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ON CONTINUOUS APPROXIMATIONS FOR
MULTIFUNCTION

F. S. DE BLASI AND J. MYJAK

Problems concerning the approximation of convex valued multifunc-
tions by continuous ones are considered. Approximation results of the
type obtained by GeΓman, Cellina, and Hukuhara for Pompeiu-Haus-
dorff upper semicontinuous multifunctions are shown to hold for some
larger classes of multifunctions. Moreover, it is proved that Pompeiu-
Hausdorff semicontinuous multifunctions, with convex bounded values,
are continuous almost everywhere (in the sense of the Baire category).
As an application, an alternative proof is given of Kenderov's theorem
stating that a maximal monotone operator is almost everywhere single-
valued.

1. Introduction and preliminaries. Let X be a metric space. Let Y
be a normed space. Denote by ^ ( 7 ) (resp. Vb(Y)9 Vk(Y)) the class of all
nonempty subsets of Y which are convex (resp. convex bounded, convex
compact). In any metric space, S(u, r) stands for the open ball around u
with radius r > 0.

We shall consider the following approximation problems (for the
terminology see below):

I. Given a multifunction F: X -> Vb(Y) and an ε > 0, find an
Λ-continuous multifunction G: X -> Vb(Y) such that //(graph G, graph
F) < ε (where h denotes the Pompeiu-Hausdorff pseudometric).

II. Given a multifunction F: X -> V(Y) and an ε > 0, find a con-
tinuous single-valued function g: AΓ-> Y such that /z*(graph g, graph F)
< ε (where Λ* denotes the separation function).

III. Given a multifunction F: X -> Vb(Y)9 find a sequence {Gn} of
A-continuous multifunctions Gn\ X-* ^b{Y) satisfying for each x e X,
h(Gn(x), F(x)) -^ 0 as n -> +oo, and Gn(x) D F(S(x,σn(x))) for some
σn(x) > 0.

Apparently, the idea of constructing continuous approximations for a
multifunction goes back to Von Neumann [29]. When F is upper semi-
continuous in the sense of the Pompeiu-Hausdorff separation Λ* "/**-
u.s.α", the approximation problems I, II, and III have been investigated
by GeΓman (see references in [2]), Cellina [5, 6], and Hukuhara [17],
respectively. Further results can be found in [23], [24], [13], [8].
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In this paper, following some ideas of GeΓman, Cellina, and
Hukuhara, we shall consider the above approximation problems for more
general classes of multifunctions. §2 is devoted to the approximation
problem I. It is shown that such problem is solvable for F in the class of
locally convexifying and locally bounded multifunctions. In view of
Corollary 2.1, this class seems to be a natural setting for solving problem
I. In §3 the approximation problem II is considered and some results of
the type proved by Cellina [5, 6], are obtained. In §4 we treat the problem
III. Furthermore, we characterize some classes of semicontinuous multi-
functions by the convergence properties of appropriate Λ-continuous
approximations. In §5 we give some applications. For example, using an
approximation result of §4, it is proved that each Λ*-u.s.c. multifunction
F: X -» Vb(Y) is Λ-continuous except at points of a Baire first category
set (see [15], [22], [7], [12], [20], [21] for similar results). Also we deduce a
theorem due to Kenderov [18] stating that a maximal monotone operator
is almost everywhere single-valued.

Let us introduce, now, notation and terminology.
Throughout this paper X and Z denote metric spaces, while Y

denotes a (real) normed space. The distance function in X, Z is denoted
by d, and the norm of Y by || ||. 2 Z (resp. 2y) stands for the family of all
nonempty subsets of Z (resp. Y). We shall consider the following subsets
of2 r :

= {A ^2Y\A is convex}

Vb(Y) = {A e 2Y\A is convex bounded}

%>k{Y) = {A e 2Y\A is convex compact}.

For any A c Y, coA and co>4 denote respectively the convex hull and the
closed convex hull of A.

Let X be an arbitrary metric space, with distance d. By S(x,σ) we
denote the open ball in X with center at x and radius σ > 0. In a normed
space, for notational convenience we set S = 5(0,1). For any set A c X
we denote by A and int A respectively the closure and the interior of A.

Given a point a G X and a nonempty set B c X9 we put

If A and B are nonempty subsets of X, we define

h*(A9B) = s\φ{r(a,B)\aeA}9

h(A9B) = max{Λ*(^,5), h*(B9A)}.
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h*(A,b) is called the (generalized) separation of A from B. As it is well
known [4, p. 38], h is a (generalized) pseudometric in 2^; when h is
restricted to the space of the nonempty closed subsets of 3C, it becomes
the Pompeiu-Hausdorff (generalized) metric. In particular, on the space of
the nonempty bounded (resp. bounded closed) subsets of a normed space,
h is the usual Pompeiu-Hausdorff pseudometric (resp. metric).

For A c SC (A Φ 0 ) and ε > 0, we set Ne(A) = {x e 3T\r(x9A) <

ε}. Observe that if h*(A,B) < ε (resp. A c Ne(B))9 then A c Nε(B)

(resp. h*(A, B) < ε). From these it follows easily that h*(A,B) =

inf{ ε > 0\A c Nε(B)}. Moreover, if 3C is a normed space, we have

h*(A,B) = inί{ ε > 0\A c B + εS},

Λ(Λ,£) = inf{ ε > 0|Λ c J ! + εS, B GA + εS}.

Let #\, 3C2 be metric spaces with distance functions dl9 d2. We
always assume the Cartesian product Xx X 9£2 to be endowed with the
metric

e({x1,x2),(x[,x'2)) = maxfέ/^x^xί), rf2(x2,X2)}?

where (x l 9 x2\ (JC(, x 2 ) e ^ X ^ 2 .
By a neighborhood of a point i G f we mean an open subset of 9C

containing x.

A family &= {Pj}ier of continuous functions pt\ X-> [0,1] is
called a partition of unity on X if the family {suρp/7/} € / consisting of
the closed sets supp/?, = {x e X\pt{x) > 0} is a neighborhood finite
closed covering of X, and Σi<ΞίPi(x) = 1 for each x e X We say that a
partition 9P of unity is subordinated to a given open covering {Lζ } f e 7 of
X if, for every / e /, the support of each pt lies in the corresponding Ut. It
is well known [9, p. 170] that each open covering of a metric space admits
a partition of unity subordinated to it. For any given partition & =

{ pι} J e j of unity on Jf and any A <z X we set

Π supρj9z Φ 0}.

