution uo(z, λ) = ue(z, λ) -f- H(z, λ).
Because of the continuous dependence of the conformal map w = /(z, a)
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on a it follows that this approximate solution depends continuously on a.
To complete the proof of Lemma 4.1 it is necessary to verify condition III.

Going back to (4.15)-(4.16) we see that E(z, λ) = \f'(z)\2e(z, λ)
where e(z, λ) is a continuous function on D X [0, λ] for some λ > 0.
Substitute this equation into (4.15) to obtain

Au0 + λ|/'(z)| V ° - e-«») = m(z,
where m(z, λ) = e(z, λ)/K2 = e(z, λ)/|G| 4 is a bounded function on £),
and m(z, λ) e O(λ4) by our construction of G(z, λ) and i/(z, λ). Let
v(z) = υ(z, λ) = K[u(z, λ)] where K(u) is the integral operator (4.4) so
that

v(z0) = fD k(z, zo)[λ\f'(z)\2(eu* - e-*)] dx.

Then Av + X\f'(z)\2(eu° - e~u«) = 0 on D and υ = 0 on dD. Therefore
Δ(w0 - v) = m(z9 λ) |/ '(z) | 2/[ |z | 2 + (λ/S)N]2 with \u0 - v\ < MX4 on
dD, and \m(z, λ) | < Mλ4 on 2λ Therefore

(4.22) | | W o - ^ ( ^ o ) | | < M λ 4 + sup ί M λ ^ ^ \ k(z,z0)dx.

We must find a bound on the integral. Our procedure follows that of
Weston and Moseley. The only added difficulty in the singularity of /'(z)
on the boundary of D. The correct bound for \\u0 — K(uo)\\ and for (4.22)
as asserted in Lemma 4.1 will be shown in the following lemma. Besides
this bound, two other asymptotic bounds are needed to successfully apply
the modified Newton method.

LEMMA 4.2. Let uo(z, λ) be the approximate solution constructed in
Lemma 4.1. Let K(u) be the integral operator (4.4) so that

K'Jh)(x0) = \JD k(x, xo)|/'(z)| V ° + e-"°)h(x) dx

where K(u) is considered as an operator on C°(D). The following estimates
are true.

(4.23) (a) |h-K(M o)|eθ(λ3ln(l/λ))

(b) ll̂  i e O(ln(l/λ))

(c) asλ->0.

Proof. The determination of these estimates were carried out origi-
nally by Weston [18] for the eu case and extended by Moseley [12,13] for
the more general differential equation. For us, the added difficulty is in
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the singularity of f\z) on 8Z>, which as we shall see is a removable

problem. Moreover, the symmetry of the conformal map/(z) makes some

of the technical estimates a bit easier. For completeness, we shall sketch

the derivation of the estimates here. For some details one should refer to

the paper of Weston [18]. The bounds (a) and (b) are straightforward

while (c) is tricky.

We first obtain an asymptotic expression in λ for the kernel \\f\z)\eu°

valid in a neighborhood of z = 0 in D. Now /(z) = z + a3z
3 4- a5z

5 -f-

• around z = 0. A straightforward calculation gives

(4.24) \f'(z)\2 = 1 + pr2cos2θ + r4mλ{z)

where/? = / "'(0) = 6#3, z = reiθ and mλ{z) is a function bounded in any

disk Da = { z\ \z\ < a] where a < 1. As noted in (4.3) \p\ < 2 when/(z) is

the Schwartz-Christoffel map. From (4.10) and (4.14) and Step 1, we have

(4.25) e

u° = eu'eH = [\G\4/(\Z\2 +(λ/S)N)2]eH onΐλ

Now take the expansion for N as defined by (4.18), make use of the

expansions

|P 0 | 2 = 1 - pr2cos2θ + r4m2(z)

poP\ + ^oΛ = 4G(0) + θ(|z|2) = 4s + r2m3(z)

where m2(z), m3(z) are bounded functions on D. For convenience we set

λ/8 == μ, and find

(4.26) [|z|2 +(λ/8)7VJ = r2 + μN = (r2 + μ)(l - T)

μpr2 cos 20 32μ25 μr4m2(z) 8μ2r2rn3(z)

r2 + μ r2 + μ r 2 + μ r 2 + μ

, / Γ ( z , μ )

r 2 -h μ

where Γ(z, μ) is bounded for z e D. We note in particular that T(z, λ) G

O ( λ ) o n 5 . _ _

In similar fashion we have |G|4 = 1 + 2λ(G1 -f Gx) + O(λ2) on 5 so

that \G\4 = 1-1- 4sλ H- λr2m4(z, λ) + λ2rn5(z, λ) where ra4, m5 are

bounded functions for z e Z) and 0 < λ < λ.

eH = λ2//2 + λ2i/3) + . . . = 1 + λr 6m 6 + λ2m7
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where ra6, mΊ are bounded functions on D X [0, λ]. Putting these esti-

mates together we find

(4.27) p(z, λ) - λ |/ '(z) |V° = \\f'(z)\2e"-e"

6 4 ^ ' R(z,X)
r + μ

where R(z, λ) may be written in the form

(4.27b) R(z, λ) = r*nλ{z, λ) + λr2n2(z, λ) + λ2«3(z, λ).

Here nt(z9 λ) are continuous functions which are uniformly bounded on

any disk Da where a < 1 and 0 < λ < λ (some positive λ). The only factor

preventing a uniform bound on Dλ is the \f\z)\2 term.

If we remove the |/ '(z) | 2 term from (4.27) then the following estimate

holds on D. In particular we write

1
1 + 2T +

T2(3 - IT)

(1 - T)2

and since T e O(λ) on D we have (3 - 2Γ)/(1 - T)2 is bounded on D

for small λ. We thus find

(4.28) λg»o = * \ x + 4 λ , + 2W?

cos2θ - "B?L + R{z, λ )

r + μ [ r + μ r2 -f μ

with R(z, λ) of the form (4.27b) except that the estimate is valid on the

full disk D.

We now show

(4.29) sup / k(z, z0) 2

Mf'{z)l dx e oflnf \
^CJD (\z\ +(λ/8)JV) l U

We make our estimate by splitting the integral over two regions of

integration, Da = disk of radius a < 1 center z = 0, and D'a = Dλ - Da.

