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THE ABSOLUTE GALOIS GROUP OF A

PSEUDO REAL CLOSED ALGEBRAIC FIELD

DAN HARAN AND MOSHE JARDEN

The absolute Galois group of a PRC ( = pseudo real closed) field is
characterized as a real projective group. Specifically, it is known that if
£ is a PRC field, then its absolute Galois group G(E) is real projective.
Conversely, if G is a real projective group, then there exists a PRC field
E such that G(E) = G. The construction of E makes it of infinite
transcendence degree over Q. However, if a field E is algebraic over Q,
then rank G(E) < S o . Therefore it is natural to ask whether for a given
real projective group G of rank < S o we may choose E to be algebraic
over Q.

There are two reasons for asking this question. First of all, the
corresponding question for projective groups and PAC fields is known to
have an affirmative answer, since there exist algebraic PAC fields E
such that G(E) = Fω = the free profinite group of ranks S o and since
every projective group G of rank < S o is isomorphic to a closed
subgroup of Fω. A generalization of this fact to real projective groups
and PRC fields will be a contribution to the desired description of the
closed subgroups of G(Q). Secondly, an affirmative answer to this
question will give us a necessary tool to the study of the elementary
theory of all PRC fields which are algebraic over Q.

The main goal of this work is indeed to give the desired affirmative
answer:

THEOREM. If K is a countable formally real Hilbertian field and G is
a real projective group of rank < No>

 t n e n there exists a PRC algebraic
extension E of K such that G(K) = G.

In order to make this introduction self-contained we repeat the basic
definitions involved in the Theorem.

A field E is said to be PRC (= pseudo real closed), if every
absolutely irreducible variety V defined over K, which has a simple
ΛΓ-rational point in every real closed field K containing K, has a Â -ra-
tional point.

A diagram

G
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of epimorphisms of profinite groups is said to be a real embedding problem
for G if for every involution (i.e. element of order 2) g of G such that
φ(g) Φ 1 there exists an involution b of B such that a{b) = φ(g). The
problem is finite if B is a finite group.

A profinite group is said to be real projective if the subset InvG of all
involutions of G is closed and every finite real embedding problem (1) for
G is solvable, i.e., there exists a homomorphism γ: G -> B such that
α ° γ = φ.

We sketch here the basic ideas involved in the proof of the Theorem.
We choose a closed system X of representatives for the conjugacy classes
of Inv G and choose a sequence S of generators for G that converges to 1.
Let D = D(X,S) be the real free group in the sense of [6] with the basis
(X, S). Then the obvious surjection D -> G induces a cover of the
corresponding Artin-Schreier structures [5]. Hence it has a section, and
consequently G is isomorphic to a closed subgroup of D.

Secondly, we show that the Boolean space Xω = { ± 1}N together with
a discrete sequence form a basis for a universal real free group Dω of
countable rank, which, among other properties, contains all real free
groups of rank < S o as closed subgroups.

Using a theorem of Binz-Neukirch-Wenzel about open subgroups of
free product of profinite groups and a method of Lubotzky-v.d. Dries, we
embed Dω as a closed normal subgroup of the free real group Def, where
e > 1 and / > 2.

Now it is well known that K has an algebraic PRC extension Kσ

such that G(Kσ) = Def [5]. By what has been said above Kσ has an
algebraic extension E such that G(E) = G. By the Prestel extension
theorem E is also PRC.

1. Boolean spaces of countable weight. A topological space X is a
Boolean space if it is an inverse limit of finite discrete spaces. Two other
equivalent definitions are:

(a) X is a compact totally disconnected Hausdorff space;
(b) X is compact and every JC e X has a basis of closed-open

neighbourhoods, whose intersection is {x}.
The following lemma characterizes a subclass of Boolean spaces. Here

an inverse limit of topological spaces X = lim Xi9 where i ranges over
N = (1,2,...} with its usual order, is said to be the inverse limit of a
sequence of spaces. We leave the proof of the lemma to the reader. Our
suggestion is to prove the implications (a) => (b) => (c) => (d) => (a) and
(c) => (e) => (f) =* (b).