Observe that each Λ: G Z has a neighborhood V such that ^ ( F ) is finite.
By a multifunction F: X -» 2 Z we mean a mapping i 7 with domain

X and range contained in 2Z. The set

g r a p h s = { (JC,Z) e XX Z|JC e Xand z e F ( J C ) }

is called the graph of F. For arbitrary i c l and B c Z we set

77(^4) = U ^ μ ε ^ } , F-(,S) = {x e X\F(x) Π B Φ 0).

Note that F(^4) is a subset of Z.
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We shall review some definitions of upper semicontinuity "u.s.c." and

lower semicontinuity "l.s.c." for multifunctions. For the reader's conveni-

ence, the definitions are compared in a series of remarks and examples

(for the proofs see [1], [16], [26]).

DEFINITION 1.1. F: X -> 2 Z is called u.s.c. if for every set C closed in

Z the set F~(C) is closed in X.

REMARK 1.1. F: X -> 2 Z is u.s.c. if and only if for every set V open in

Z the set { JC G X\F(x) c V) is open in X.

DEFINITION 1.2. F: X -> 2 Z is called /z*-u.s.c. if for every x0 G X

and for every ε > 0 there is a δ > 0 such that h*(F(x), F(x0)) < ε for

every x G S(x o ,δ) .

DEFINITION 1.3. F: X -> 2 Z is called iί-closed if graph i 7 is a closed

set in I X Z.

In the abbreviation "Λ*-u.s.c", A* is written to emphasize the role of

the Pompeiu-Hausdorff (generalized) separation A*. In Definition 1.3, K

stands for Kuratowski.

REMARK 1.2. F: X -> 2 Z is iί-closed if and only if, given any two

sequences {xn} a X and [zn] c Z such that zn G i ^ x j , xM -> x, and

zn —> z then we have z e F(x).

REMARK 1.3. Each u.s.c. multifunction F: X -> 2 Z is /z*-u.s.c.

EXAMPLE 1.1. Let F: R -> 2 R 2 be defined by F(x) = {(x, ^) e R2 |

0 < y < l/ |x |} if x ^ 0, and F(0) - {(0, y) e R2|jμ > 0}. Clearly F is

A*-u.s.c. However F is not u.s.c. because while C = {(1/w,«) e R2|/i G

N} is closed in R2, the set F~(C) is not closed in R.

REMARK 1.4. Each closed valued Λ*-u.s.c. multifunction F: X -> 2 Z

is AΓ-closed.

EXAMPLE 1.2. The multifunction i7: R -> 2 R 2 defined by F(x) =

{(ί, x θ G R2|/ G R} is AΓ-closed but not Λ*-u.s.c.

REMARK 1.5. Let F: X -> 2 Z be compact valued. Then F is u.s.c. if

and only if F is /z*-u.s.c.

REMARK 1.6. Let F: X -> 2 Z be compact valued. Let F ( l ) c Z be

compact. Then F is /ι*-u.s.c. if and only if F is K-closed.
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DEFINITION 1.4. F: X -> 2 Z is called l.s.c. if for every set Fopen in Z

the set F~(V) is open in X.

DEFINITION 1.5. F: X -> 2Z is called /z*-l.s.c. if for every x 0 G X and

for every ε > 0 there is a 8 > 0 such that h*(F(x0), F(x)) < ε for every

REMARK 1.7. Each λ*-l.s.c. multifunction F: X -» 2 Z is l.s.c.

The multifunction i 7 defined in Example 1.2 is l.s.c. but not A*-l.s.c.

REMARK 1.8. Let F: X -» 2 Z be compact valued. Then i 7 is l.s.c. if

and only if F is Λ*-l.s.c.

DEFINITION 1.6. A multifunction F: X -> 2 Z which is both u.s.c.

(resp. /z*-u.s.c.) and l.s.c. (resp. λ*-l.s.c.) is called continuous (resp.

/j-continuous).

REMARK 1.9. Let F: X -> 2 Z be compact valued. In view of Remarks

1.5 and 1.8, F is continuous if and only if F is A-continuous. In general,

neither of these statements implies the other as it is shown in the examples

below.

EXAMPLE 1.3. The multifunction F: R -» 2 R defined by F(x) =

[ — l/\x\, l/\x\] if JC Φ 0, and /(0) = R, is continuous but not /z-continu-

ous.

EXAMPLE 1.4. Let c 0 be the Banach space of all real sequences

z = ( z 1 ? z 2 , . . . ) such that zn -> 0, with norm ||z|| = sup{|zj \n G N}.

Denote by A c c 0 a closed bounded convex body with the following

property: there exists a point z ^ co\A such that \\z — a\\ > r(z,A) for

each a & A. The existence of such a set A follows from [11]. Define F:

R -> 2Γ° by F(x) = 4̂ if JC < 0, and F(x) = Λ 4- xS if x > 0. Clearly F

is a (closed valued) A-continuous multifunction. On the other hand for

B = {z G c o | ||z - z|| < r(z, ^4)}, a closed subset of c0, we have F~(B)

= (0, + oo), which is not closed in R. Hence F is not u.s.c. and so not

even continuous.

DEFINITION 1.7. F: X -> 2 Z is called weakly Λ*-u.s.c. at x 0 if for

every ε > 0 and η > 0 there is a δ ( 0 < δ < i 7 ) and there is a point
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x' e S(xo,δ) such that h*(F(x)9 F(x')) < ε for every x e 5(jc 0 ?δ). JF is

called weakly Λ*-u.s.c. if it is weakly Λ*-u.s.c. at each x0 e X.

If x ' = JC0 the above definition reduces to that of an &*-u.s.c.

multifunction. While each /**-u.s.c. multifunction is weakly /i*-u.s.α, the

converse is not true in general.

It is easy to see that a weakly /**-u.s.c. multifunction is not necessarily

inclosed. The next example shows that a ^-closed multifunction can fail

to be weakly Λ*-u.s.c.

EXAMPLE 1.5. Let X be the set of the rational numbers with the usual

metric. Order X into a sequence [xl9 x29...}. Define F: X -> 2R by

F(xn) = {n}. Clearly F is X-closed but not weakly Λ*-u.s.c.

Let /: X -> Z be a single-valued function. Then / is u.s.c. (resp.

l.s.c, λ*-u.s.c, A*-l.s.α, weakly λ*-u.s.c.) if and only if / is continuous.

DEFINITION 1.8. F: X -> 2 Z is called locally bounded if for each

x e X there exists a δ > 0 such that F(S(x, δ)) is a bounded subset of Z.

DEFINITION 1.9. F: X -> 2Y is called locally convexifying if for every

Λ: e Jf and for every ε > 0 and η > 0, there is a σ(jc), 0 < σ(x) < η, such

that coF(5(x,σ(x))) c F(S(x,σ(x))) + εS.

