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A NOTE ON ORDERINGS ON ALGEBRAIC
VARIETIES

M. E. ALONSO

It was proven in [A-G-R] that if V' C R" is a surface and «a a total
ordering in its coordinate polynomial ring, « can be described by a half
branch (i.e., there exists y(0,¢) — V, analytic, such that for every
fe€ R[V]sgn, f= sgnf(y(2)) fort small enough). Here we prove (in
any dimension) that the orderings with maximum rank valuation can be
described in this way. Furthermore, if the ordering is centered at a
regular point we show that the curve can be extended C* to ¢ = 0.

1. (1.0) Let V' be an algebraic variety over R and « an ordering in
K = R(V). If a is described by a half-branch y: (0, &) — ¥V, no non-zero
polynomial vanishes over y(#) for ¢ small enough. Consequently, if V' is
birrationally equivalent to V' (i.e., R(V") = R(V)), a N R[V"] is also de-
scribed by a curve in V",

(1.1) PROPOSITION. Let V be an algebraic variety over R andn = dimV.
If R[V] is an integral extension of R[x,,...,x,] = R[x] and a an ordering
on R[V]1such that B = a NR[x] can be described by a half-branch, then the
same holds true for a.

Proof. By our previous remark (1.0) we can suppose V is a hyper-
surface. Thus R[V]= R[x, x,,,](P) where P € R[x][x,,,] is a monic
polynomial in x,,,. Let § be the discriminant of P and #: V' — R” the
projection on the first n-coordinates. Then the restriction

m: V\77(8=0) > R'\{8 =0}

has finite fibers with constant cardinal over every connected component.
Moreover, by the implicit function theorem, =, is an analytic diffeomor-
phism from every connected component of ¥\ #~!(8 = 0) onto someone
of R"\ {8 = 0}.

Let y: (0,&) = R” be the curve describing B. The connected compo-
nents Cj,...,C, of R"\ {§ = 0} are open semi-algebraic sets, and we can
write

q
C=U{fa>0,....f,,>0}, f,€R[x].
j=1
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As vy describes the ordering in R[x] and the C,’s are pairwise disjoint, for ¢
small enough, f; j,(y(t)) does not change the sign and y(¢) is contained in
aunique C,. Weput C = C, .

Let D,,...,D, (we shall see below that s is not zero) be the
connected components of V'\ #~!{8 = 0} diffeomorphic to C via 7. We
claim that

s = number of extensions of 8 to R(V).

By construction s is the number of roots of P(x, x,,;) for every x € C.
On the other hand, the number of extensions of 8 to R(V) coincides with
the number of roots of P € R(x)[x,,, ;] in a real closure of (R(x), 8) (see
[Pr] 3.12). We shall prove now the latter is also the number of real roots of
P(x,x,,,) forx € C.

Let S ={P,y,..., P} R(x)[x,,,] be the standard Sturm sequence of

P(x,%x,,,)=x",+ax" '+ - +a,, M=1+m+ ) a?
i=1
and A the product of all numerators and denominators of the non-zero
coefficients of the polynomials in x,,, used in the construction of S. In
this situation, by Artin’s specialization theorem there exists x, € R” such
that
(a) fiojh(‘IO) >0, A(xy)#0,some j=1,...,q,all h=1,...,r
(b) sgn, Py(+ M) = sgng P (x0, % M(x,)), k=0,...,1
By (a), xo € C and S, = {Pi(xo),-.., P/(x,)} is the standard Sturm
sequence of P(xg, x,.1). By (b) the number of sign changes of S, and S
coincides. Then the claim is proven.
Now, let us denote by v, = (77|Dk)‘1 oy, k=1,...,1 the liftings of y.
Then it is easy to prove:
(a") If f € R[V]\ {0}, f(v,(?)) # 0 and its sign does not change for ¢
small enough. Consequently every vy, defines an ordering that we call «, .
W) If k # k', ap # a,.
From the remarks above, @ must be equal to some «,, hence it is
described by the corresponding a;.

2. (2.0) Let K and A be ordered fields and p: K — A, o a place
such that for x positive, p(x) is not negative. Then we define a signed
place p: K > AU {+00,00} = A, + oo in the following way:

p(x)=p(x) if p(x)# 0;  p(x)=sign(x) 00 if p(x)= co.
Now assume X is the function field of a real algebraic variety V, and

a an ordering in K. A point O € V is the center of « in V if the real
valued canonical place p, associated to a (see [B] Chap. VII) is finite over
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R[V'] and the ideal of O is the center of p, in R[V]. In that case, every
function positive at O is positive in a, and if « is described by vy, then
lim,_ ,y(t) = O.