ABSOLUTE GALOIS GROUP OF A PRC ALGEBRAIC FIELD 57

LEMMA 1.1. The following conditions on a Boolean space X are equiva-

lent:

(a) X has a countable basis for its topology;

(b) the family of closed-open subsets ofXis countable;

(c) X is the inverse limit of a sequence of finite discrete spaces;

(d) X is homeomorphic to a closed subset of the product space { + 1}N;

(e) given two continuous surjections φ: { ± 1 } N -» Jf0 and a: X -> Xo

onto a finite discrete space Xo, there exists a continuous surjection γ:

{ ± 1} N -> Xsuch that a ° γ = φ;

(f) either X = 0 or X is a quotient space of { + 1}N, i.e., there exists a

continuous surjection { ± 1}N —> X.

A Boolean space satisfying either of the conditions of Lemma 1.1 is

said to be of weight < S o [6, §2].

We now focus our attention on one of these spaces. The equivalence

of (a) and (b) in the following lemma follows from [7, Corollary 2-98 and

Corollary 2-59], that of (b) and (c) from [4, IV.4.1]. We leave the

implications (a) «=> (d). (c)&(d) => (e), (e) => (a), (c) =* (f) and (f) =* (a)

to the reader.

LEMMA 1.2. The following conditions on a nonempty Boolean space Xω

of weight < S o are equivalent.

(a) Xω is perfect, i.e., has no isolated points.

(b) Xω is homeomorphic to the Cantor 'middle thirds' set.

(c) Xω is homeomorphic to { ± 1}N.

(d) IXJ > 1 and every nonempty closed-open subset of Xω is homeomor-
phic to Xω.

(e) Let X be a Boolean space of weight < Ko, let Xo be a finite discrete

space and let φ: Xω —> Xo and a: X —> Xo be continuous maps. If

a{X) Q φ(Xω), then there exists a continuous injection γ: X --> Xω such

that φ ° γ = a.

(f) Let φ: Xω -+ Xo and a: X -+ Xo be as in (e). // a(X) = φ(Xω),

then there exists a continuous surjection γ: Xω -> X such that a ° γ = 0 .

DEFINITION 1.3. The Boolean space Xω satisfying one, and hence all,

of the conditions of Lemma 1.2 is called the universal Boolean space of

weight S o .

2. The group Dω. Real free groups have been introduced in [6]. In

this work we are interested in real free groups of countable rank. Among

them there is a universal one denoted Dω. In the notation of [6, §1] it is
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defined as

where Xω is the universal Boolean space of weight S 0 and Yω is the one

point compactification of a countable discrete space Sω (and 1 is the

compactification point of Yω). In other words Dω contains the spaces Xω

and Yω as disjoint closed subspaces, the elements of Xω are involutions of

Dω (i.e. of order 2) and the following universal property is satisfied.

(1) Every continuous map φ from Xω U Yω into a profinite group G,

such that φ(x)2 = 1 for every x ^ Xω and φ(l) = 1; uniquely extends to

a homomorphism φ: Dω -» G.

The following properties of Dω follow from the study of real free

groups in [6].

(2) rank(Z)ω) = S o (since both Xω and Yω are of weight Ko, by [6,

Lemma 2.2]).

(3) InvZ)ω is closed in Z)ω, and Xω is a closed system of representa-

tives of the distinct conjugacy classes of InvZ)ω [6, Corollaries 3.2 and 3.3].

(4) Dω is real protective, i.e., if a: B -> A is an epimorphism of finite

groups and φ: Dω -> A is a homomorphism and if for every ε e InvZ)ω

such that φ(ε) Φ I there exists a i e Inv5 such that α(&) = φ(ε), then

there exists a homomorphism γ: Z)ω -> B such that α ° γ = φ [6, Corollary

3.3].