Each weakly Λ*-u.s.c. multifunction F: X -* Vb(Y) is locally con-

vexifying and locally bounded. The converse is not true in general.

Moreover a locally convexifying and locally bounded multifunction is not

necessarily if-closed.

REMARK. 1.10. Some of the above definitions and remarks, in particu-

lar Definitions 1.1, 1.3, 1.4, and Remark 1.1, are meaningful also for

multifunctions from a topological space to the nonempty subsets of

another topological space.

2. Continuous multi-valued approximations for multifunctions. In

this section we consider the problem of approximating a multifunction

with convex bounded values by another one which is Λ-continuous.

THEOREM 2.1. Let F: X -> Vb(Y) be locally convexifying and locally

bounded. Then for every ε > 0 there is an h-continuous multifunction G:

X -> ^b(Y) with the following properties:

(i) for each x e Xthere is a σ(x) > 0 such that F(S(x, o(x))) c G(x);

(ii) Λ(graph G, graph F) < ε.
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Proof. Let ε > 0. Let z e X. Since F is locally bounded and locally
convexifying, there is a δz = δ(z, ε) (0 < δz < ε/2) such that F(S(z,δJ)
is bounded and

coF(S(z98z))dF(S(z9δz)) + εS.

Evidently i^= {S(z,δz/3)}z e Λ r is an open covering of X. Denote by
& = {Pz)zex a partition of unity subordinated to ̂ . For each x e JΓ, set

(2.1) <?(*) = Σ A W G Z where Gz = co.F(S(z,δz/3)).

It is routine to verify that (2.1) defines an /z-continuous multifunction G:

Let ί e X Let D^(x) = (z1? z 2,. . ., z^}. We have

Since x G supp/?z c 5(zf , δz/3) (/ = 1,2,..., /:), there exists a σ = σ(x)
> 0 such that S(x9σ) c 5(2,^^/3) for each / = 1,2,..., k. Then we
have

k k

F(S(x9σ))d ΣpZι(X)F(S(x,σ))a Σ PZι(*)G2ι = G(x)
/ = 1 7 = 1

and so, since x is arbitrary in X, (i) is fulfilled.
From (i) it follows that graph F c graph G. Therefore to prove (ii) it

is sufficient to show that /ι*(graph G, graph F) < ε. To this end,
let (Jc, y) G graph G. Set D^(x) = {z1? z2, . . . , zk) and δz =
m a x { δ v δ 2 2 , . . . , δ z j . Since S ( z , δ 2 / 3 ) c S ( z ί o , y , we have GZι c

F ( 5 ( / o , δ z ))andso

i - l / = 1

But j G G(Jc) thus, for some xf G S{zi98 ) and some t/ G ε*S, we have
| = / + w, where / G F(x'). Clearly,

d(X,x') < d(x,zlo) + ψ / o , x ' ) < δZ//3 + δZ/Q < ε

and IIJ; — y'\\ < ε. Therefore r((x, y), graph F) < ε, for (x\ y') lies in
graph F. Since (x, y) is arbitrary in graph G, it follows that Λ*(graph G,
graph F) < ε. This completes the proof.



16 F. S. DE BLASI AND J. MYJAK

REMARK 2.1. In addition to the hypotheses of Theorem 2.1, suppose

that F is compact (that is whenever B c X is bounded, the set F(B) is

contained in a compact convex subset of Y). Then, arguing as before one

can prove the existence of a compact Λ-continuous multifunction G:

X -> Vk(Y) satisfying the properties (i) and (ii) of Theorem 2.1.

THEOREM 2.2. Let F: X -> Vk(Y) satisfy at each point x e X the

condition:

(2.2) lim h(F(S(x,δ)), A(x)) = 0, whereA(x) = f)F{S(x,p)).
δ-*0+ p>0

In addition, suppose that for every ε > 0 there exists an h-continuous

multifunction G: X-* Φ^Y) satisfying the conditions (i) and (ii) of

Theorem 2.1. Then F is locally convexifying.

Proof. For a contradiction, suppose that F is not locally convexifying.

There exist then an jc e X, an ε > 0, and a decreasing sequence {δn} of

positive numbers δn converging to zero, such that

(2.3) coF(S(x,δn)) <£ F(S(x,δn)) + 3εS, n = 1,2,... .

Set A = A(x). By (2.2) we have that h(F(S(x, δj), A) -> 0 as n -> 4- oo,

and so also h(coF(S(x, δrt)), co^ί) -> 0 as Λ-> +oo. Hence, v i e

F(S(x,δ w ))+ (ε/2)S and coF(S(x9δn)) <z coA + (ε/2)S are satisfied

for some n large enough. We have

co^ <£A + 2εS.

In fact, in the contrary case co^ί c A 4- 2ε5r, and thus

coF(5(Jc,δJ) c c o i +(e/2)S c i +(5/2)ε5 c f(S(jc,δJ) + 3ε5,

a contradiction to (2.3). Let y G co^ί be such that y £ A + 2ε5. Evi-

dently, 5( j , ε) Π (Λ~ -f εS) = 0 . Fix w0 e N such that ^(^(jc^^)) c ,4

4- ε5 and observe that

S(y,ε)nF(s{x,δJ)= 0.

Set θ = min{ε, δflo}. Let (x, y) be an arbitrary point in graph F. Since

<?((*, y), (x, y)) > \\y - y\\ > β > θ if x e 5(jc, δΛo), and e((x, y), (x, y))

> d(x, x)>δno>θiίx<έ S(x, 8J, we have

(2.4) r((x,y), graph F)>θ.

On the other hand, by hypothesis there is an Λ-continuous multifunc-

tion G: X -> ^k{Y) which satisfies the condition (i) of Theorem 2.1, and

is such that

(2.5) h(graph G, graph F) < 0/2.
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For some σ(jc) > 0 we have F(S(x,σ(x))) c G(x) and so F(S(x9δn)) c
G(x), provided n is large enough. Since y e co^ί C COF(S(x,δn)) c
G(JC), it follows that (x, J>)G graph G. Hence by (2.4) we obtain
Λ*(graph G, graph F) > 0, and thus Λ(graph G, graph F) > 0, a contra-
diction to (2.5). Therefore F is locally convexifying. This completes the
proof.

PROPOSITION 2.1. Each compact multifunction F: X -» ^ ( Γ ) satisfies
the condition (2.2).

