A NOTE ON ORDERINGS ON ALGEBRAIC VARIETIES

M. E. Alonso

It was proven in [A-G-R] that if $V \subset \mathbb{R}^n$ is a surface and α a total ordering in its coordinate polynomial ring, α can be described by a half branch (i.e., there exists $\gamma(0,\varepsilon) \to V$, analytic, such that for every $f \in \mathbb{R}[V] \operatorname{sgn}_{\alpha} f = \operatorname{sgn} f(\gamma(t))$ for t small enough). Here we prove (in any dimension) that the orderings with maximum rank valuation can be described in this way. Furthermore, if the ordering is centered at a regular point we show that the curve can be extended C^{∞} to t=0.

- 1. (1.0) Let V be an algebraic variety over \mathbf{R} and α an ordering in $K = \mathbf{R}(V)$. If α is described by a half-branch γ : $(0, \varepsilon) \to V$, no non-zero polynomial vanishes over $\gamma(t)$ for t small enough. Consequently, if V' is birrationally equivalent to V (i.e., $\mathbf{R}(V') = \mathbf{R}(V)$), $\alpha \cap \mathbf{R}[V']$ is also described by a curve in V'.
- (1.1) PROPOSITION. Let V be an algebraic variety over \mathbf{R} and $n = \dim V$. If $\mathbf{R}[V]$ is an integral extension of $\mathbf{R}[x_1, \ldots, x_n] = \mathbf{R}[\underline{x}]$ and α an ordering on $\mathbf{R}[V]$ such that $\beta = \alpha \cap \mathbf{R}[\underline{x}]$ can be described by a half-branch, then the same holds true for α .

Proof. By our previous remark (1.0) we can suppose V is a hypersurface. Thus $\mathbf{R}[V] = \mathbf{R}[\underline{x}, x_{n+1}](P)$ where $P \in \mathbf{R}[\underline{x}][x_{n+1}]$ is a monic polynomial in x_{n+1} . Let δ be the discriminant of P and $\pi: V \to \mathbf{R}^n$ the projection on the first n-coordinates. Then the restriction

$$\pi_i: V \setminus \pi^{-1}(\delta = 0) \to \mathbf{R}^n \setminus \{\delta = 0\}$$

has finite fibers with constant cardinal over every connected component. Moreover, by the implicit function theorem, π_{\parallel} is an analytic diffeomorphism from every connected component of $V \setminus \pi^{-1}(\delta = 0)$ onto someone of $\mathbb{R}^n \setminus \{\delta = 0\}$.

Let $\gamma: (0, \varepsilon) \to \mathbf{R}^n$ be the curve describing β . The connected components C_1, \ldots, C_p of $\mathbf{R}^n \setminus \{\delta = 0\}$ are open semi-algebraic sets, and we can write

$$C_i = \bigcup_{j=1}^q \{f_{ij1} > 0, \dots, f_{ijr} > 0\}, \qquad f_{ijl} \in \mathbf{R}[\underline{x}].$$

As γ describes the ordering in $\mathbf{R}[\underline{x}]$ and the C_i 's are pairwise disjoint, for t small enough, $f_{ijl}(\gamma(t))$ does not change the sign and $\gamma(t)$ is contained in a unique C_{i_0} . We put $C = C_{i_0}$.

Let D_1, \ldots, D_s (we shall see below that s is not zero) be the connected components of $V \setminus \pi^{-1} \{ \delta = 0 \}$ diffeomorphic to C via π . We claim that

$$s =$$
 number of extensions of β to $R(V)$.

By construction s is the number of roots of $P(\underline{x}, x_{n+1})$ for every $\underline{x} \in C$. On the other hand, the number of extensions of β to $\mathbf{R}(V)$ coincides with the number of roots of $P \in \mathbf{R}(\underline{x})[x_{n+1}]$ in a real closure of $(\mathbf{R}(\underline{x}), \beta)$ (see [Pr] 3.12). We shall prove now the latter is also the number of real roots of $P(\underline{x}, x_{n+1})$ for $\underline{x} \in C$.