Denote the integral over Da by A, and the integral over D'a by By so that

/ = A H- 5 where / = 7(z0) is the integral (4.29).

\B\<-4ί k(z, zo)\f'(z)\2 dx = ±f k(w9 w0) dw
a JD a Jtt(a)
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by a change of variables where/(z) = w is the conformal map of D onto
Ω(α), and k(w, w0) is Green's function for the Laplace operator with 0
boundary data on Ω(α). Therefore |J5| < λM(a)/a4 e O(λ), and M(a) is
a constant depending continuously on α. We estimate |̂ 4|.

HI-/ 5
(|z|2-f(λ/8)iV)

2—_ _ . /c^z, z0) ax
Da (r2 + μ) JD r1 + μ2

where we have used the fact that |/'(z)| is bounded on Da, and from (4.26)

we see |z|2 + (λ/S)N > (r2 + μ)/2 since T e O(λ) on ΐ>. Now we make

use of the following.

Special Calculation. Let ρo(z) = 8μ/(r2 -f μ)2. For any triple of

non-negative integers [/, j, k] let C[i9 j, k] be defined by

(4.30) C[i9j,k] = sup [ k(z,zo)po(z) μ Γ dx
zo*DJn (r2 + μ)

where k(z, z0) is Green's function for the Laplacian with zero boundary
data on D. We have the following estimates

C[0,0,0] Gθ(In(l/λ)) C[0,0,l] €

C[0,l,0] e O(λ1 / 2ln(l/λ)) C[0,l,l] €

C[0,2,0] e O(λln(l/λ)) C[0,0,2] e θ(λ" 2 ln(l/λ)) .

C[0,2,1] e θ ( I n ( l / λ ) )

Proof. This notation is due to Moseley [13], who had a similar list
except k(z, z0) was replaced by the singular part of k(z9 z0) = ln(|z - zo|).
The proof of these estimates is most easily obtained by solving the P.D.E.
associated with the integral operator.

Δu + po(z)[μVV(r2 + μ)*] = 0 on D

v = 0 on 3D. The solution is radially symmetric and the corresponding

O.D.E. can be solved explicitly. •

We now see that \A\ e O(ln(l/λ)) and from this the bound (4.29)
follows.

Now return to the bound (4.22) for | |κ0 - K(uo)\\. Using (4.29) and
substituting into (4.22) we find

||w0 - K(uo)\\ < MX4 + O(λ3ln(l/λ)) e θ(λ 3 ln(l/λ)).

This proves estimate (4.23-a) and completes the proof of Lemma 4.1.
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We now verify estimate (4.23-b). We write K'^h) = K{Uo(h) +
K2Uo(h) as a sum where K{Uo(h) has the eu° term in the integrand and
K{u°o(h) contains the e~u° term. We estimate ||A^Mo|| first. Clearly

(4.31) ||tf2'J| < sup λί k(z, zo)|/'(*)| V"*<*> dx.

But

id 4

since \G\ is bounded away from 0 for small λ. Therefore

k(z,z0)\f'(z)\2dx^θ(λ).

To estimate | |i^'WJ| we note that

e e

(|z|2+(λ/8)iV)2 (|z|2+(λ/8)iV)2

and

\\KUo\\< supλ/ k(z,zo)\f'(z)\2e«^dx.

Substitute the estimate for eu° into the integral and use the estimate (4.29).
We find \\K[Uo\\ e O(ln(l/λ)). Therefore \\K'UQ\\ e O(ln(l/λ)) and (4.23b)
follows.

We must now show ||(7 - K^)~ι\\ e 0(l/λ) as λ -> 0. We follow the
method first used by Weston [18] and subsequently by Moseley [12].
Decompose the operator K'u^ as follows. Write

(4.32) K'^h) = K°{h) + L{h) where

K0(h)= ί k(z,zo)Po(z)h(z)dx
JD

Po(Ό = V ( ^ 2 + μ)2 = 8μ/(r2 + μ)2, λ = 8μ.

so that Ko incorporates the "singular" part of the kernel of K'u (as λ -> 0)
and is an operator whose properties can be directly calculated.

Consider the eigenvalue problem ^ 0 ( φ ) = Λφ. This is equivalent to
the differential equation

(4.33) Δφ +(1/Λ)po(jc)φ = 0 on/)

φ = 0 on 3D.
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Since po(z) = po(^) has radial symmetry, the eigenfunctions may be
obtained by the method of separations of variables φ(r, θ) = Ψ(r)eιmθ,
giving us the O.D.E. for Ψ(r) as

(4.34) (rΦr)r/r + [po(r)/A - m2/r2]ψ(r) = 0

with Ψ(0) bounded, Ψ(l) = 0.

Now make the change of variables ξ = (μ — r2)/(μ + r2) and (4.34)
becomes

(4.35)

where σ = 1/Λ and the boundary conditions are Ψ(l) bounded,
0, ^ = (μ — l)/(μ + 1). The solutions to (4.35) which are bounded at
£ = 1 are the Legendre functions and associated Legendre functions (see
Lebedev [11], for example). We have

m = 0 , %(ξ) = Pv(ξ) w h e r e 2 σ = v(v + 1)

The values of v and hence Λ are determined by the boundary condition
Ψ[(μ - l)/(μ + 1)] = 0.

These calculations are essentially carried out by Weston [18] although
his boundary conditions differ slightly. One uses an asymptotic estimate
for Pp

m(ξ) valid near £ = -1 (as μ -> 0) [18, page 1050]. One obtains the
following asymptotic estimates for the largest eigenvalues with corre-
sponding eigenfunctions.