. Let x0 G X It suffices to prove that h*(F(S(x09δ)), AQ) -> 0
as δ -> 0, where Ao = A(x0). If this is not true, there exists an ε > 0 and
two sequences {xn} c X and {j;w} c 7 such that xn -> x0, j n e .F(JCW),

and r(^n, ^40) > ε (π G N). By the compactness of F we assume (without
loss of generality) that yn -> y0 G y, and so r(j>0, yί0) > ε. On the other
hand, given any p > 0, for n e N large enough we have xn G 5(JC0, p),
which implies that ^ G ^ ^ ^ p ) ) . Consequently ^ e ^ S ί x o ^ p ) ) .
Since p > 0 is arbitrary, it follows that y0 G ̂ 40, a contradiction. This
completes the proof.

From Remark 2.1, Proposition 2.1, and Theorem 2.2 we have:

COROLLARY 2.1. Let F: X-> ^k{Y) be compact. Then the following
statements are equivalent:

(a) F is locally convexifying.
(b) For every ε > 0 there exists a (compact) h-continuous multifunction

G: X -> ^k(Y) satisfying the conditions (i) and (ii) of Theorem 2.1.

For the next approximation theorem we need the following

LEMMA 2.1. Let F: X -> Vb(Y) be locally convexifying. Suppose that
Gλ: X -> ^/,(y) is a closed valued h-continuous multifunction satisfying the
property: for each x G X there exists a oλ(x) > 0 and a θλ(x) > 0

/<9r every ε > 0 /Aere ĵc/5^ ^ closed valued h-continuous multifunction
X -> ^h(Y) with the following properties:

(i) /(9r e^ry x e l /Λerβ ex/51^ α σ2(x) > 0 ^wJ ^ 0 2 ( x ) > 0

coF{S{x,o2(x))) + Θ2(X)S a G2(x);

(ii) G 2 (JC) c Gx(x) for each x G X;
(iii) Λ(graph G2, graph F) < ε.
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Proof. Let ε > 0. Let z e X. From the hypothesis, there exists a

σλ(z) > 0 and θλ(z) > 0 such that coJF(S'(z,σ1(z))) + Θ^S c (^(z). By

the /z-continuity of Gl9 there exists a pz, 0 < pz < σx(z), such that Gλ(z)

c G^JC) + \θλ(z)S for every c G S(z,ρ2). Hence, c o i ^ z ^ z ) ) ) +

θλ(z)S c Gx(x) 4- ^^(zJS and so, since Gλ(x) is a convex closed set, by

Radstrom lemma [27] we have

(2.6) coFiSiz.σ^z))) + \θΎ(z)S c G^JC) for every x e Sίz^J.

On the other hand f7 is locally convexifying, thus there is a δz, 0 < δz <

min{ ρz, ε/2}, such that

(2.7) coF(S(z,δ2)) c F(S(z,62)) +(e/2)S.

Set ίz = min{ \θx(z\ ε). From (2.6) it follows that

(2.8) coF(S(z, 8Z)) + ^Z5 c G^z) for every x e 5(z, δz),

because δz < pz < σx(z) and ^z < ^ ( z ) . Let ^ = { jpz}z G^ be a parti-

tion of unity subordinated to the open covering ir= {5(z, δ z / 3 ) } z e X of

X. For each JC G I , we put

G2(x)= Σ

*() Σ
It is routine to see that the above formulas define respectively a closed

valued /z-continuous multifunction G2: X -> ^b(Y) and a positive con-

tinuous function θ2: X -> [0, ε/4].

Let us show that G2 satisfies (i)-(iii). Let jc G X. Let D^(x) =

{z 2,z 2,...,z^}. We have

~k -, k

ι=l ' ' ι=l

(i) Indeed, x e supp/?z (x) c S(zi9 δz/3) (/ = 1,2,..., k), thus there

is a σ2(x) > 0 such that S(x, o2(x)) c 5(z/? δz/3) for each i = 1,2,...,/:.

From this it follows

co/7(5r(x,σ2(jc))) c ^ ^ ( x

and so

c G 2(x).
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Since x is arbitrary in X, (i) is proved.

(ii) For each / = 1,2,..., k we have x e S(zi9 δz/3) and hence, by

(2.8), Gz c Gλ(x). Therefore

k k

from which G2(Jc) c Gλ(x) follows at once.

(iii) In view of (i), it suffices to show that Λ*(graph G2, graph F) < ε.

Indeed, let (x9 y) G graph G2. Set iλ^(.x) = {zl9 z 2 , . . . , zk} and let δz =

max{δ 2 i, δZ2, ...,δZk). Since 5(2,., δ z /3) c S(zio, δzj, we have

coF(S(zi9 δz/3)) c co-F(5(z , δ )). Using this inclusion in the formula

giving G2(x) (see (2.9)), one easily finds

G2(x)<zcoF(s{ztQ9δJ)

Hence, by (2.7),

G2(x) c ^(5(z/ o,δzJ) +(e/2)5 + Θ2(X)S

and so G 2 (x) c F(S(zio,8z )) + ε5, because Θ2(x) < ε/4. Then, as in the

proof of Theorem 2.1, one shows that r((x, y), graph i 7) < ε. Since (x, y)

is arbitrary in graph G2, we infer that A*(graph G2, graph F) < ε. This

completes the proof.

THEOREM 2.3. Le/ F: X -> ^ ( F ) άe foαz//)/ conυexifying and locally

bounded. Then there is a sequence {Gn} of closed valued h-continuous

multifunctions Gn\ X -* Vb(Y) with the following properties:

(i) for every n G N α«J x G X ^Λere w α σn(x) > 0 such that

F(S(x9σn(x)))dGn(x);

(ii) Gx(x) D G2(x) ^ ..-, for each x G X;

(iii) Λ (graph Grt, graph F ) - > 0 ^ « - ^ 4- oo.

Proof. Set εrt = 1/̂ z, « G N. By Theorem 2.1 there is an Λ-continuous

multifunction G: X -> ^ ( F ) with the following two properties:

//(graph G, graph F) < 1/2; for each x G l there is a σx(;c) > 0

such that F(S(x, σ^x))) c G(x). Define G^. X -> ^ ( 7 ) by

G x (x) = G(x) +(1/2)5 . Observe that: Gx is closed valued and Λ-con-

tinuous; /ι(graph Gl9 graph F ) < εx; and c o ^ ^ x ^ ^ x ) ) ) 4- (1/2)5 c

Gλ(x) for each x G X Since i 7 and Gx satisfy the hypotheses of Lemma

2.1 (with ^(Λ;) = 1/2), there is a closed valued //-continuous multi-

function G 2 : X-* Vb(Y) with the following properties: //(graph G2,

graph F) < ε2; G2(x) c Gλ(x) for each x G X; for every x G X there
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exist a σ2(x) > 0 and a Θ2(x) > 0 such that coF(S(x,σ2(x))) + Θ2(X)S

c G2(x). By induction, using Lemma 2.1, one constructs a sequence
{(?„} of closed valued Λ-continuous multifunctions Gn: X -> ̂ ( Γ )
enjoying the properties (i)-(iii) of the theorem. This completes the proof.