(5) The subsets Yω and Sω of Z)ω converge to 1, i.e., for every open

subgroup N of Z)ω the set Yω — N = Sω — N is finite (since it is closed in

Yω9 hence compact, and discrete).

(6) Every closed subgroup of Dω is a real protective group of rank < N o

(by (2) and [5, Corollary 10.5]).

(7) the following characterization of Dω makes it especially attractive:

PROPOSITION 2.1. Let R be a countable real closed field and let

F = R(t) be the field of rational functions in one variable over R. Then

G(F) = Dω.

Proof. By [6, Proposition 4.1], G(F) = D(X(F), H) where X(F) is

the space of orderings of F and H = {a + W-Γ | a,b e R and b > 0}.

By [2, Theorem 11], X(F) s Xω; also \H\ = Ko = |5 ω | . Hence

b b
We shall see that the converse of the property (6) above is also true.

But first we need a lemma, which is an easy corollary of some of the

deeper theorems of [5]. It appears as Lemma 3.5 of [6].
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LEMMA 2.2. Let P and G be realprojectiυe groups,

(a) There exists a closed system of representatives of the conjugacy

classes of Inv(G).

(b) Let a: P -> G be a continuous epimorphism and let X be a system of

representatives of the conjugacy classes of Inv(P). If a maps X bijectively

onto a system of representatives of the conjugacy classes of Inv(G), then

there exists a continuous monomorphism γ: G -> P such that a°y — iάG.

PROPOSITION 2.3. Let φ: Dω -> H be an epimorphism onto a finite

group H and let G be a real projective group of rank < S o . // π: G -» H is

an epimorphism such that π(InvG) c φ(Inv/)ω) then there exists an embed-

ding γ: G -> Dω such that φ ° γ = π.

Proof. Note that the existence of a homomorphism γ: G -> Dω such

that φ o γ = 77 is already guaranteed by the definition of real projective

groups. Our task is to use the assumption on the weight of G and to show

how to choose γ to be injective. Our proof breaks into parts.

Part A: Choosing a more convenient basis for Dω.

By Lemma 2.2(a), there exists a closed system X of representatives of

the conjugacy classes of InvG.

Claim. With no loss we may assume that ττ(X) c φ(Xω) and H =

Indeed, for each A E 7 Γ ( I ) we may choose a g = g(A) E G such that

hπ(8) e φ(Xω)9 since π(X) c τr(InvG) c φ(Invl)ω) and Xω is a system of

representatives of the conjugacy classes of Dω9 by (3). We replace then X

by

X= U

which is also a closed system of representatives of the conjugacy classes of

Inv G and satisfies

Let xlt...,xHeXω such that φ(XJ = {φ(x1),...,φ(xn)}. By (5),

Yω Π Ker(φ) is infinite, hence we can choose n elements yv..., yn e (Yω

Π Kerφ) - {1}. Let Yo = Yω - {yx,..., yn) and Y1 = {x1y1,...,xnyn}.

Then

H=(φ(Xω),φ(Yω)) = (<p(Xl),.. .,<p(xn),φ(Y0))
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Define p: Xω U Yω -» bω by

p ( x ) = x for x e Xω

ρ(y) = y for y e 7 0 , and

*,J>« for/ = l , . . . , / ι .

Then p extends to a homomorphism p: Z)ω -> Z)ω. But p2(z) = z for all

z e Xω U yω, hence p2, and therefore also p, is an isomorphism. It follows

that (Xω, Yo U Yλ) is also a basis for Z)ω. Thus we may replace Yω by

Yo U y i and attain the required property. This proves the Claim.

Part B: Constructing γ.

By Lemma 1.2(e) there exists a continuous embedding β: X —> Xω

such that φ°β(x) = ττ(x) for each J C G I Let X' = β(X) and let a:

X' -> X be the inverse of /?; then 77 ° α(x) = φ(x') for each x r e X'.