Let $S = \{P_0, \dots, P_l\}$ $\mathbf{R}(\underline{x})[x_{n+1}]$ be the standard Sturm sequence of

$$P(\underline{x}, x_{n+1}) = x_{n+1}^m + a_1 x_{n+1}^{m-1} + \dots + a_m, \qquad M = 1 + m + \sum_{i=1}^m a_i^2$$

and Δ the product of all numerators and denominators of the non-zero coefficients of the polynomials in x_{n+1} used in the construction of S. In this situation, by Artin's specialization theorem there exists $\underline{x}_0 \in \mathbf{R}^n$ such that

- (a) $f_{i_0,h}(\underline{x}_0) > 0$, $\Delta(\underline{x}_0) \neq 0$, some j = 1, ..., q, all h = 1, ..., r
- (b) $\operatorname{sgn}_{\beta} P_k(\pm M) = \operatorname{sgn}_{\mathbf{R}} P_k(\underline{x}_0, \pm M(\underline{x}_0)), k = 0, \dots, l.$
- By (a), $\underline{x}_0 \in C$ and $S_{x_0} = \{P_1(\underline{x}_0), \dots, P_l(\underline{x}_0)\}$ is the standard Sturm sequence of $P(\underline{x}_0, x_{n+1})$. By (b) the number of sign changes of $S_{\underline{x}_0}$ and S coincides. Then the claim is proven.

Now, let us denote by $\gamma_k = (\pi_{|D_k})^{-1} \circ \gamma$, k = 1, ..., l the liftings of γ . Then it is easy to prove:

(a') If $f \in \mathbf{R}[V] \setminus \{0\}$, $f(\gamma_k(t)) \neq 0$ and its sign does not change for t small enough. Consequently every γ_k defines an ordering that we call α_k .

(b') If
$$k \neq k'$$
, $\alpha_k \neq \alpha_{k'}$.

From the remarks above, α must be equal to some α_k , hence it is described by the corresponding α_k .

2. (2.0) Let K and Δ be ordered fields and $p: K \to \Delta$, ∞ a place such that for x positive, p(x) is not negative. Then we define a signed place $\hat{p}: K \to \Delta \cup \{+\infty, \infty\} = \Delta, \pm \infty$ in the following way:

$$\hat{p}(x) = p(x)$$
 if $p(x) \neq \infty$; $\hat{p}(x) = \text{sign}(x) \cdot \infty$ if $p(x) = \infty$.

Now assume K is the function field of a real algebraic variety V, and α an ordering in K. A point $O \in V$ is the center of α in V if the real valued canonical place p_{α} associated to α (see [B] Chap. VII) is finite over

 $\mathbf{R}[V]$ and the ideal of O is the center of p_{α} in $\mathbf{R}[V]$. In that case, every function positive at O is positive in α , and if α is described by γ , then $\lim_{t\to 0} \gamma(t) = O$.

We are interested in the case when the rank of p_{α} is maximum (i.e., it coincides with the dimension of V). In this situation the decomposition of p_{α} in rank 1 places is

(2.0.1)
$$K = K \stackrel{\theta_{n-1}}{\to} K_{n-1}, \, \infty \to \cdots \to \mathbf{R}, \, \infty,$$

where K_j is a function field over **R** of dimension j. Then it is possible to define uniquely orderings in K_j ($j=1,\ldots,r$) such that, considering α in K, all places verify the compatibility conditions. Thus we consider the associated signed places $\hat{\theta}_j$: $K_j \to K_{j-1}$, $\pm \infty$ (see [**B**] Chap. VIII), to get a decomposition of \hat{p}_{α} in rank 1 signed places.

(2.1) Proposition. If p_{α} has a maximum rank, α can be described by a half-branch.

Proof. The proof goes by induction. If n = 1, by 1.1 and 1.0 we can suppose $K = \mathbf{R}(x)$, α centered at x = 0, and $x >_{\alpha} 0$. Then, there is a unique ordering with this property (i.e., making x infinitesimal with respect to \mathbf{R} and positive), and it is described by the curve $\gamma(t) = t$.

In the general situation we can choose $\zeta_1, \ldots, \zeta_{n-1}, \zeta_n$ in K such that $\theta_{n-1}(\zeta_1), \ldots, \theta_{n-1}(\zeta_n) \in K_{n-1}$ and:

- (i) $\theta_{n-1}(\zeta_1), \dots, \theta_{n-1}(\zeta_{n-1})$ are algebraically independent.
- (ii) ζ_1, \ldots, ζ_n are algebraically independent
- (iii) $p_{\alpha}(\zeta_i) = 0 \ (i = 1, ..., n).$

Since K is the quotient field of the integral closure of $B = \mathbf{R}[\zeta_1, \ldots, \zeta_{n-1}, \zeta_n]$ we can suppose $K = q \cdot f(B)$ by 1.1. Then the kernel of $\theta_{n-1|}$: $B \to K_{n-1}$ is an height one prime ideal and hence it is generated by some $F \in B$. The field K_{n-1} is the function field of the hypersurface $\{F = 0\}$. Moreover we may assume $F > \alpha 0$.