(4.36)

A;

1

2

3

4

2

1

1

1

= 2/["*("*

ln(l/μ)

- 3 μ

- 3 μ

- f [ln(l/μ

+ 1)]

[ln(Vμ)]-1

1 + 2μ

1 + 2μ

1 + [ln(l/μ)]-χ

Λ0(l)

<Pk(r,θ)

%{r)elβ

•sir {γ\p~

The remaining eigenvalues are less than (1/3) as λ -> 0 and so remain
bounded away from one for small λ. The eigenfunctions are orthogonal
with respect to the weight function ρo(z) on the unit disk. We may also
normalize them so that

(4.37) i ' Ψj)po = f Ψi(X)ψj(X)Pθ(X) d x = 8ιj'JD
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Now let P be the projection operator

(4.38) P(h) = E A ^ , %
7 = 2

so that we may write from (4.32)

(4.39) K'UQ = P + (Ko - P) + L = P 4- N + L.

N is a symmetric operator on L2(D) whose eigenvalues are bounded away
from 1. It is compact as an operator either on the space L2(D) or C°(D).

It follows from the Hilbert-Schmidt theory that (I — N)'1 exists as a
bounded operator on C°(D) for small λ and its norm is uniformly
bounded (i.e. ||( J - TV)'1!! e 0(1)) (see [18, p. 1045] and [5, Chap. 12]).
Now write

(4.40)

We need to show ||u|| < c(λ)||w|| where |c(λ)| e 0( l/λ) . Making use of
the decomposition (4.38) and the fact that (/ - N) is invertible, one may
rewrite (4.39) after a "few" manipulations in the form

(4.41) υ = (/ - M)'\l - N)~lPv + ( / - M)~\l - N)~lw

where M = (I - N)~ιL. However Nψj = (Ko - P)ψj = 0 so that (4.41)

reduces to

(4.42) v = (/ - M)'ιPv +(/ - M)~\l - N)w.

Take the inner product (with weight function p0 over D) of both sides of

(4.42) with φz, set cj = Aj(v φ7) and one obtains the linear system [18, p.
1045]

4

(4.43) Σ^JCJ + W^O, i = 2,3,4,

It is sufficient to show that |c,| < r(λ)||w|| where r(λ) e O(l/λ). To do
this we need to estimate the size of the elements of the matrix (a^). In the
course of doing this we will also see that the operator L (see 4.32) satisfies
| |L|| e O(λln(l/λ)) which will show that (I - My1 where M =

(I — N)~ιL, is a uniformly bounded operator on C°(D). We recall
(4.31) (4.32) and write K'Uo = Ko + L and also write (/ - M)'1 = I +

M + M2(I - M)'1 giving us

(4.44) a,j = (1 - A:1)δij +(LΨj • φ,)po + ( M 2 ( 7 - M)\ •
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where we have made use of the observation

(Mφ φ.) = ((/ - N)-1LψJ φ.) = {LΨj Ψi).

Formula (4.36) for the asymptotic eigenvalues of the operator Ko

gives

(4.45) (1 - A-2

ι) = -3μ + o(μ) = (l - A31)

We now estimate the expression (Lφy φ,). We write L = (K{ — Ko) +
K'2 and consider the operator K'Xu first. The kernel for K'2 is
k(x°, xo)[λ\f'(z)\2e-Uo]. Making use of the formulae (4.25-27) we find"

where m(z, λ) is a continuous bounded function on any subdisk Da< D
where a < 1, while λ|/'_(z)| VM° = λ|/'(z)|2«(z, λ) on 5 where Λ(Z, λ) is
uniformly bounded on D for λ small.

We compute (K^iψj) φ7)Po by reversing the order of integration in
the iterated integral and noting that φ7 is an eigenfunction for the operator
Ko. We find

Following Weston [18], we estimate the first integral by making the
change of variable £ = (μ — r2)/(μ + r 2 ) used in (4.35). The eigenfunc-
tions φ, (i = 2,3,4) have asymptotic expressions

φ 2(r, * ) - > < ( { ) * "

Since ^ -» 1 as λ -» 0 we may approximate the normalized eigenfunctions
by

Φ({) = i(3/ττ)-1/2(l - iψ\ *(ί) - cξ.
For i = 2,3 we have

λ(r2 + μ)2m(z, \)\VjVl\dx < M(a)f λ(r2 + μ)2\Φ(r)\2 dr
D,,

dξ < M(a)λ2
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where we have set ( r 2 + μ) = μ[2/(l + £)], rdr = [μ/(l + £) 2] d£ and

£μ = (μ — l )/(μ + 1). Here M(a) is a constant depending only on a.

Also

f \r(z)\2n\φιφi\dx<λί \f'(z)\2Mdx

< \M ί dw = ε(a)λ where limitε(β) = 0.

We have shown

' 3 )

Similar calculations give

' Φ4

Po

Po

< M ( α ) λ 3 / 2

< MX.

It was shown earlier that \\K{Uo\\ <= O(λ). Thus

M(a)λ2

(4.46) ' " " * V '
M(a)λ

Next we examine the operator K{%Uo - KQ = Lv We use the representa-
tion (4.27) for the kernel of K[Uo.

(4.47) , η = η 2 ,

2 o z ) . 2μpr2cos2θ 1 4- 2μ 2

= prz cos2θ + - £ - i - = — pr ιcos2θ
r + μ \

= 32μs

r + μ r -\- μ

] 2

r + μ r + μ
R{z, λ) = r V ( z , λ) + λr2n2(z, λ) 4- λ 2 « 3 (z, λ)

where the 77,(2, λ) are bounded on any Da, a < 1. On D'a we have the

estimate

λ\Γ(z)\2e««<λM\Γ(z)\2.

We estimate {Lλψj φ /)P o by splitting the integration over the regions
Da and D'a. As before the integration over D'a gives terms of order ε(a)λ
where ε(a) -> 0 as a -» 1. For the other terms

jΨ^x = f ε ( α ) λ = e{a)λ.
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Now a straightforward calculation shows that (ηkψj φ, )Po = 0 except for
the following.

= (1J1Φ3 * (P2)p0

 = [3^/2] + o(μ).

(η2φ2 φ 3)P o, (η2φ3 φ 2 ) P o , (η2φ4 φ J P o G θ ( λ 2 ) .

The terms (Rψj ' φ, )Po used in calculating ( L ^ φ,-)^ give contributions
of order O(λ2ln(l/λ°)) if 2 < ι, j < 3, O(λ3 / 2) if° i = 2,3, j = 4 or
i = 49 y = 2,3, <9(λ) if / = j = 4. The remaining part of the operator K[
cancels with the operator Ko and contributes terms of order ε(a)λ to the
expressions (Lφy <P/)Po.