By [6, Proposition 3.4] (or by a direct check), the group (Yω) is real

free with the basis (φ, Yω), i.e., (Yω) = Fω is the free profinite group of

rankN 0 . Since φ(Yω) = H, by the Iwasawa theorem ([12, p. 84]), there

exists a continuous epimorphism a: (Yω) -> G such that π <> ά(y) = φ(y)

for every y e (Yω). Denote by a its restriction to Yω.

Let Z = X' U 7ω. We have constructed a continuous map a: Z -^ G

such that 77 © α = φ on Z. Let D = ( Z ) . By [6, Proposition 3.4], Z) is a

real free group and (X\ Yω) is its basis, hence a extends to a homomor-

phism a: D -> G such that π o α = φ, on Z). Clearly the restriction of α

to ( y ω ) is ά, hence α is an epimorphism. By [6, corollary 3.2], X' is a

closed system of representatives of the conjugacy classes of InvZ) and it

maps bijectively onto X by a. Therefore by Lemma 2.2(b), there exists an

embedding γ: G -> Z) such that α ° γ = idG. Clearly 77 = φ ° γ. D

3. Characterization of Z)ω by embedding problems. A proper real

embedding problem for a profinite group G is a diagram

G

(1) AΦ

and a closed involution domain I (i.e., a closed subset I c Inv5 closed

under conjugation) of 5 such that 77 and φ are epimorphisms of profinite

groups and ττ(Z) = φ(InvG).

A solution to the problem is an epimorphism γ: G -> B such that

77 o γ = φ and γ(InvG) = Z.

Problem (1) is said to be finite if B is a finite group.



ABSOLUTE GALOIS GROUP OF A PRC ALGEBRAIC FIELD 61

REMARK 3.1. If every finite proper real embedding problem for a
profinite group G is solvable, then InvG Φ 0 and G has an open
subgroup G' of index 2 such that G' Π Inv(G) = 0 . In particular InvG
is closed in G.

Indeed, consider the diagram

G

(1) i

and the involution domain {-1} of {±1}. By assumption there exists an
epimorphism γ: G -> {±1} such that γ(InvG) = {-1}. Then G' = Kerγ
has the required properties.

LEMMA 3.2. Every finite proper real embedding problem for Dω is

solvable.

Proof. Let diagram (1) with an involution domain / c B be a finite
problem for G = Dω. Denote Io = {b e I\π(b) e ψ(Xω)}; then every
element of / is conjugate to an element of /0, since every element of
InvZ)ω is conjugate to an element of Xω and π(I) = φ(InvZ)ω). The set
Yx = Yω - Ker(φ) is finite. Choose a subset Y2 c Yω - (Yλ U {1}) of
exactly |Ker7r| elements and denote Y3 = Yω - (Yλ U Y2).

By Lemma 1.2(f), there exists a continuous surjection γ0: Xω -> /0

such that 77 © γ0 = φ on Xω. Define γt: Yx-> B such that π © γχ = φ> on
ί̂  and let γ2: Γ2 -> Kerτ7 be a bijection. Finally define γ3: Y3 -> 5 by
γ3(73) = 1. The map γ: I ω u y ω ^ i that extends these four maps is
continous and π ° γ = φ on Xω U Yω. Therefore the unique homomor-
phism γ: Dω -> B that extends it satisfies TΓ ° γ = φ. Moreover, Kerπ c
γ(Z)ω) and φ(l)ω) = 7r(5) = yl, hence γ is an epimorphism. This also
implies that γ(InvZ)) is the smallest involution domain that contains
y(Xω) = I09 hence γ(Invl)) = /. D

We strengthen Lemma 3.2 by going to a countable inverse limit.

COROLLARY 3.3. Consider the following diagram

(1)
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in which A is a finite group, B is aprofinite group of rank < N o , and φ and

π are epimorphisms. Let I be a closed involution domain in B such that

π(I) = φ(InvDω). Then there exists an epimorphism γ: Dω —> B such that

π © γ = φ and γ(Invί)ω) = /.