Let us consider, according to 2.0, the ordering β associated to $r = \theta_0 \circ \cdots \circ \theta_{n-2}$ in K_{n-1} . Then $p_{\beta} = r$ and β is centered at $\underline{0} = (0, \ldots, 0)$ which belongs to the hypersurface. Consequently, for every $f \in B$ we have:

(2.1.1) if
$$f(\underline{0}) = p_{\alpha}(f) \neq 0$$
, then $\operatorname{sgn}_{\alpha} f = \operatorname{sgn} f(\underline{0})$
if $\theta_{n-1}(f) \neq 0$, $\operatorname{sgn}_{\alpha} f = \operatorname{sgn}_{\beta} \bar{f}$, where \bar{f} is $f + (F)$
if $\theta_{n-1}(f) = 0$ and $f = u \cdot F'$ with g.c.d $(u, F) = 1$,
then $\operatorname{sgn}_{\alpha} f = \operatorname{sgn}_{\alpha} u = \operatorname{sgn}_{\beta} \bar{u}$.

Now we need a lemma:

(2.2) LEMMA. Let $H = \{F(\underline{x}) = 0\}$ be a real irreducible hypersurface in \mathbb{R}^n and β a rank (n-1) ordering in H (i.e., in $\mathbb{R}[\underline{x}]/(F)$) centered at the point $\underline{0}$ and described by $\gamma: (0, \varepsilon) \to H$. Then, there is not more than one ordering α in $\mathbb{R}[\underline{x}]$ making F infinitesimal and positive, and inducing β in $\mathbb{R}[x]/(F)$. Moreover α can be described by a half-branch.

Proof. The first claim is an easy consequence of 2.1.1.

Next, as p_{β} has rank n-1, p_{β} is discrete and its value group is isomorphic to $Z \oplus \cdots \oplus Z$, lexicographically ordered. Let $\bar{h} \in \mathbf{R}[\underline{x}]/(F)$ have value (a_1, \ldots, a_{n-1}) with $a_1 \geq 1$ (notice that this is possible because the valuation ring of p_{β} contains $\mathbf{R}[\underline{x}]/(F)$), and put $\psi(t) = h(\gamma(t))$. Since $p_{\beta}(\bar{h}) = 0$, $h(\underline{0}) = 0$ and $\lim_{t \to 0} \psi(t) = 0$, ψ is analytic in $(0, \varepsilon)$. Now we define the analytic curve:

$$\gamma^*: (0, \varepsilon) \to \mathbf{R}^n: t \mapsto (\gamma_i(t) + c_i e^{-1/\psi(t)^2}) \qquad i = 1, \dots, n$$

where the c_i 's will be determined later.

Thus, the result follows from the statements (a) and (b) below.

- (a) For any c_i 's, if $G \in \mathbf{R}[x]$ is positive along γ , so is along γ^* .
- (b) There is $(c_1, ..., c_n) \in \mathbb{R}^n$ such that $F(\gamma^*(t)) > 0$ for t small enough.

To prove (a) we first write:

(2.2.1)
$$G(\gamma^*(t)) = G(\gamma(t)) + m(t)e^{-1/\psi(t)^2}$$

where m(t) is a polynomial in $\gamma_1(t), \ldots, \gamma_n(t)$ and $e^{-1/\psi(t)^2}$. On the other hand, looking at the value of \bar{h} , for large $m \in N$ we know that \bar{h}^m/\bar{G} $(\bar{G} = G + (F) \in \mathbb{R}[\underline{x}]/(F))$ is infinitesimal in β w.r.t. \mathbb{R} and so, $1 - \bar{h}^m/\bar{G} >_{\beta} 0$. Since \bar{G} is positive in β , taking an even m we have $\bar{G} >_{\beta} \bar{h}^m >_{\beta} 0$. Hence $G(\gamma(t)) >_{\beta} \psi(t)^m >_{\beta} 0$ for small t enough, what implies $\lim_{t \to 0} e^{-1/\psi(t)^2}/G(\gamma(t)) = 0$. Thus, we get (a) after dividing in 2.2.1 by $G(\gamma(t))$ and taking the limit when $t \to 0$.