Finally we must show that \\K{UQ - Ko\\ e O(λln(l/λ)) which in
turn will imply that yLJI and hence ||L|| G O(λln(l/λ)). Using (4.47) we
find that \\K{ Uo — Ko\\ is bounded by

sup f k(z9zo)po{z)[\η\ + \R\]dx+ f k(z,zo)[λ\f'\2e««-po]dx.
zo<=DJDa

 JD'a

With the aid of the "special calculation" above it is easily checked that the
upper bound on the first integral is O[λln(l/λ)] while the second term is
O(λ).

Therefore ||L|| G O[λln(l/λ)] and since M = (1 - N)~ιL we have
||Af|| G O[λln(l/λ)] as well. Now the eigenfunctions φt = 1,2,3,4 are
uniformly bounded in λ as λ -> 0. Thus

M2(I - M)\ • Φ/) J < cλ 2ln 2(l/λ)(l l ) f t .

But (1 l)P o = 16w/(l + μ) e O(l) as λ -* 0 and so

(M 2 (7 - MΓV, <P7)Po e O[λ 2 ln 2 (l/λ)].

Collecting the various terms that occur in (4.44) we find

(4.48) a22 = -3μ + o(ju) + ε(a)μ

«33 = -3M + o(μ) + ε(a)μ

a23 = fl32 = (3pμ)/2 + o(μ) + ε(a)μ

a44 = - o[\n\l/μ)] + ε(a)μ.

Now p = / 7//(0) satisfies |/?| < 2 and remains bounded away from ±2 for
rectangles Ω(α) as long as α remains bounded away from 0 or τr/2. For
each of the terms in (4.48) we have limit ε(a) -> 0 as a -> 1. It follows
that the matrix (a^) is dominated by its leading terms and upon solving
(4.43) we find that \ct\ < r(λ)||w|| where r{\) G O(l/λ). From our earlier
discussion we may conclude that ||(/ - K'u )"1 | | G O(l/λ). The proof of
Lemma 4.2 is complete.
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The necessary estimates have been made and we are now ready to

apply the modified Newton iteration on the operator K(u). We set

(4.49) S{u) = u - ( l - K ' \

- ( / - K'uf(K{u) - K'Uo{u))

and will make use of the following result to be found in Vainberg [16, p.

260].

CONVERGENCE THEOREM. Let X be a Banach space and let S(x) be a

Cι-function from an open ball B(xQ, R) = (x | | | x — x o | | < R} into X.

Suppose that there is a differentiable real-valued function φ(t) defined on the

interval [0, t'] where t' < R satisfying

(a) | |S(x 0 ) - xo | | < φ(0)

(b) \\S\x)\\ < φ'(t) < if\\x-xo\\<t
Suppose further that the equation φ(t) = t has a root in [0, *']. If {xn} is

the sequence with xn+ϊ = S(xn), then xn -» x* where S(x*) — x* and

ll x* ~ xo\\ ^ ** where t* is the smallest root ofφ(t) = / in [0, / '].

Suppose that we also have φ(t') < t''. If φ(t) = t has a unique solution

t* in [0, / '], then the solution x* is unique in B(x0, tf) — Ωo and successive

approximations starting from any x'o G Ωo will converge to x*.

S'(u)(h) = (/ - K'u )'\K'U - K )(h) W e compute

We continue with the proof of Theorem 4.1. From (4.49) we have

- κ>o(h) = [ o \ [

= Kuol(eu~Uo - l)h] + KUo[(e-(«-^ - \)h\.
Therefore, we find

if ||u — uo\\ < t. But from Lemma 4.2, we know that \\(I — K{

O ( l / λ ) and \\KIUQ% \\KIUQ\\ e O[ln(l/λ)]. Therefore

t - l) = Γ ( e ' - l ) s φ ' ( / )

when ||w - uo\\ < t, where c is some constant and Γ = c[( l/λ)ln(l/λ)] .

We now have

The equation φ(t) = t will have exactly one root /' if 1 + φ(0) =

(1 4- Γ) ln[(l 4 Γ)/Γ] where f = ln[(l 4 Γ)/Γ]. If 1 4 φ(0) <

(1 4 Γ)ln[(l 4 Γ)/Γ], φ(0) > 0, then the equation φ(t) = t will have

exactly one root t* in the interval [0, /'].
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We now estimate \\S(u0) - uo\\.

S(u0) - uo= -(i - K^)~ (u0- K(u0)).

From the results of Lemma 4.2 we find

\\S(u0) - "oil ^ 6(l/λ)[λ3ln(l/λ)] = 6λ2ln(l/λ) s φ(0) > 0.

It is easy to check that φ(0)/[(l + Γ)ln[(l + Γ)/Γ] - 1] has a limit of 0

as λ -> 0. Therefore the convergence theorem applies for λ suitably small,

(λ < λ say). Therefore, for 0 < λ < λ there is a unique solution u* to

S(u*) = u* in B(uo,t') so that

||«* - MQII < t' = ln[(l + Γ)/Γ] s 1/Γ = cλ/ln(l/λ) -» 0 asλ'-> 0.

This shows in particular that W*(JC, λ) also converges uniformly to

4 ln(l/|z|) on any subset of D which omits a neighborhood of the origin.

Finally, we note that our construction of the approximate solution

WO(JC, α, λ) depends continuously on λ, a. Each step in our construction

of uo(x, α, λ) is an explicit recipe each of which depends continuously on

λ and a. Finally, the Newton iteration formula (4.49) is an operator

depending continuously on a and λ. It follows that the mapping (α, λ) ->

u*(x, α, λ) e C°(D) is also continuous. Theorem 4.1 is proven.

We have constructed our desired family of solutions to the system

(3,3), (4,4) by mapping the rectangular domains Ω(α) onto the unit disk

and doing the analysis there. We now wish to consider the smooth

dependence of these solutions on the parameters λ and a. This is most

easily done by mapping a typical rectangular domain which we may

choose to be of the form [0,1] X [0, yfb ] = Ω̂  onto the unit square

Ωx = [0,1] X [0,1] by a simple stretching and studying the transformed

family on this fixed domain.