3. Continuous single-valued approximations for multifunctions. In
this section we treat the problem of approximating a multifunction with
convex values by a single-valued continuous function.

LEMMA 3.1. Let F: X —> 2Y be an arbitrary multifunction. Let δ:
X —> R be a l.s.c. positive function. Then the multifunction G: X —> ^(Y)
defined by G(x) = coF(S(x,δ(x))) is l.s.c.

Proof. Let V be open in Y. We claim that the set U = [x G X\G(x)
C\VΦ 0 } is open in X. In fact, let x0 G U (the case U = 0 is trivial).
Fix any point y0 G G(x0) Π K. Evidently j>0 = λιyι -f λ2^2 + +λkyk

for suitable points yt G F(x7), x G S(xo,δ(xo)), and λz > 0 with λλ +
λ 2 4- •• +λ^ = 1. Set

η = min{ δ(x0) - d(xι9xQ)\i = 1,2,...,/:},

and observe that η > 0. Since δ is l.s.c. there is a p, 0 < p < τj/2, such
that δ(x) > δ(jc0) - η/2 for every x G ^ X Q J P ) . Let x G >S(xo,p) be
arbitrary. For each / = 1,2,...,/: we have d(xt, x0) < δ(x0) — η and so

d(xl9x) < d(xt,x0) + d(xo,x) < 8(x0) -η + p

that is xt G S(x,δ(jc)). Therefore ^ G Fix,) c coF(5(x,δ(x))) and con-
sequently y0 G G(x). But j 0 lies in K too, thus G(x) Π V Φ 0. Hence
x G £Λ Since x is arbitrary in S(jt0, p), it follows that S(xQ,p) c t/. This
implies that t/ is an open set, for x0 also is arbitrary in U. This completes
the proof.

Let F: X -* 2Y. Let ε > 0. Define Δ(JC) = {0 < p < ε|there is an
x r

 G S(x,p) such that Λ*(F(z), F(JC')) < ε for every z G S(x,p)}. Ob-
serve that Δ(x) is certainly nonempty if F is weakly /**-u.s.c.

LEMMA 3.2. Leί F: X -* 2Y be weakly h*-u.s.c. Let ε > 0. Then the
function δ: X -> [0, ε] g/^« iy δ(x) = supΔ(x) is positive and l.s.c.

Proof. It is only needed to show that δ is l.s.c. To see that, fix an
x0 G X and let η, 0 < η < δ(x0), be any. Take p G Δ(x0) such that
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δ(x 0) - η/2 < p < 8(x0). Then there is an x' G S(x0, p) such that

(3.1) h*{F(z), F(x')) < ε for each z G S ( X 0 , p).

Set σ = min{(ρ - d(x\ xo))/2, η/2}. For each x G S(x0, σ) we have

(3.2) x ' e S ( χ , p - σ ) c S ( χ o , p ) .

Indeed, let x G S(*o, σ). Since d(x', x) < d(x', x0) + d(x0, x) <
d(x\ x0) 4- σ and d(x\x0) < p — 2σ, it follows that d(x', x) < p — σ
and so x' G S(x,p — σ). Furthermore each z G ,S(JC, p — σ) satisfies

d(z,x 0 ) < <i(z,x) 4 d(x,x0) < (p - σ) + σ = p,

and hence z G S(JC0, p) which completes the proof of (3.2).
Now take any x G S(xθ9 σ). Evidently by (3.2) it follows that (3.1) is

satisfied with S(x, p — σ) in the place of S(xθ9 p) (xf unchanged). Hence
p - σ ^ Δ(x). Then δ(x) > p - σ > p - η/2 and so δ(x) > δ(x0) - η,
because p > 8(x0) — η/2. Since x G 5(jco,σ) is arbitrary, the function δ
is l.s.c. This completes the proof.

THEOREM 3.1. Let F: X -+ V(Y) be weakly h*-u.s.c. Then for
every ε > 0 there exists a l.s.c. multifunction G: X -> V(Y) such that
//(graph G, graph F) < ε.

Proof. Let F: X -> ^ ( 7 ) be weakly λ*-u.s.c. Let ε > 0. Denote by δ
the corresponding l.s.c. function defined in Lemma 3.2. Let G: X -* ^(Y)
be defined by G(x) = coF(S(x9 δ(x))). By Lemma 3.1, G is l.s.c.

Since graph F c graph G, we only need to show that Λ*(graph G,
graph i7) < ε. To this end, let (x, y) G graph G. Then j^ G G(x) and so,
for some ^ G F(X ), X. G 5(x, δ(x)), and λz > 0 (with \x + λ 2

4- +λk = 1), we have y = λ^ + λ2y2 + ••• +^^7^. Since
max{ J(x / ? x)|/ = 1, 2, . . . , k) < δ(x), there is a p G Δ(X) with
max{i/(x,, x)|/ = 1,2,...,k}< p < δ(x), and there is an x' G S(x, p)
such that Λ*(F(z), F(x')) < ε for every z G S(x, p). Thus F(z) c ^(x')
4- εS for every z G 5(x, p). In particular, F(xz) c F(x') + εS for i =
1,2,..., k and consequently, y G F(x r) + εS. Thus j> = j ' + v for some
/ G F(x') and some υ G εS. Clearly (x', ^') G graph F and

e((x,/), (*',/)) = maxfέ/ίx^O. Ib " / I } < max{p,ε} = ε.
This implies r((x, y), graph i7) < ε. Since (x, y) is arbitrary in graph G

we have &*(graph G, graph F) < ε. This completes the proof.

THEOREM 3.2. Let F: X -> <g(Y) be weakly h*-u.s.c. Then for every

ε > 0 there is a continuous single-valued function g: X -> Y such that

Λ*(graph g, graph F) < ε.
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Proof. By Theorem 3.1 there is a l.s.c. multifunction G: X -
such that h(graph G, graph i7) < ε/2. By Michael's lemma [25, p. 368]
there is a continuous function g: X -> Y satisfying r(g(JC), G(x)) < ε/2
for every x e X Evidently Λ*(graph g, graph G) < ε/2. Hence,

Λ* (graph g, graph i7) < Λ* (graph g, graph G)

+ /**(graph G, graph F) < ε,

which completes the proof.