For (b), we take the Taylor expansion of F at $\gamma(t)$ and compute it at $\gamma^*(t)$:

$$(2.2.2) F(\gamma^*(t)) = \sum_{i=1}^n \frac{\partial F(\gamma(t))}{\partial x_i} c_i e^{-1/\psi(t)^2}$$

$$+ \sum_{i,j} \frac{\partial^2 F(\gamma(t))}{\partial x_i \partial x_j} c_i c_j e^{-2/\psi(t)^2} + \cdots$$

As $\partial F/\partial x_i \notin (F)$ for some *i*, we have $c_i = \operatorname{sgn}_{\beta}(\partial F/\partial x_i)$ $(= \pm 1 \neq 0)$ and we take $c_i = 0$ for $j \neq i$. Then, β being described by γ :

(2.2.3)
$$H(t) = \sum_{i=1}^{n} \frac{\partial F(\gamma(t))}{\partial x_i} c_i > 0, \text{ for small } t.$$

Again we have $\lim_{t\to 0} e^{-1/\psi(t)^2}/H(t) = 0$. Then, dividing in 2.2.2 by H(t), we find $F(\gamma^*(t))/H(t) > 0$, hence $F(\gamma^*(t)) > 0$, for small t.

- (2.3) REMARK. Looking at the class of the curve γ at 0, we see that if $O \in \text{Reg } H$, and γ can be extended C^{∞} to t = 0, the same holds true for γ^* .
- (2.4) REMARK. Notice that 2.2 and 2.3 hold also true if we replace \mathbb{R}^n by an algebraic variety V with $O \in \text{Reg } V$. In fact the same proof applies, by taking a regular system of parameters at O in the place of x_1, \ldots, x_n .
- (2.5) Application. As an example of the constructibility of the proof of 2.1 we determine the curves describing the rank 2 orderings in \mathbb{R}^2 (see [A-G-R]).

Firstly, after changes $x \to \pm (x \pm a)^{\pm 1}$, $y \to \pm (y \pm b)^{\pm 1}$, we can suppose (0,0) is the center of the ordering α and $x >_{\alpha} 0$, $y >_{\alpha} 0$. Assume the divisor w which specializes p_{α} is centered in $\mathbf{R}[x,y]$ at F(x,y)=0, and $x=t^n$, $y=a_1t^{n_1}+\cdots$ $(n \le n_1)$, t>0, is a primitive parametrization of the half-branch describing the corresponding ordering in $\mathbf{R}[x,y]/(F)$. According to the above parametrization and looking at the proof of 2.2, we may choose h(x)=x, $c_1=0$ and $c_2=\pm 1$ in the proof of 2.2, and we get a half-branch describing α of the form:

$$\gamma(t) = (t^n, \pm e^{-1/t^{2n}} + a_1 t^{n_1} + \cdots)$$

Now assume that the prime divisor w is centered at the maximal ideal, (x, y). Let us call v the valuation corresponding to p_{α} . Following Abhyankar [A], after a finite number of quadratic transforms along w we get the previous situation. In fact, we call $A_0 = \mathbf{R}[x, y]$ and, if $v(x) \le v(y)$ (so $w(x) \le w(y)$) we put: $r_0 = p_{\alpha}(y/x)$, $y_1 = (y - r_0 x)/x$, $x_1 = x$ and $A_1 = A_1[x_1, y_1]$. Repeating this procedure we end at $A_s = A_{s-1}[x_s, y_s] = \mathbf{R}[x_s, y_s]$ such that, the center of w in A_s is 1-dimensional, and w is centered at (x_{s-1}, y_{s-1}) in A_{s-1} . We have, say,

$$y_s = (y_{s-1} - r_{s-1}x_{s-1})/x_{s-1}$$

and $x_s = x_{s-1}$. Hence $w(x_s) = w(x_{s-1}) > 0$ and $M_w \cap A_s = (x_s)$. Thus, according to the proof of 2.2, the half-branch $x_s = \pm e^{-1/t^2}$, $y_s = t$ describes the ordering in A_s . Hence, going backwards in the quadratic transformations, it follows easily that the ordering α can be described by a curve

$$(P(t,e^{-1/t^2}),Q(t,e^{-1/t^2}))$$

for some polynomials P and Q.