If uxx 4- uyy 4- (λ/λ[b)f{u) = 0 on Ω̂  with zero boundary values,

then the transformed function will satisfy the P.D. E.

(4.50) uxx + b~ιuyy + (λ/Jb)f(u) = 0 on Ωx.

This function will satisfy the corresponding integral equation

(4.51) (a) iι(xo)= / k(x9xθ9b)(λf[u(x)])dx

(b) /c(x,x0, b) = -(4τr)-1ln[(x - x0)
2 + b(y - yQ)2}

+ A(x,xo,Z>).

Here once again we are labeling a typical point in Q1 by x = (x, y). The

function Λ(x,x0, b) is "^-harmonic" on Ωx satisfying the P.D.E. hxx +

b~ιh = 0 on Ωx and is chosen so that A:(x, x0, b) vanishes for x e 8Ω1.
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LEMMA 4.3. Consider the operator

(4.52) v(x09 b) = ί *(x,x 0, b)u(x) dx = T[b, u](x0)

The following are true.
(a) The mapping Γ:(0, oo) X C(QX) -» C ^ ) , wλ/cλ w /zwrar in the

second variable, is a continuously differentiable map such that the image
function vanishes on the boundary.

(b) The map (b, u(x)) -> Dtv(x, b) where Dtv is a partial derivative
with respect to one of the x-coordinates, is a continuous map into the space
C(Ω') where Ω' is any domain with Ω' c Ώv The mapping (b, u(x)) -> Divh

is also a continuous map into C(Ω').

Proof. We split the operator T[b, u] by setting

υ(x9 b) = T[b9 u](x) = w(x9 b) 4- χ(x, 6)

(4τr)"1ln[(x - x0)
2 + b(y - yof] u(x) dx

= ( h(x,xo,b)u(x)dx.

Using standard methods from potential theory (e.g. Gilbarg and
Trudinger [7, p. 53]) it is seen that w(x, b), wh(x, b), Dtw(x, b), Dtwh(x, b)
are all continuous on Ωx and are calculated by differentiating under the
integral sign. (The kernels for w, wh are homogeneous of degree 0 while the
remaining kernels are of degree -1). Furthermore the mappings (b, u(x))
-* (w, wb9 Dtw, DjWb) are all continuous from (0, oo) X C(ΩX) -> C(ΩX).

Now χ(x, b) ^ C(QX) Π C00^^ is a. ί)-harmonic function on Ώ1 with
X = -ω on 3Ω1# It follows that the mappings (b, u(x)) -> [χ(x, b), χb(x9 v)]
are continuous maps from (0, oo) X C(Ώλ) -> C(ΩX) while the derivative
maps Dtχ{x, b), Dtxh{x, b) are continuous maps into the space C(Ω')
where Ωr c Ώv

It follows from our discussion that the map T: (0, oo) X C(ΩX) ->
C(ΩX) is continuous. Since Γis linear in u we have for the derivative of T

DT[b9 u](Ab, h) = υb(x9 b)Ab + T[b9 h]

for Δb G R and h(x) G C(Ωj). From this we see that Z>Γ is also continu-
ous and so T is of class C1. D

LEMMA 4.4. Let (α, λ) -> w*(x, α, λ) 6e /Λ̂  continuous mapping into
C(D) constructed in Theorem 4.1 where u* — K(u*) = 0, and K(u) is the
integral operator (4.4). The derivative map (I — K'u*): C(D) -> C(D)
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is invertible for each w*(x, α, λ) with λ > 0 and satisfies the bound

Proof. By Lemma 4.2 we have | | (/ - K'UQ)~1\\ G O( l/λ) where u0 was

the initial approximate solution. Now

- *;) = (/ - *;)[/-(/ - κ'uf(κ'u - *;

where S*(w) is the operator (4.49) used in the modified Newton proce-

dure. It was shown that \\S»\\ < Tie' - 1) if \\u - uo\\ < t where

Γ = c[(l/λ) ln(l/λ)] for some constant c. However, \\u* — uo\\ < t* where

/* G [0, t'\ is the smallest positive root of / = φ(t) = φ(0) + Γ(et - I - t)

where φ(0) < ftλ2ln(l/λ) as λ -> 0. It is easy to check that φ(0)/t* -> 1

as λ -> 0, hence ί (λ) e O[λ 2 ln(l/λ)]. From this we obtain \\S^\\ G

O[λln 2 ( l /λ) ] . Therefore HŜ H -> 0 as λ -> 0 and from the identity above

we conclude that (/ - K^) is invertible and | |(/ - ^ * ) ~ Ί l ^ O(l/λ). D

Now take the functions w*(x, α, λ) constructed in Theorem 4.1 on the

disk domain and transform them to our new standard domain Ω1? the unit

square. For convenience we replace the shape factor a by the parameter b.

The transformed function w(x, b, λ), x e Ω1? is then a continuous map-

ping (b,λ) -> w(x, Z?,λ) G C(ΩX) which vanishes on the boundary and is

a solution to the operator equation

(4.53) u- 2λT[b,ύnhu\ =0

where T(b, u) is the integral operator defined in (4.51), (4.52).

THEOREM 4.2. The continuous family (b, λ) —> t/(x, b, λ) is a C2-map-

pingfrom the admissible set 0 c R2 —> C(ΩX). The following are also true.

(a) iι(x, 6, λ) G C\W)for any Ωr c Ωx.

(b) M(X, 6, λ) G C 0 0 ^ ) Π C^Ωi) /or eαc/z (6, λ) α^J w a solution

to (4.50).

(c) The mappings (b, λ) ^_[w(x, b, λ), M^(X, 6, λ), wλ(x, b, λ)] αr^

continuous into C(Ω X ) while the maps (b, λ ) ->

[Z>7w(x, />, λ), Dtuh(x, b, λ)] «re continuous into C(Ω') where

Ω7 c Ωx.