Proof. Let Ker m > Nx > N 2 > N 3 > be a descending sequence of

open normal subgroups with a trivial intersection. Let πn: B/Nn -> A be

the epimorphism induced by π, then In = I/Nn is an involution domain

of B/Nn and wM(/n) = φ(Invl)ω). Assume by induction, that there exists

an epimorphism yn; Dω -> B/Nn such that ίrΛ<>γB = φ and yn(Imrbω) =

7M. Let βn: B/Nn+ι -* -B/iVrt be the canonical epimorphism. Then, by

Lemma 3.2, there exists an epimorphism γ Λ + 1 : I) ω -> B/Nn+1 such that

A? ° Yn + i = ϊ n

 a n d ϊ« + i ( I n v ^ ω ) = / Λ + i> h e n c e ^ , + i ° YΛ + i = Φ

The epimoφhisms γn define an epimorphism γ: bω -> B such that

77 o γ = φ and φ(InvZ)ω) = /, since / = lim In. D

The converse of Lemma 3.2 is also true:

LEMMA 3.4. Let G be a profinite group of rank < S o . // every finite

proper real embedding problem for G is solvable then G = Dω.

Proof. Both G and Dω have descending sequences of open normal

subgroups whose intersections are 1, say G = N{ > JV2' > and Dω =

M[ > M'2 > . Let n > 0 and assume by induction that we have

already constructed

(a) two sequences of open normal subgroups G = No> Nλ > N2>

- - > Nn and Dω = Mo > Mλ > M2 > > Mn such that Nt < Nt

r and

Mι < M- for / = 1,..., n, and

(b) isomorphisms φ7: G/Nt -* DJMi such that φi((InvG)/7Vi) =

^ , . for / = 0 , 1 , . . . , n and the following diagrams commute

* DJM,

(2) I I

for / = 1, . . . , n (where the vertical maps are the canonical epimorphisms).

Note that the trivial map φ 0 : G/No -> Dω/M0 satisfies (b), since InvG

and InvZ)ω are not empty, by Remark 3.1.
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Let K = N^+1 Π Nn. By Lemma 3.2 there exists an epimorphism γ' :

Dω -• G/K such that

(3)

commutes and γ'(InvZ)ω) = (InvG)/Λ:. Let M π + 1 = iVn'+1 Π (Kerγ') and

let γ: bω/Mn+ι -> G/K be the epimorphism induced by γ'. Then

M,, + 1 < MΛ Π Mn '+ 1,

(4) I

G/Nn

commutes and γ((InvZ)ω)/Λ/n+1) = (InvG)/ΛΓ. By assumption there ex-

ists an epimorphism φ': G -» Dω/Mn + ι such that φ'(Inv G) =

(Inv DJ/Mn+ι and

(5)

commutes. Let Nn+ι = Kerφ r and let φ w + 1

isomorphism induced by φ\ Then Nn+1 <

mutes for i = n + 1 and φw + 1((In

The compatible sequence φ

isomorphism φ: G -> I) ω .

G/Nn+ι -> D/Mn+ι be the

^+ι Π Λ^, diagram (2) com-

= (InvZ)ω)/AfM+1.

°f isomoφhisms defines an

D

4. Embedding of Z)ω in Z)^j. The aim of this section is to identify

Dω as a closed normal subgroup of a finitely generated real free group

Dej9 where ej> 0. Recall [6, §1] that A>,/= I>(^, 5), where X and S

are the discrete spaces of e and / elements, respectively. In other words,

there are ev..., εe9 σl9..., σf G Z)̂  7 such that

(1) ί ) ^ = < ε l 9 . . . , εe9 σ 1 ? . . . , af)9 εx

2 = = ε] = 1; and

(2) every map ft from {ε1 ?..., εe, σ 1 ? . . . , σf} into a profinite group G

such that ^ ( ε ^ 2 = = &(εe)
2 = 1, uniquely extends to a homomor-

phism #: Z) e J -> G.
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LEMMA 4.1. Let ε l 9 . . . , εe, σ l 9 . . . , σf e Def satisfy (1). Then:

(a) the property (2) is also satisfied.