Arguing as in the proof of Theorem 2.1 one can prove the following

THEOREM 3.3. Let F: X -> ^(Y) be locally conυexifying. Then for
every ε > 0 there exists a continuous single-valued function g: X —> Y such
that /z*(graph g, graph F) < ε.

4. Characterizations of some classes of multifunctions. In this sec-
tion we present some results concerning the characterization of certain
classes of multifunctions by means of Λ-continuous approximation.

Let Y be a real normed space. We suppose Y to be endowed with a
(translation) invariant metric γ (that is y(u 4- w, v + w) = y(u,v) for
every w, υ, and w in Y) satisfying the condition:

(4.1) y(y,0)<\\y\\ for every >> e Y.

This guarantees that the topology on Y induced by γ is weaker than the
topology induced by the norm. We shall denote by γ0 the particular
invariant metric γ on Y which is generated by the norm of Y.

For A, B in 2Y we set

/**(A, B) = sup{ rΎ(a, B)\a e A

hΎ{A,B) =

Here ry(a, B) = wf{y(a,b)\b e B). When γ = γ0 we denote h*, hy by
h*9 h respectively. For A in 2Y and ε > 0 we set NJ(A) = [y e
Y\ry(y,A)<ε}.

It is easy to verify that for A, 5, C, D in 2 y and α, α0 G R we have:

(4.2) hΎ(A +B,C + D)< hΎ(A,C) + hy{B, D),

(4.3) hy(aA, OL0A) -> 0 as a -> α0 (̂ 4 bounded in norm).
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DEFINITION 4.1. A multifunction F: X -» 2Y is called strictly A*-u.s.c.

if for every x e X and for every ε > 0 there is a δ > 0 such that

h*(coF(S(x,8)l F(x))<ε.

REMARK 4.1. Evidently, each strictly Λ*-u.s.c. multifunction is also

/z*-u.s.c. Moreover, a multifunction F: X -> ̂ ( 7 ) is strictly /ι*-u.s.c. if

and only if F is Λ*-u.s.c.

The symbols X, 7, ^b{Y)9 ^k(Y) retain the meaning stated in §1.

THEOREM 4.1. Let Y be a real normed space with an invariant metric γ

satisfying (4.1). Let F: X -> ̂ ( 7 ) . Then the following statements are

equivalent:

(a) F is locally bounded {with respect to the norm of 7) , and strictly

h*-u.s.c.

(b) There exists a sequence {Gn} of h^continuous multifunctions Gn:

X -> *βb(Y) such that: (i) for each n e N and for every x e X there is a

σn(x) > 0 such thatF(S(x9σn(x))) c Gn(x), and (ii) hγ(Gn(x), F(x)) -> 0

as n -* + o c .

f. (b) => (a). Let x G X. Let ε > 0. By (ii) there is an n0 G N

such that hy(Gno(x),F(x)) < ε. By (i) there is a σ = σno(x) > 0 such

that F(S(x9 σ)) <z Gno(x). Hence co F(S(x9 σ)) c Gn°o(x) and so

A*(coF(S(jc,σ)), F(x))< h*{GnQ{x\ F(x)) < ε, which implies that F is

strictly Λ*-u.s.c. Trivially F is locally bounded. Hence (a) is satisfied.

(a) => (b). Let n G N. Since F satisfies (a), for every z e X there is

δz" = δ(z,«), 0 < δ ; < l/«, such that the set F(S(z,δ?)) is bounded (in

the norm of 7 ) and so coF(S(z,δ2

n)) G ^ ( 7 ) . Let &n = {pn

z}z&x be a

partition of unity subordinated to the open covering {S '(z,δ"/3)} z e ^ of

X. Let G/;: X -> VB(Y) be given by

^w(x) = H P?(X)G?> where G^ = coF(S(z,δ"/3)).

Clearly Gn is well defined. We shall show that Gn is /zγ-continuous.

In fact, let x G X and let F be a neighborhood of Jc which meets only

a finite number of the sets supp/?". Let D^{V) = {zl9z29...9zk} (the

points zi depend on n). Then for each i e F w e have

hy{Gn(x),Gn(x)) =
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From this, by virtue of (4.2), (4.3) and the continuity of the functions pn

z,

it follows that hy(Gn(x),Gn(x)) -> 0 as x -> x. Thus Gn is /*γ-continuous.

Gn satisfies (i). In fact, let Jc e X and let D^x) = {zl9z2,...,zk}.

Since x G supp/?" c S(zi9 δzy3), there is a σπ(jc) > 0 such that

S(x9 σn(x)) c S(zl9'δ?/3) for each / = 1,2, ...,&. Then

and so (i) is fulfilled.

The sequence {Gn} satisfies (ii). To see this, let ί e I and let ε > 0.

Since F is strictly Λ*-u.s.c, there is a σ = σ(x, ε) > 0 such that

(4.4) h*(coF(S(x9σ))9F(x))<ε.

Fix an integer n0 > 1/σ and let n > n0 be any. Let D^x) =

{ z1? z 2 , . . . , zk) (the points z,. depend on n). For each u e ^(z^ δ^/3) we

have

</(w,x) < £/(u,zf.) + d(zi9x) < δz

n/3 + δ z y3 < 2/(3/i) < σ,

and so S(z,, &,y3) c S(x, σ). Then, we have

The above inclusion and (4.4) imply h*(Gn(x), F(x)) < ε, if n > w0. By

( i ) , h*{F{x)9Gn{x)) = 0 . T h u s Λ γ ( G π ( J c ) , F(x)) <e,ifn> n 0 . T h i s c o m -

pletes the proof.

THEOREM 4.2. Let F: X -* ^ ( R ^ ) ί>e K-closed. Then the following

statements are equivalent:

(a) F w h*-u.s.c.

(b) i 7 w locally bounded and locally conυexifying.

(c) There is a sequence {Gn} of h-continuous multifunctions Gn\ X -»

^k(Hq) satisfying the conditions (i), (ii), α«d (iii) of Theorem 2.3.

(d) There is a sequence {Gn} of h-continuous multifunctions Gn: X —>

^ ( R ' 7 ) satisfying, in addition to the conditions (i) απJ (ii) 0/ Theorem 2.3,

the following one: (iii)/ /αr eαcΛ x e X, h(Gn(x)9 F(x)) -^ 0 as n -^ 4- 00.