We are interested in the case when the rank of p, is maximum (i.e., it
coincides with the dimension of V). In this situation the decomposition of
p, in rank 1 places is

0n~1
(2.0.1) K=K5'K, ,00— -+ >R, o0,

where K, is a function field over R of dimension j. Then it is possible to
define uniquely orderings in K; (j = 1,...,r) such that, considering a in
K, all places verify the compatibility conditions. Thus we consider the
associated signed places 9j: K, - K,_;, £ co (see [B] Chap. VIII), to get a
decomposition of p, in rank 1 signed places.

(2.1) ProPOSITION. If p, has a maximum rank, a can be described by a
half-branch.

Proof. The proof goes by induction. If » = 1, by 1.1 and 1.0 we can
suppose K = R(x), a centered at x = 0, and x > , 0. Then, there is a
unique ordering with this property (i.e., making x infinitesimal with
respect to R and positive), and it is described by the curve y(¢) = t.

In the general situation we can choose {;,...,{,_;, {, in K such that
0, .($),...,0,_,%,) € K,_, and:

(1) 8,_.(%),...,0,_.(,_,) are algebraically independent.

(i) &, ..., §, are algebraically independent

(i) p(§)=0(i=1,...,n).

Since K is the quotient field of the integral closure of B =
R[¢, ..., ¢, 1, $,] we can suppose K = g - f(B) by 1.1. Then the kernel of
0,_,: B — K,_, is an height one prime ideal and hence it is generated by
some F € B. The field K,_; is the function field of the hypersurface
{ F = 0}. Moreover we may assume F > 0.

Let us consider, according to 2.0, the ordering S associated to
r=80y---06, ,in K, ;. Then p;=r and B is centered at 0 =
(0,...,0) which belongs to the hypersurface. Consequently, for every
f € B we have:

(2.1.1) if f(0) = p,(f) # O, then sgn,, f = sgn f(0)

if §,_,(f) # 0, sgn, f = sgng f, where f is f + (F)
if,_ (f)y=0and f=u-F" withg.cd (u, F) =1,
then sgn, f = sgn, u = sgngu.
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Now we need a lemma:

(2.2) LEeMMA. Let H = { F(x) = 0} be a real irreducible hypersurface
in R" and B a rank (n — 1) ordering in H (i.e., in R[x]/(F)) centered at
the point Q and described by v: (0, €) = H. Then, there is not more than one
ordering a in R[x] making F infinitesimal and positive, and inducing B in
R[x1/(F). Moreover a can be described by a half-branch.

Proof. The first claim is an easy consequence of 2.1.1.

Next, as pg has rank n — 1, p, is discrete and its value group is
isomorphic to Z & e Z, lexicographically ordered. Let h €
R[x]/(F) have value (a,...,a,_,) with a, > 1 (notice that this is
possible because the valuation ring of p, contains R[x]/(F)), and put
Y(2) = h(y(2)). Since pg(h) =0, h(Q) =0 and lim,_,y(t) =0, ¢ is
analytic in (0, £). Now we define the analytic curve:

v*:(0,e) >R t— (y,-(t) + cie‘l/‘“‘)z) i=1,...,n

where the c,’s will be determined later.
Thus, the result follows from the statements (a) and (b) below.
(a) For any ¢,’s, if G € R[x]is positive along v, so is along y*.
(b) There is (cy,...,¢,) € R” such that F(y*(¢)) > 0 for ¢ small
enough.
To prove (a) we first write:

(2.2.1) G(y*(1)) = G(x(1)) + m(r)e /4"
where m(¢) is a polynomial in y,(),...,v,(z) and e/¥®’ On the other
hand, looking at the value of A, for large m € N we know that h"/G
(G G + (F) € Rlx]/(F)) is infinitesimal in 8 w.r.t. R and so, 1 —
h"/G > 5 0. Since G is positive in B, taking an even m we have G >4 h™
>4 0. Hence G(y(t)) > g ¥(2)™ >4 0 for small ¢ enough, what 1mp11es
lim,_, e VD’ /G(y(1)) = 0. Thus we get (a) after dividing in 2.2.1 by
G(v(?)) and taking the limit when ¢ — 0.
For (b), we take the Taylor expansion of F at y(¢) and compute it at

Y*(1):
@22)  F(n) = ¥ EE) e
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As 0F/0x; & (F) for some i, we have ¢; = sgng(dF/dx,) (= £1 # 0)
and we take ¢, = 0 for j # i. Then, B being described by v:

(2.2.3) H(t)=Y %}:f—t&c, >0, for small .
i=1 i

Again we have lim, _, je~'/%®* /H(¢t) = 0. Then, dividing in 2.2.2 by H(z),
we find F(y*(¢))/H(t) > 0, hence F(y*(¢)) > 0, for small z.

(2.3) REMARK. Looking at the class of the curve y at 0, we see that if
O € Reg H, and vy can be extended C* to ¢ = 0, the same holds true for

*

v*.