Proof. From Theorem 4.1 we have that t/(x, 6, λ) depends continu-

ously on (b, λ), and by the discussion above is a solution to the operator

equation (4.53) for λ > 0, F(u, b,\) = u- 2λΓ[Z>,sinh u] = 0. From
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Lemma 4.3 it follows that F(u, b, λ) is a Cx-function from R2 X C(ΩX)

-> CXΩJ. Furthermore, the derivative

Fu(u9b9λ)(h) = I(h) -2λT[b9(coshu)](h)

is invertible for small positive λ by Lemma 4.4. Therefore by the Implicit

Function Theorem w(x, b, λ) depends differentiably on (b, λ) as a map-

ping (b, λ) e 0 c R2 -> C ί ^ ) .

Now since u = 2λΓ[Z>, sinh u] and since sinh w is continuous on Ω l9 it

follows from Lemma 4.3 that u e C*(Ω') for Ω' c Ωx. But then it follows

that u e C°°(Ω') and is a solution to the D.E. (4.50) on Ωx. The remaining

smoothness properties also follow from Lemma 4.3. D

LEMMA 4.5. Let u(x, y) e C°(Ω) Π C2(Ω) όe a solution to the D.E.

Δw + F(u) = 0 on Ω w/zere Ω w # rectangular domain (0, A) X (0, 5 ) α«rf

JF(W) W an odd (F(-u) = -^(t/)) continuously differentiable function with

F(u) positive for positive u, and let u — 0 on 8Ω. Let ϋ(x, y) be the

extension of u(x, y) to all of R2 obtained by odd reflection ofu(x, y) across

the rectangular grid determined by Ω. Then u(x, y) G C2(R2) and is a

solution to Δu + F(u) = 0 on R2.

Proof. This result must be well known. The fact that reflection across

a line is smooth is proven in the same manner as the case of harmonic

functions [2, p. 272]. The resulting extension is then continuous on all of

R2 and is a smooth solution to the D.E. except possibly at the vertices.

From this it follows easily that the extension is in fact smooth across the

vertices as well. D

One may conclude that the family w(x, b, λ) satisfying (4.53) on Ωx

and discussed in Theorem 4.2 has an odd C0 0 (analytic, in fact) extension

to all of i?2, being a solution to the D. E. (4.50) and vanishing on the grid

lines x = k, y = I (k, I integers). We now show that these extensions

depend continuously and differentiably on (b, λ).

THEOREM 4.3. Let ύ(x, b,λ) be the odd smooth extension of the family

w(x, δ, λ) described in Theorem 4.2 The following are true. On any compact

domain Ω c R2 the following functions are continuous maps from the

parameter set (b, λ ) e O c i ? 2 - > C ( Ω ) where λ is positive.

(a) (b, λ) -> fi(x, b9 λ)

(b)(fc,λ)-*Z> ffi(x,fc,λ)

(c) (b, λ) -> δλ(x, b9 λ), ub(x9 b9 λ)

(d) (b9 λ) -> D.fi>(x, b, λ).
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Proof. Let Ω2 = [-1,1] X [-1,1] be the square of edge 2. On Ω2, the

map (&, λ) -> ύ(x, b, λ) e C(Ω2) is continuous (for λ > 0) and is a

solution to the integral equation (4.53) where now the kernel function

k(x, x 0 , b) for the operator T is relative to Ω2 rather than Ω1# The

conclusions of Theorem 4.2 can now be applied to this enlarged domain.

So for any subdomain Ω' c Ω2 the functions listed above are continuous

mappings into C(Ω'). Since the functions are periodic, the result follows. D

We now shall discuss the behavior of the family of functions u(x, b,λ)

described in Theorems 4.1-4.3 as the parameter λ —> 0. We suppose that

the functions have been extended as described in Lemma 4.5 so that the

domain includes all x G i ? 2 . From Theorem 4.1 we know that if Ω c R2 is

any domain whose closure avoids the center of any square in the grid

determined by Ωx and if the shape parameter b remains inside some

compact subinterval of (0, oo) then as λ -» 0 the function w(x, b, λ)

converges uniformly to the function uo(x, b) where for x e Ωx

Here g(x, Z>) is the nonconformal map of Ωx onto the unit disk D obtained

by first squashing Ωx onto the rectangle Ω^ = [0,1] X [0, ]fb ] and then

conformally mapping Ω^ onto D. uo(x, b) is then extended oddly to all

x G Λ 2 as described in Lemma 4.5. This limit function uo(x, b) is "b-

harmonic" [satisfies uxx + b~ιuyy = 0].

THEOREM 4.4. Let Ω c R2 be any domain whose closure excludes the

centers of any square in the grid formed by Ω1? and suppose b is constrained

to remain in some compact subinterval of (0, oo). Then as λ —> 0,

Dku(x, Z>, λ) —• Dku0(x, b,λ) where Dku is any partial derivative of

ι/(x, b, λ) with respect to the x-coordinates.

Proof. We may suppose that Ω is a disk domain whose closure does

not contain the center of any square. On Ω we have

uxx + b~ιuvy +(λ/y[b){eu - e~u) = 0 on Ω

u(x9b9λ) = Ψ(x,b,λ) on9Ω.

As an integral equation we may write

(4.55) iι(x0, b, λ) = / *(x,x 0, b)[λ(e» - e~u)\ dx + λ(χ 0, b9 λ)

= v(xo,b,λ) + h(x09b9λ).
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Here &(x, x 0 , b) is the Green's kernel (4.51) adjusted to the disk Ω and

Λ(x, b, λ) is a Z?-harmonic function with h = Ψ on 3Ω. Since w(x, 6, λ) ->

wo(x, 6) uniformly on Ω as λ -> 0 it is clear that (4.55) remains valid down

to the limit, λ = 0. But now using the arguments in the proofs of Lemma

4.3 and Theorem 3.2 we can conclude that on any subdomain Ω ' c β the

functions u, ux, uy converge to u0, (uo)x and (uo)y as λ -> 0. This process

can be iterated and we can conclude that Dku(x, b,λ) -> Dku0(x, b) as

λ -» 0 and x e Ω'. D

The following lemma concerns the symmetry properties of the solu-

tions t/(x, b, λ).