Proof. Indeed, (a) => (b) is obvious, (b) => (c) follows from Theorem

2.3, while (d) => (a) is shown in [8] (see the proof of Theorem 4.5). Let us

prove that (c) => (d). To this end, suppose that {Gn} satisfies the condi-

tions stated in (c). We claim that {Gn} satisfies also (iii'). Suppose the
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contrary. Then there exist x e X, ε > 0, and a subsequence, {Gn} say, of
{Gn) such that h(Gn(x)y F(x)) > ε for every n e N. For each n e N take
yn e <5,7(jc) such that r(yn,F(x)) > ε. Since {yn} is contained in the
compact set Gx(x), we assume (without loss of generality) that yn -> y e
Gγ(x). Thus we have r(y, F(x)) > ε. Since (*, j n ) e graph Grt and (from
the hypothesis) h(graph Gn, graph F)-> 0 as Λ-> +00, there is a
sequence {(x'n9 y'n)} c graph i 7 such that x^ -> x and >>„' -> 7. But graph
F is closed, and S O J G F(JC), a contradiction. This completes the proof.

5. Some applications. In this section we show that an Λ*-u.s.c.
(resp. A*-l.s.c.) multifunction F: X -» ^b(Y) is Λ-continuous except at
points of a first category set. This is proved using Λ-continuous approxi-
mations to F. Results of such type have been established, under different
hypotheses on F9 by Hill [15], Kuratowski [22], Choquet [7], Fort [12], and
Kenderov [20, 21]. As an application of Theorem 5.1 below, we present an
alternative proof of Kenderov's theorem [18] stating that a maximal
monotone operator is almost everywhere single-valued. For related results
and further generalizations see [19], [14], [30].

THEOREM 5.1. Let X be a metric space. Let Y be a real normed space
with an invariant metric γ satisfying (4.1). Let F: X -> ^h(Y) be locally
bounded {with respect to the norm of Y) and strictly h*-u.s.c. Then there
exists a Baire first category set Xo a X such that F restricted to X\X0 is
hy-continuous.

Proof. By Theorem 4.1, there is a sequence {Gn} of /ιγ-continuous
multifunctions Gn: X -> V.b(Y) satisfying at each x e X the properties:
Gn(x) D F(x) (n e N), and hy{Gn{x\ F(x)) -> 0 as n -> 00. For n e N,
define \n: X -» R by λπ(jc) = hy(Gn(x);F(x)). We claim that λn is a
l.s.c. function. Evidently λn(x) = h*(Gn(x), F(x)), because F(x) c
Gn(x). Let x0 ^ X and let η > 0. Taking into account the Aγ-continuity
of Gn, the fact that Gn(x) c 7Vλ

γ

 ( J c ) + η(F(x)), and the Λ*-u.s.c. of i7, we
have

Gn(x0)

for each x in some neighborhood ί/of JC0. Consequently, λn(xQ) < λn(x)
+ 3η for each i e [ / . Hence λrt is l.s.c. Thus there is a Baire first
category set Xn c X, such that λn restricted to X\Xn, is continuous. Set
Xo = U^= 1 Xn. Evidently Xo is of the first category in X. Suppose X\ XQ

Φ 0 (otherwise there is nothing to prove). Clearly each λn is continuous
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on X\ Xθ9 and at each point x e X\ Xo we have λn(x) -> 0 as n -> 4- oo.
We are going to see that F restricted to X\ Xo is Aγ-continuous. In

fact, let x0 G X\ Xo and let ε > 0. Choose n0 G N such that λWo(jco) <
ε/4. Take δ > 0 so that c G 5((jc0,δ)\X0 implies λ^o(jc) < ε/2 and
hy(Gno(x), GnQ(x0)) < ε/4. Then for each Λ: G S(JC0, δ) \ JT0 we have

Wo(xo), F(x 0)) < λno(x) + ε/4

< ε/2 + ε/4 + ε/4 = ε,

and so the statement of the theorem is proved.

REMARK 5.1. Let F: X -> <^(7) be Λ*-u.s.c. By Remark 4.1 and
Theorem 5.1 it follows that there exists a Baire first category set Xo c X
such that F restricted to X\X0 is ^-continuous. Observe that the set
X\ Xo is certainly nonempty and dense in X, if X is a Baire space.

REMARK 5.2. Let F: X -> <^(7). Define F: X -> <^(7) by F(x)

= F(x) + S. Then F is Λ*-l.s.c. (resp. Λ*-u.s.c.) if and only if F is
Λ*-l.s.c. (resp. /z*-u.s.c). Evidently, F is Λ*-l.s.c. if F is so. Conversely,
suppose that F is Λ*-l.s.c. Let x0 G X and ε > 0. Then for each x in a
neighborhood ί/of x0 we have

F(x0) + 5 c F(x 0 ) c F(x) + εS = F(x) + ε5 +

Hence, by Radstrόm's lemma [27], F(x0) c F(x) + εS for each x G t/,
from which the Λ*-l.s.c. of F follows at once. By a similar argument one
shows that F is Λ*-u.s.c. if and only if F is so.

THEOREM 5.2. Let F: X -> ^ ( 7 ) ^ h*-l.s.c. Then there exists a
Baire first category set Xoa X such that F restricted to X\X0 is h-continu-
ous.

Proof. In view of Remark 5.2, it is sufficient to show that there is a set
Xo c X of the Baire first category such that F restricted to ^ \ ^ 0 is
Λ-continuous. Indeed, by [8, Proposition 3.4] there is a sequence {Gn} of
A-continuous multifunctions Gn: X -» Vb(Y) satisfying at each x G X the
properties: Gn(x) c F(JC) (Λ G N), and h(Gn(x), F(x)) -» 0 as π -> -f oo.
For each /i G N define λn: X -> R by λn(jc) = Λ(F(JC), (?„(*)). We claim
that λM is a l.s.c. function. Evidently Aw(x) = h*(F(x),Gn(x))> because
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Gn(x) c F(x). Let x0 e X and let η > 0. By virtue of the Λ*-l.s.c. of F,
the fact that F(x) c Gn(x) + (λπ(x) + τj)S, and the /ϊ-continuity of Gn

we have

F(* o ) c F{x) + ηS c (?„(*) + (λ n (x)

for every x in some neighborhood C/of x0. Consequently λ r t(x0) < λn(x)
+ 3η for every x & U. Hence λw is l.s.c. The end of the proof is like that
of Theorem 5.1.

From now on, 7 will denote a separable real Banach space and 7*
its (topological) conjugate. We denote the pairing between y* in 7* and
y in 7 by ( j , y*). We suppose that 7 is endowed with the norm
topology.