(b) for every ε e lnvDe , there exists a unique 1 < i < e such that ε is

conjugate to ε7; moreover, (σ ^ A>,/Ie° = ε ) = {!>ε}

(c) De f = De* Ff, where De= (εl9..., ε^) is the free (profinite) prod-

uct of e copies of Z/2Z and Ff— ( σ 1 ? . . . , σ )̂ is the free profinite group of

rank f.

Proof, (a) see [5, the remark preceding Lemma 5.4].

(b) see [5, Proposition 6.1].

(c) follows from (2). D

The following assertion is used in the sequel. Its proof is left to the

reader.

LEMMA 4.2. Let φ: G —> H be an epimorphism of profinite groups and

let S be a subset of G. If Go is the smallest closed normal subgroup of G

containing S, then φ(G0) is the smallest closed normal subgroup of H

containing φ(S).

The key to the Lubotzky-v.d. Dries method [10] of recognizing certain

closed subgroups of Fm as isomorphic to Fω is the Nielsen-Schreier

formula for the rank of open subgroups of Fm. The same role is played in

our context by the following special case of the Binz-Neukirch-Wenzel

theorem [1, p. 105].

LEMMA 4.3. Let G = 1*1,̂ /(7, Z>e the free product of the profinite groups

G,, where I is a finite set. Let H be an open subgroup of G. For every ί e /

we consider the double class decomposition of G:

G= U Gtx{ij)H.

Then

H^ FI Π {G* »ΠH)*Fm,

where

m = Σ [(G:H)-\J(i)\]-(G:H) + l.

COROLLARY 4.4. Suppose that G = D * F, where D = De and F = Ff.

If H is an open normal subgroup of G of index n which contains Z>, then
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Proof. For z e G we have DzH = DHz = Hz, hence if G =
UΓ-^zί i ) , then G = U;=1Dz(/)i/. Moreover, Z)*ω n # = /)*<'*> = Z>β,
since i/«G. Secondly, F z ^ = Fi/z = G and (F: FθH) = (G:H) = n,
hence, by the Nielsen-Schreier formula, [1, p. 108] F D H = Fι+n{f_ιy

Thus, in the notation of Lemma 4.2

m = [(G:H)-n] +[(G:H)~ l] -(G:H) + 1 = 0

and

// = (z>7(1) n # ) *(£ z ( 2 ) n fr)• *(D'M nH)*(FnH)

= Dz(1) * Dz{2) * ••• * Dz(nU(F D H) = Den* F1+n(f_ly D

PROPOSITION 4.5. Let G = Def, where e > 1 and f > 2, and let K be
an open subgroup of G. Then there exists a closed normal subgroup H of G
such that H = Z)ω, G = KH and

(3) Inviί = InvG.

Proof. We break the proof into parts.

Part A. Construction of H.
By Lemma 4.1(c), G = D*F, where D = De and F = Ff are closed

subgroups of G. Let p be a prime which does not divide (G: K). Fix an
epimorphism p: G -> Z^ such that p(D) = 1 and let H = Kerp. The
lattice G = Go> Gλ> G2> of open subgroups of G containing i/
is isomorphic to the lattice of open subgroups of Zp9 hence Gt is the only
normal subgroup of G of index p' containing H, for each i > 0, and
H = ΠfLoGi' I n particular (G : KH) = pi for some / > 0, but
(G:KH)\(G:K), hence i = 0, whence G = # # . By Lemma 4.1(b), every
involution of G = D * F is conjugate to an involution of D; but D < H,
hence (3) holds.