LEMMA 4.6. Let Ω be the rectangle [-a, a] X [-b, b] c R2 centered

about the origin. Let F(u) be an odd function of class C 1 which is positive for

positive w, and suppose u(x, y) G C2(Ω) is a solution to uxx + u -f JF(M)

= 0 which is positive inside Ω and equals zero on the boundary. The

following are true:

(a) u{x, y) = u(-x, y) = w(x, -7) so that u(x, y) is an even function

of(x, y). Hence ux(x, y) is odd in x9 even iny (e.t.c).

(b) For a fixed y, 0 < y < b, u(x, y) is a strictly decreasing function of

x for 0 < x < a. Similarly for a fixed x, 0 < x < a u(x, y) is strictly

decreasing in y,0 < y < b.

(c) uy(x, b) is strictly increasing for 0 < x < a from u (0, b) < 0 to

uy(a, b) = 0.

Proof. We first observe that by the E. Hopf boundary point principle,

along the edges of Ω the outward normal derivative du/dv < 0, and by the

boundary point principle at a corner due to J. Serrin [14], ux does not

vanish at any corner. These observations allow us to apply the passing

planes technique initially due to A. D. Alexandrov and extended in the

paper of Gidas-Ni-Nirenberg [6], (see also [17]).

We reflect u(x, y) about lines parallel to the coordinate axes and

apply the Hopf touching principle or the Hopf boundary point touching

principle (see [17] for details). The conclusions are

(a) u(x, y) is an even function in x and y.

(b) u(x, y) for a fixed y9 -b < y < b, strictly increases from 0 =

w(-α, y) to a maximum at w(0, y) and then strictly decreases back to

0 = u(a, y). A similar result holds in the j-direction.

(c) uy(x, b) strictly increases on [0, a] from ^(0, b) < 0 to uy(a, b)

= 0. A similar result holds for ux(a, y), 0 < y < b. D
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The symmetry properties of M(X, b, λ) as described in Lemma 4.6
actually follow from our method of construction. We observe that the
functions w(x, b, λ) constructed in Theorem 4.1 are not guaranteed to be
positive on the interior of the domain. However, we have the following
result.

LEMMA 4.7. The functions «(x, b> λ) described in Theorem 4.2-4.3 are
positive onilv

Proof. Suppose u(x, b, λ) is defined for (b, λ) G 0 c R2 where 0 is a
connected set. If we can show that w(x, Z>, λ) is positive on Ωx for one
(6, λ) G 0, then w(x, b, λ) will be positive on Ωx for all (b, λ) G 0. This is
a direct consequence of the E. Hopf boundary point principle and Serrin's
boundary point principle at a corner, discussed in the proof of the
previous lemma.

By Theorem 4.3 we have w(x, b, λ) => wo(x, b) uniformly on any
subdomain Ω' of Ωx which does not contain the center of Ωx as λ -> 0.
Here κo(x, b) is given by (4.54). Therefore, if Ωo is any subdomain of Ωx

with Ωo c Ωl9 then fixing b = έ, there exists λ > 0 so that f or 0 < λ < λ
we have ι/(x, b, λ) > ε > 0 for x G Ωo.

Now let p be a boundary point of Ω2 which is not a corner. In a
neighborhood of/?, the inward normal duo/dv is positive. But du/dv =>
duo/dv uniformly on this neighborhood by Theorem 4.4. It follows that
for λ sufficiently small w(x, ~b, λ) will be positive for x G Up Π Ω2 where
L̂  is a neighborhood of/?.

Finally consider a corner. Here we have (uo)xy Φ 0 and the same will
be true for uxy for λ sufficiently small, b = b, and x in some neighborhood
of the corner. It now follows that there is a λ so that, for 0 < λ < λ,
u(x,b,λ) will be positive for x G U Π ΩX where U is some neighborhood
of the corner. But Ωx is compact and the Lemma follows.

V. Conclusion with pictures. Let Ω = (0, A) X (0, B) be a rectan-
gle chosen so that the smallest eigenvalue of the system Δϋ + yυ = 0 on
Ω, v\dΩ = 0 is yx = 1. In particular we have yλ = 1 = π2[l/A2 + l / £ 2 ]
and so we see that both 4̂ and 5 are greater than π. If one solves the
P.D.E.

(5.1) ΔW+ 2λsinhfiΓcoshW= 0 onΩ, W=0 on 3Ω
or equivalently setting 2W = Σ the system (3.3) ΔΣ + 2λ sinh 2 = 0, then
by shrinking the domain we have a function co(w, y) defined on 2̂λ*Ω =
Ω(λ) and satisfying
(3.5) Δω + sinhωcoshω = 0 onΩ(λ), ω = 0 on3Ω(λ).
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From here we follow the procedure of §§II and III to construct an
immersed surface x(u, υ, λ) with fundamental domain Ω(λ). In our
pictures we shall choose H = 1/2.

As 2λ -> yx = 1 (i.e. λ -> 1/2) the functions W(u, υ, λ) => 0 uni-
formly. There is a bifurcation from the trivial solution W = 0 to (5.1)
when λ = 1/2. The discussion of §IV established a one-parameter family
W(u,v, λ) depending smoothly on λ near λ = 0 (λ > 0) such that
W{u, v, λ) converges to W0(u, v) = 21n(l/|g(w, Ω)|) where g(w, Ω) is the
inverse of the Schwartz-Christoffel mapping from the unit disk to the
rectangle Ω.

The following statements concerning solutions to the system (5.1) are
worth bearing in mind.

LEMMA 5.1. Let W be any positive solution to the system (5.1). It follows

that 0 < 2λ < yx where yλ is the smallest eigenvalue to the Laplace equation

with zero boundary data.

Proof. Essentially well known. Follows from the fact that sinh W > W
for If positive.

LEMMA 5.2. For every λ, 0 < 2λ < γλ there exists a positive solution to

(5.1).

Proof. Not to be given here. Uses so-called mountain pass lemma.

If one imagines the solution curve [W(u, v9 λ), λ] in the "(W9 λ)-
plane", then one is tempted to believe that the curve bifurcating from
λ = 1/2 connects smoothly to the large family near λ = 0. This has not
yet been established. The following conjecture is especially tempting.