(2.4) REMARK. Notice that 2.2 and 2.3 hold also true if we replace R"
by an algebraic variety V' with O € RegV. In fact the same proof applies,
by taking a regular system of parameters at O in the place of x,..., x,.

(2.5) Application. As an example of the constructibility of the proof of
2.1 we determine the curves describing the rank 2 orderings in R? (see
[A-G-R])).

Firstly, after changes x > +(x + a)*!, y - +(y + b)*!, we can
suppose (0,0) is the center of the ordering « and x> _0, y > 0.
Assume the divisor w which specializes p, is centered in R[x, y] at
F(x,y)=0,and x=1¢", y=a;t"™ + --- (n < ny), t >0, is a primitive
parametrization of the half-branch describing the corresponding ordering
in R[x, y]/(F). According to the above parametrization and looking at
the proof of 2.2, we may choose h(x) =x, ¢, =0 and ¢, = +1 in the
proof of 2.2, and we get a half-branch describing « of the form:

,Y(t) — (t", ie—l/tz" + alt"l + ... )

Now assume that the prime divisor w is centered at the maximal
ideal, (x, y). Let us call v the valuation corresponding to p,. Following
Abhyankar [A], after a finite number of quadratic transforms along w we
get the previous situation. In fact, we call A, = R[x, y]and, if v(x) < v(y)
(so w(x) < w(y)) we put: ry = p(y/x), y1 =(y = ryx)/x, x, = x and
A, = A\[x,, y,]. Repeating this procedure we end at 4, = A4 _,[x,, y,] =
R[x,, y,] such that, the center of w in A4, is 1-dimensional, and w is
centered at (x,_,, y,_,) in A,_,. We have, say,

ys = (ys—l - rs—lxs—l)/xs—l
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and x, = x,_;. Hence w(x,) = w(x,_;) > 0 and M, N A, = (x,). Thus,
according to the proof of 2.2, the half-branch x, = +e /" y =1
describes the ordering in A4,. Hence, going backwards in the quadratic
transformations, it follows easily that the ordering « can be described by a
curve

(P(r,e7/7),0(1,e7/1))
for some polynomials P and Q.

3. (3.0) We finish this note with some considerations about the class
at ¢t = 0 of the y’s describing orderings (see also [R] §3). To start with
notice that any algebraically independent power series x,(?),..., x,(¢),
describe an ordering in R[x]. Then by [An] the set of such orderings is
dense in the space of all orderings endowed with the Harrison Topology
[H]. Moreover, the valuations associated to these orderings are discrete of
rank one. Hence the orderings with maximum rank valuation, cannot be
described by curves which are analytic at r = 0 unless the variety is a
curve. So, the best result we can expect is the following:

(3.1) PrROPOSITION. If V C R”" is an algebraic variety an « an ordering
centered at 0 = (0,...,0)RegV, with associated valuation of maximum
rank, there is a half-branch describing o which can be extended C* (but not
analytically) to t = 0. Furthermore the set of orderings of R[V'] described
by half-branches C* at t = 0 but not by analytic ones, is dense in the space
of orderings.

Proof. The proof goes by induction on d = dimV. If d=1, the
valuation associated to the ordering « is discrete, has rank one, and the
ordering is described by the unique branch of V' through 0:

(19 uZ(I)s"" un(t))

where each u,(7) is analytic and the choice t > 0 or # < 0.
In the general case, set p, = p and consider again

K=R(V)1Kn_1,-{_-oo—r->R,ioo, p=rogq,

the decomposition of p in signed places of rank one.

As we did in 2.1 we can find an (affine) algebraic variety V; and =:
V, = V birational morphism such that the center of ¢ in V;, say H,, has
dimension d — 1. By means of Hironaka’s desingularization I [Hi] we may
assume V; is smooth. Then by Hironaka’s desingularization II (loc. cit),
we find V and #: ¥ — V|, a proper birrational map such that # }(H,) is
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a normal crossing divisor. Let 0 be the center of p in ¥/ and H the center
of g. Since the valuation ring of g, R[V|] 4, ), dominates R[V] and H lies
over H,, we have K, |, = qf - H and the center of r in H is 0.

We call B8 the ordering in K,_; corresponding to the precedent
decomposition (i.e. pg = r). Since r has maximum rank, by our inductive
hypothesis the ordering 8 N R[H] can be described by y: (0,¢) - H,
with lim, _, ,¥(¢) = 0, and y can be extended C* to ¢ = 0. Then, consider-
ing a modification y* of y as we did in 2.2 and using Remarks 2.3 and
2.4, a is described in V by y* and it can be extended C* to ¢t = 0.
Finally 7, o # o y* is a curve which defines the ordering a and can be
extended C* to ¢ = 0.

The second part comes from the first one, the above remark 3.0, and
the fact that the set of orderings with maximum rank are dense (see [B],
8.4.9).
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