Part B. Embedding problem.
We employ Lemma 3.4 to show that H = Dω. Let

H

(4) IΨ

together with an involution domain / c Invi? such that π(I) = φ(InvH)
be a finite proper embedding problem for H. Then Kerφ is open in H,
hence there exists an open N<G such that N Π H = Kerφ. Now H <
NH<G, hence there is an i > 0 such that NH = Gr It follows that φ can
be extended to an epimorphism φ: G, -> A9 with kernel N.
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Let n = p\B\ 4- i. With no loss we may assume that i = 0, i.e., φ can

be extended to G, and, moreover, that

(5) f>2n

and

(6) for every conjugacy class C c φ(Inv#) there are at least n

conjugacy classes in InvG mapped by φ onto C (in particular

e > n, by Lemma 4.1(b)).

Indeed, otherwise replace G by its open normal subgroup Gn(and Gj

by GJ+n for every j > 0 and N by Gn Γ\ N) and restrict φ from Gι to Gn.

By Corollary 4.4, Gn = De%n where

/ ' = 1 +pn(f~ 1) > 2"> 2π.

Also, p(Grt) = Z p and InvGn c if, by (3). To check (6) we consider

a n ε E InvH which satisfies φ(ε) e C, and let σ(l), . . . , σ(n) e G belong

to distinct cosets modulo Gn. Then εσ ( 1 ),..., εσ("} e φ-^C) represent

distinct conjugacy classes in Gn. Indeed, if εσ ( y ) = ε σ W τ , where 1 <y,

k < n and r G Gn, then σ(A:)τσ(y)"1 = 1 or σ(/:)τσ(7)"1 = ε, by Lemma

4.1(b). In both cases σ(k)τσ(j)~ι e Gn, whence o(k)Gn = o(j)Gn, i.e.,

In particular, G = Λf/f, which implies that

(7) G = NGλ.

Part C. Generators for G.

Let Ho, Ao and 5 0 be the smallest closed normal subgroups of G, A

and 5 containing InvG = Invi/, φ(Invi/) = π(I) and /, respectively. By

Lemma 4.3 we have

(8) ψ(Ho) = Ao = π(Bo).

Also D < Ho < H, since D is generated by involutions. Let us show that

(9) (FΠH0N)-Gι Φ 0.

Indeed, Gx Φ G, hence N ^ G l9 by (7). Also, G = H0F, since G =

(D,F)9 by Lemma 4.1(c) and D < Ho. Thus there exists a σ e JV — G1?

and there exists an ε G /f0 such that εσ e F. Clearly εσ £ G l9 hence

εσ G(FΠ HON)-GV

We use (9) to find generators for F. Let σ •-> σ denote the canonical

map G -+ G, where G = G/ΛΓ n Gx. By (7)

G = G/Λ̂  X G/Gγ = AX Z/pZ,

hence \G\ = p\A\ < n. Choose generators σ l 9 . . . , σn of the subgroup F of

G. With no loss σλ ^ (F Π H0N) - Gl9 by (9). Put σπ + 1 = = σf = 1.

By the Gaschϋtz Lemma [9, Lemma 4.2], σ1 ?...,6y lift to generators
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σl9..., σf of F. Observe that

(10) oλ £ Gλ

and φ(oλ) G φ(H0N) = φ(H0), hence by (8)

(11) φ ( σ i ) G π(B0)

also

(12) φ ( σ Λ + 1 ) = ••• = φ ( σ / ) = l .

Fix ε l 9 . . . , εe e InvG that generate D. Then G = ( ε 1 ? . . . , εe9

σv . . . , σy), by Lemma 4.1(c).

Part D. Solution by the embedding problem.

Define γ: {εl9...9εe9 σ 1 ?.. .,0^} -> i? as follows. First choose

γίσx), . . . , γ ( σ j G 5 such that π(γ(σy )) = φ(σy ), j = 1,. . . , w, and

(13) γ(σ x) G £ 0

(this is possible by (11)). Next let γ ( σ n + 1 ) , . . . , y(σf) be a set of generators

of Kervr (by (5), |Kerπ| < n < n - / ) . Finally let bι,...,bm be repre-

sentatives of the conjugacy classes of /, with m < n. By Lemma 4.1(b)

every a G φ(InvG) = π(I) is conjugate to one of the φ ί ε ^ , . . . , φ ( ε e ) ;

moreover, by (6), 0 is conjugate to at least n elements of this e-tuple.