Conjecture. Let W(u, υ, λx) and W(u, υ, λ2) be two positive solutions
to (5.1) where Ω is a rectangular domain. If λλ < λ2 then W(u, υ, λτ) >
W(u, v, λ 2 ) for each point (u, v) e Ω.

Remark. In the case of a disk domain this conjecture is true.

Now suppose we have our positive solution ω(u, v) to (3.5) defined
on Ω(λ) and then extended as a solution to all of R2 from which we
construct our surface x( w, v, λ) with mean curvature H = 1/2. As 2λ -> 1
we know that ω -> 0. In this limit case x(w, υ, λ) (with λ = 1/2) is a
representation of a pure cylinder whose cross-section is a circle of radius
one. We shall sketch the image of the rectangle indicated as [1-6] in the
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illustrations. So if the fundamental rectangle is Ω(λ) = (0, A) X (0, B)
where A = }/2λA0, B = }/ΐλB0 then we sketch the image of the rectangu-
lar region whose vertices are (A/2,0), (A/2, B/2), (3A/2,0),
(3A/2, B/2). The rest of the immersion can then be obtained by a
rotation of 180° of the pictured region about the normal line through the
image of (2) = x(A,0) and then subsequent reflections.

We have sketched four figures starting with λ = 1/2 (the cylinder)
and then surfaces corresponding to decreasing values of λ until the planes
Π o and Π^ become identical so that the immersed surface closes up in one
direction at least. The following observations are useful to keep in mind as
λ -> 0. We let Ω+(λ) denote a rectangular domain where ω(u, v) is
positive (e.g. Ω+(λ) = Ω(λ)). In this domain the principle curvatures kl9

k2 are both positive, hence the Gauss curvature K is positive and the
surface x(Ω+) is convex. Ω~(λ) is any congruent rectangle where ω(u, v) is
negative. In this case kλ < 0 and k2 > 0 so that Gauss curvature is
negative.

THEOREM 5.1. As λ -> 0 the following are true.
(a) The area of the image of the Gauss map

= I KdA approaches 4 <π.

(b) The area of the image surface, x[Ω+(λ)] approaches 4ττ(2)2 = 16τr.
(c) The area of the image surface, x[Ω~(λ)] approaches zero.

Proof. The proofs of the assertions are similar and direct. For (a) we
have

/ / KdA = I I sinhωcoshω dudv
J ^ [ Ω + ( λ ) ] J JΩ+(λ)

= [ f sinh Wcosh W(2λ) dudv

= - ( ί ΔWdu dv
J JΩ +

= - / -w-ds -» - / -^-ds

--2/
JdD

31n(l/r) . Λ

\ ds = 4ττ.
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A similar calculation for (b) gives for the area of the image x[Ω+(λ)] the
formula

Area = 2λf f e'^dudo-lf ί b^dudυ.

As λ approaches 0 the first term in easily seen to approach zero and the
whole expression converges to 16TΓ. The proof of (c) is even more direct. D

Our calculations suggest that the surface x(Ω+(λ)) converges towards
a sphere of radius 2. The surface x(Ω"(λ)) has negative Gauss curvature
(and small area) and serves to connect the sphere-like pieces together.

Finally we note that as λ -> 0 the fundamental rectangle Ω(λ) shrinks
to a point. If H = 1/2, then along the line v = 0 we have ω( u, 0) = 0 and
E = | x j 2 = 1. This shows that x(ι/,0) is parameterized by arc length.
Thus the curve x(w,0), 0 < u < A(λ) = }/2λA0 has length ^/2λA0 which
shrinks to zero. Similar remarks apply to the image of any of the grid lines
u = mA, υ = nB along which ω = 0.

FIGURE 1: The Schwartz-Christoffel Map (3.2)

v w-plane y z-plane

(A(α),B(α)

/
Ω ( α )

FIGURE 2. The Fundamental Domain Ω(α, λ) = v2λΩ(α)
V '

( A ( α ) , B ( α ) )

^ (/2λA(α) ,/2lB(α) )

w1 =Φ (w) =w//2T

Ω ( α , λ )

1. ΔΨ + λ| f'(z, a)\2(e* - e~*) = 0 on D,
limit Ψ(z, a, λ) = 41n(l/|z|) as λ -» 0

= 0
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2. ΔΣ + λ(e Σ - e~Σ) = ΔΣ + 2λsinhΣ = 0 on Ω(α)
where Σ = Ψ°g

3. ΔW + 2λ sinh Wcosh W = 0 where 2W = Σ
4. Δσ 4- sinhσ = 0 on Ω(α, λ) where σ = Σ ° Φ
5. Δω -I- sinh ω cosh ω = 0 where 2ω = σ
6. x(w, ι;, α, λ) is solution to (2.19) with fundamental domain

Ω(α, λ) while ^(t/, */, α, λ) = [x o φ - \ M ' , y', α , λ)]//2λ is a
solution to (3.7) with fundamental domain Ω(α).

FIGURE 3: Graph of y(w, -i5(α), α, λ).

( A ( α ) , B ( α )

z= g(w,α,)

Ω ( α )

i) y(w + 4^4(α:), y, α, λ)
= y(ι/, ϋ, α, λ) + 4S(a, λ)e
ii)y(w, ϋ, α, λ) -> yo(n, ϋ)
as λ approaches 0.
iii) When λ equals 0
then φ equals 20.

- i α

y ( 0 , - B ( α ) , α , λ )

FIGURE 4: Graphs of Ca = yo(w, -

when S ( α , 0 ) JLS n e g a t i v e

π/4

S(α*,O)=O!
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FIGURE 5: Suggestive Illustrations.

241

The Fundamental Domain Ω(α, λ) = v2λΩ(α).

+ +

Case 1: (W = 0, λ = 1/2) The pure cylinder

θ>π/2

Case 2: (Wpositive but not too large, λ less than 1/2)
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Case 3: (Wlarger, but the planes Π o , Tί1 still separated)

Case 4: (The planes Π o and Hι are identical)

Final Note: If one reflects the sketched figure about the plane of the
paper Π o , then a surface in the shape of a "clam shell" is obtained. Now
rotate this figure about a vertical line through c0. The completed figure
resembles a clam with the shells opened up a bit.
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