A multi-valued mapping F: D(F) -> 2Y* with domain D(F) c 7
(D(F) Φ 0 ) is said to be a monotone operator if (JC — y, JC* — 7*) > 0
for all x, y e D(F) and all x* e F(x) and j * e F(j) . It is called a
maximal monotone operator if, in addition, the graph of F is not properly
contained in the graph of any other monotone operator G: D(G) -> 2Y*
with D(G) c 7.

Let {xw} be a countable dense subset of 7. For x*9 y* G 7* we set

0) < f - ! l*'"> '1 < Σ

It is not difficult to prove that γ is an invariant metric on 7*. Moreover,

oo 1 II v II II i , * l l ° ° II v II II v * | |
l l A / ι l l \\s II < | | v * | |

n = l *

thus γ satisfies (4.1) (with 7* in the place of 7).
Let B* = {y* G 7*| \\y*\\ < 1}. Let r > 0. On the set rB* we shall

consider the topology, denoted τγ, which is generated by the metric γ, and
the relative σ(Y*,Y) topology, denoted τσ. Using the argument of [10,
Theorem V. 5.1, p. 426] one can prove that the topologies τγ and τσ for
rB* are identical.

LEMMA 5.1. Let G: X —> 2Y* (X a metric space) satisfy the hypotheses:
(i) G(x) c rB* (r > 0) for every x e X; (ii) G(x) is convex and σ(7*, 7)
closed, for every x e X (iii) G is u.s.c. from X to 2y*, where 7* is given
the σ(7*, 7) topology. Then G is strictly h*-u.s.c.
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Proof. By Alaoglu's theorem the space rB* is τσ compact. Since
τσ = τγ it follows that rB* is a τγ compact metric space. Suppose that G
satisfies the hypotheses of the lemma but is not strictly /z*-u.s.c. Then
there exist an x0 e X, an ε > 0, and a sequence {δn} of positive numbers
8n converging to zero such that h*(coG(S(x0,δn))9 G(x0)) > ε for every
n e N. Take y* e coG(5(x0,δrt)) such that r γO*,G(x 0)) > ε, w <= N.
Passing to a subsequence, we suppose that y* -+ y* e rB* (in the metric
γ). Hence rγ(y*,G(x0)) > ε. But in the space 7* with the σ(7*,7)
topology, the set G(x0) is closed convex and j 0 * £ G(*o)- Then by
Hahn-Banach's theorem, there is a continuous linear functional φ: 7* ->
R and there exist constants c and 0, 0 > 0, such that

G(x0) c V= { j * e 7* | ( j * ,φ) < c - 0}.

Evidently y* G ί7 Π r5*, provided « is large enough, say ^ > /c. On the
other hand, the set [x e X|G(x) c V) is a neighborhood of x0, because
F is σ(7*,7) open and G is u.s.c. (see Remark 1.10). Hence, for some
n > k we have G(S(xo,δn)) c F. Therefore j * e [ / n F , a contradic-
tion. This completes the proof.

LEMMA 5.2. Le/ G: U —> 2y* Z?̂  # monotone operator defined on a
nonempty open subset U of Y. Suppose that: (i) G(x) c r ί * (r > 0) /or

JC e U\ (ii) G(x) w σ(y*,7) closed for every x e [/; (iii) //iere /5 α
subset U of U such that the restriction G of G to U is h ̂ continuous.

Then G is single-valued and demicontinuous (i.e. continuous as a single-val-
ued mapping from U with the relative norm topology, to 7* with the
σ(Y*,Y) topology).

Proof. Observe that the Λγ-continuous multifunction G from fj to
2rB* takes on τγ compact values. Consequently by Remark 1.9, G is
continuous if rB* is assigned the τγ topology or, equivalently, the τσ

topology.
Arguing as in [18] we shall prove that G is single-valued. In the

contrary case, there exist an x0 e ϋ and u*, v* G G(X0) such that
u0 Φ v*. Clearly for some c e U we have |(c,ϋj — M*)| > 0 Without
loss of generality we can assume that η = (c,v* — ι/*)>0. For π large
enough, say n > n0, cn = x0 + (l/n)c lies in tλ Since C/ is a dense subset
of t/, there is a sequence {.*„} c t/ satisfying ||xπ - c j | < l/«2, « > «0.
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Let V = rB* Π {y* e 7 * | \(c,y* - u%)\ < η/2} and observe that V is

τσ open, and G(x0) Π V Φ 0 . By the continuity of G the set {x e

t/|G(jc) Π F # 0 } is a neighborhood of x0 in ϋ. Since ;cw -> x 0, there is

an ΛX > Λ 0 such that G{xn) Π V Φ 0 for every n > nv Let j/ π * e (5(xJ

ΓΊ F ( « > ^i). We have

0<

-

From this, taking n sufficiently large, a contradiction follows. Hence G is

single-valued. It is obvious that G is demicontinuous. This completes the

proof.

THEOREM 5.3 [18]. Let Y be a separable real Banach space and let 7 *

be its conjugate. Let F: D(F) -> 2y* be a maximal monotone operator.

Suppose that int(coD(F)) Φ 0 . Then there exists a residual subset D of

ΊnίD{F) such that F restricted to D is single-valued and demicontinuous.

Proof. Let F satisfy the hyootheses of the theorem. It is well known

[28] that int D(F) is a nonempty convex set whose closure is D(F), and F

restricted to 'mXD(F) is locally bounded (in the norm of 7*) . Further-

more (see [3], [18]) for every x e int D(F), F(x) is convex and σ(Y*9 Y)

closed, and F restricted to intD(F) is u.s.c. as a multifunction from

int D(F) to 2y*, where 7 * is assigned the σ(7*, 7 ) topology.

For each n e N, set Un = {x e intD(F)\F(S(x9σ(x))) c nB*, for
some σ(x) > 0}. Clearly the sets Un are open and Ux c U2 c

Moreover for w large enough, say n > k, each £/„ is nonempty and

Uw > * £/„ = ώ t D(F). The restriction of i 7 to Un satisfies the hypotheses of

Lemma 5.1 (with X = Un and r = n) and so is strictly λ*-u.s.c. By

Theorem 5.1 (with 7 * in the place of 7) there is a set Zn c Un of the first

Baire category in Un (and so with dense complement Un = Un\Zn) such

that the restriction of F to Un is /zγ-continuous. By virtue of Lemma 5.2,

F restricted to Un is single-valued and demicontinuous. Set Z o = U^>^ Zw,

and Z) = int D(F) \Zo. Evidently D is a residual subset of int D(F) and

F restricted to D is single-valued and demicontinuous. This completes the

proof.
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