Thus, reordering εl9...,εe if necessary, we may assume that 7r(Z?z) is

conjugate to <p(εz), for i = 1,. . . , m. Therefore with no loss T Γ ^ ) = φ(εz),

for i = 1, . . . , m. Choose bm+l9..., 6β G / such that τr(6z) = 9(e z), for

/ = m + 1, . . . , e and define γ(ε,) = &z, for i = 1, . . . , e.

The map γ uniquely extends to a homomorphism γ: G -» 5 such that

77 o γ = φ. But Kerπ c y(G) and φ(G) = 7r(5) = A, hence γ(G) = B.

Also γ ^ ) , . . . ,γ(ε 0 ) G /, hence γ(InvG) c / by Lemma 4.1(b). On the

other hand bl9...9bme γ(InvG), hence / c γ(InvG). Therefore, by (3)

(14) γ(InvG) = γ(Inv//) = /.

Finally, (oτ)H is an open subgroup of G containing H, hence

(oλ)H = Gi for some i > 0. But (σΎ) ^ Gx by (10), hence (oλ)H = Go

= G. By Lemma 4.2 and (14), y(H0) = J?o, in particular γ(σx) G γ(/^0)

c γ( i / ) , by (13). Therefore γ(G) = γ((σ 1 )/ ί) = y ( ^ ) . Thus the restric-

tion of γ to H solves the problem (4). D

5. Algebraic realization of real projective groups of rank < K 0 . We

are now in a position to apply the information about real projective

groups of rank < S o gathered so far to realize them as the absolute

Galois groups of algebraic PRC fields. Thus is our main result.
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THEOREM 5.1. Let K be a countable formally real Hilbertian field and
let K' be a finite Galois extension of K. If G is a real projectiυe group of
rank < Ko and m\ G -> ̂ (K'/K) is an epimorphism such that 7τ(InvG)
c res^(InvG(AΓ)), then there exists a PRC algebraic extension E of K and
an isomorphism γ such that the following diagram is commutative.

G Λ G(E)

(1) \ /

9{K'/K)

Proof. Let {δv...,δe} = resκ,(lnvG(K)) and Let σe+l9..., σe+f be a
set of generators for 9(K'/K) such that / > 2. Let δ l 9 . . . , δ̂  e InvG(ί:)
extend δ l 9 . . . , δe, respectively. The set S of all (e + /)-tuples
(σ x , . . . , 0^+/) ̂  G(K)e+f such that res^/ σz = 1 for i = 1,..., e and
τesKf σt = σt for / = e 4- 1,..., e + / is of positive measure (with respect
to the normalized Haar measure of G(K)e+f). Therefore by [5, Proposi-
tion 5.6], there exists an (e +/)-tuple (σ1 ?.. .,σe+f) e S such that, de-
noting ε, = δ?* for ι = l , . . . , e, we have: Kσ = K(εv . . . , εe,

is a PRC field and

In particular, τesκ,(G(Kσ)) = ̂ ( A '̂/A') and εx,..., εe represent the con-
jugacy classes of InvG(AΓσ), by Lemma 4.1(b). Hence

res^(lnvG(iO) = {δn A} = τesκ,(lnvG(K)) Ώ ττ(InvG).

By Lemma 4.5, Kσ has a Galois extension N such that ^ ^ σ Π N =
Kσ, G(N) = Dω and InvG(iV) = lnwG(Kσ). In particular resK,(G(iV))
= &(K'/K) and ττ(InvG) c res^(InvG(Λ^)). It follows from Proposi-
tion 2.3 that there exists an embedding γ: G -> G(N) such that res^/ ° γ
= 77. The field E = ̂ (γ(G)) is an algebraic extension of a PRC field # σ ,
hence [11, Theorem 3.1] E is PRC. Now γ :G->G(£ ' ) i san isomorphism
and (1) commutes. D
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