- 3. (3.0) We finish this note with some considerations about the class at t = 0 of the γ 's describing orderings (see also [R] §3). To start with notice that any algebraically independent power series $x_1(t), \ldots, x_n(t)$, describe an ordering in $\mathbf{R}[x]$. Then by [An] the set of such orderings is dense in the space of all orderings endowed with the Harrison Topology [H]. Moreover, the valuations associated to these orderings are discrete of rank one. Hence the orderings with maximum rank valuation, cannot be described by curves which are analytic at t = 0 unless the variety is a curve. So, the best result we can expect is the following:
- (3.1) PROPOSITION. If $V \subset \mathbf{R}^n$ is an algebraic variety an α an ordering centered at $0 = (0, ..., 0) \operatorname{Reg} V$, with associated valuation of maximum rank, there is a half-branch describing α which can be extended C^{∞} (but not analytically) to t = 0. Furthermore the set of orderings of $\mathbf{R}[V]$ described by half-branches C^{∞} at t = 0 but not by analytic ones, is dense in the space of orderings.

Proof. The proof goes by induction on $d = \dim V$. If d = 1, the valuation associated to the ordering α is discrete, has rank one, and the ordering is described by the unique branch of V through 0:

$$(t, u_2(t), \ldots, u_n(t))$$

where each $u_i(t)$ is analytic and the choice t > 0 or t < 0.

In the general case, set $\hat{p}_{\alpha} = p$ and consider again

$$K = \mathbf{R}(V) \stackrel{q}{\to} K_{n-1}, \pm \infty \stackrel{r}{\to} \mathbf{R}, \pm \infty, \qquad p = r \circ q,$$

the decomposition of p in signed places of rank one.

As we did in 2.1 we can find an (affine) algebraic variety V_1 and π : $V_1 \to V$ birational morphism such that the center of q in V_1 , say H_1 , has dimension d-1. By means of Hironaka's desingularization I [Hi] we may assume V_1 is smooth. Then by Hironaka's desingularization II (loc. cit), we find \tilde{V} and $\tilde{\pi}$: $\tilde{V} \to V_1$, a proper birrational map such that $\tilde{\pi}^{-1}(H_1)$ is

a normal crossing divisor. Let $\tilde{0}$ be the center of p in \tilde{V} and \tilde{H} the center of q. Since the valuation ring of q, $\mathbf{R}[V_1]_{\mathscr{J}(H_1)}$, dominates $\mathbf{R}[\tilde{V}]$ and \tilde{H} lies over H_1 , we have $K_{n-1} = qf \cdot \tilde{H}$ and the center of r in \tilde{H} is $\tilde{0}$.

We call β the ordering in K_{n-1} corresponding to the precedent decomposition (i.e. $\hat{p}_{\beta} = r$). Since r has maximum rank, by our inductive hypothesis the ordering $\beta \cap \mathbf{R}[\tilde{H}]$ can be described by γ : $(0, \varepsilon) \to \tilde{H}$, with $\lim_{t \to 0} \gamma(t) = 0$, and γ can be extended C^{∞} to t = 0. Then, considering a modification γ^* of γ as we did in 2.2 and using Remarks 2.3 and 2.4, α is described in \tilde{V} by γ^* and it can be extended C^{∞} to t = 0. Finally $\pi_1 \circ \tilde{\pi} \circ \gamma^*$ is a curve which defines the ordering α and can be extended C^{∞} to t = 0.

The second part comes from the first one, the above remark 3.0, and the fact that the set of orderings with maximum rank are dense (see [B], 8.4.9).

REFERENCES

- [A] S. Abhyankar, Valuations centered in a local domain, Amer. J. Math., 78 (1956), 321–348.
- [A-G-R] M. E. Alonso, J. M. Gamboa and J. M. Ruiz, Ordres sur les surfaces réelles, C. R. Acad. Sc. Paris t. 298, Série I, n°1 (1984), 17-19.
- [An] C. Andradas, Real valuations in function fields, to appear in Comm. Algebra.
- [B] G. W. Brumfiel, Partially Ordered Rings and Semi-Algebraic Geometry, London Math. Soc. Lect. Note Series 37. Cambridge Univ. Press (1979).
- [H] D. Harrison, Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc. n°68, (1968).
- [Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, 79 (1964), 109–326.
- [Pr] A. Prestel, Lectures on formally real fields, IMPA. Lecture Notes 22. Río de Janeiro (1975).
- [R] J. M. Ruiz, Central orderings in fields of real meromorphic function germs, Manuscripta Math., 45 (1984), 193-214.

Received January 16, 1985 and in revised form July 1, 1985.

Departamento de Algebra y Fundamentos Universidad Complutense 28040 Madrid, Spain