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PLANE ELLIPTIC GEOMETRY OVER RINGS

FRrRIEDER KNUPPEL AND EDZARD SALOW

The classical model of plane elliptic geometry is a sphere of the real
affine space. The points of this model are the pairs of antipodal points of
the sphere, and the lines are the great circles of the sphere. Right angles
retain their ordinary meaning. This model is isomorphic to the real
projective plane, where orthogonality on the set of lines is given by a
symmetric bilinear form such that no line is orthogonal to itself.

In the present paper we attempt a foundation and a study of plane
elliptic geometry over commutative rings.
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Introduction. Let R be a commutative ring with 1. The points of the
projective plane II(R) are the sets Ra, where a is a vector of the free
R-module R? such that a, b, ¢ is a basis for some b, c. Replacing R> by
the dual module R** one obtains the definition of a line Rg of II(R). Ra
is incident with Rg if ag = 0. Two different points need not have a
common line, and they can have more than one common line.

Let f: R® X R® > R be a symmetric bilinear form such that (a, a)f
is a unit for every point Ra of II(R). For every a € R? let a* denote the
linear function R® - R, x = (a, x)f. Then the homomorphism R> —
R3*, a — a* is a bijection; i.e. f is an inner product in the sense of [6]. If
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Ra is a point then Ra* is called the polar line of Ra. A line is called
orthogonal to Ra* if and only if it passes through Ra. The projective
plane together with this polarity is called the elliptic plane II(R, f). The
main purpose of Part II of our article is a synthetic approach to substruc-
tures of elliptic planes over rings.

Let Ra* be a fixed line of II(R, f). Taking all points Rb such that
(a, b)f is a unit we obtain the point set of an affine plane II’(R). If R is
a field then II’(R) contains all points except the points of the line Ra*.
But in general the affine plane will constitute a rather small part of the
projective plane. This is one reason why the coordinatization of a (synthet-
ically defined) elliptic plane involves difficulties.

In order to characterize pairs of points and lines being uniquely
joined to each other we introduce a relation ~—. Ra~—Rb means that Rb
is an affine point when Ra* is the line at infinity. In our system of axioms
we use only one basic relation |, standing for incidence. The relation ~— is
derived from | (compare [10], where ~— is a basic term). Therefore,
however, we must restrict our study to commutative rings where every
non-unit is a zero-divisor. Then two points 4, B satisfy A+—B if and only
if there is a pair of orthogonal lines g, A4 such that g is the unique
perpendicular of 4 through A, and 4 is the unique perpendicular of g
through B. This property will supply the definition of — in our axiomatic
approach. If 4—B and A is an arbitrary line through B then there is
exactly one orthogonal of % through A4. This property will be our first
axiom. The second one is a richness condition, and the third one uses a
three-reflection-theorem. A geometric property called (M) will not be used
until we prove that 2 is a unit of the coordinate ring in the last section.

We need a weakened version of the property denoted by — which
holds for arbitrary distinct points. Being unable to offer a suitable axiom
that applies to any elliptic plane over a commutative ring, we use

(U) Given points 4, B. Then there exists a line 4 through B such that
exactly one line is incident with 4 and orthogonal to 4.

In an elliptic plane over a commutative ring of stable rank < 3
property (U) is valid. In particular (U) holds if any two points are
incident with at least one common line. This plain geometric property
would considerably facilitate our efforts. However we feel that this
restriction is not adequate since it excludes too many rings.

In an elliptic plane each point and its polar line define a reflection.
The basic concept of our system of axioms is a group G together with a
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subset S of involutions such that S generates G. The elements of S
represent reflections, hence simultaneously also points and lines. Within
this framework we formulate the axioms mentioned above.

The construction of a coordinate ring requires the existence of enough
automorphisms of the geometric structure. Within our axiomatic approach
the existence of sufficiently many suitable automorphisms need not be
explicitly presupposed but can be proved.

Reflections of an elliptic plane are elements of its orthogonal group.
Hence the study of elliptic geometry from our point of view is also a study
of orthogonal groups over rings.

PART 1. Metric Planes over Rings

Let R be a commutative ring with 1. Then the rank of a free
R-module is unique. Let R?® denote the free 3-dimensional R-module
R X R X R. We write R**:= Hom(R?, R). Rx is called a point (a line)
if x, y, z is a basis of R3 (of R**) for some y, z. The point Rx is incident
with the line Ry if xy = 0; notation: RxIRy or RyIRx. Let #( R) denote
the set of points and #(R) the set of lines. II(R) :== (P(R), L(R), ) is
called the projective plane over R. We shall write £ = #(R) and =
Z(R).

Every linear bijection R3> — R? induces a contragredient mapping
R3* — R3*_ This pair of mappings induces an automorphism (collinea-
tion) of II(R).

Let Rx, Ry € #. We write Rx distant Ry if x, y, z is a basis of R®
for some z. The analogous definition applies to a pair of lines. Take
Rx € # and Ry € . We say Rx distant Ry or Ry distant Rx if xy € R*
(group of units).

Next we collect some elementary lemmas. From each of them a dual
counterpart can be obtained by interchanging the words “point” and
“line”. 1.1 and 1.3 can be found in [7] and in [10]. Proofs of 1.2 and 1.5 are
given in [10]. 1.4 is due to [2].

I.1. Let A, B € . If A distant B then A, B lie on exactly one line g.
We write g = (A, B).

1.2. The following statements are equivalent.
(1) 4 distant B if and only if A, B have a unique common line.
(11) Every non-unit of R is a zero-divisor.
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1.3. Given A € P and g € #. The following statements are equivalent.
(1) A distant g.

(i1) A distant B and (A, B) distant g for any point Blg.

(ii1) A distant B and (A, B) distant g for some point Blg.

An n-tuple (ap,...,a,) € R" is called wunimodular if Ra,
+ --- +Ra, = R. In other words, B,a; + --- +B,a, = 1 for some B, €
R. Another equivalent statement is that ab = 1 for some b € R"*, where
a=(a,...,a,).

1.4. Any two points have at least one common line if and only if the
following condition holds. Let (a,8) € R X R. Then (a, B) = (Ay, A8) for
some A € R and some unimodular (y,8) € R X R.

1.5. The following statements are equivalent

(1) Let A € P and g, h € ¥ with Alg, h. Then j distant g, h for some
Jj €L withjlA.

(1) R has stable rank 2; i.e. if (a,8) € R X R is unimodular then
a + By is unimodular for some y € R (i.e. a + By € R*).

1.6. Suppose that R has stable rank < 3; i.e. if (a,B8,Y) €E R X R X R
is unimodular then (a + pvy,B + vy) is unimodular for some p,v € R.
Then for every A € P and g € L there is a line h such that h1A and h
distant g.

Proof. Every bijective linear mapping of R*® induces an automorphism
of II(R). Thus we may assume g = R[0,0,1], 4 = R(a,f,7). A set
h = R[x,w,n] € R>* is a line with the asserted properties if and only if

(+) (x,w) is unimodular and ax + Bw + yn = 0.

The triple (a, B, v) is unimodular since A4 is a point. By our assumption,
(a + py, B + vy) is unimodular for some p,» € R. Let x:= =8 — »ry,
w:= a + py, n:= va — uB. Then (+) holds.

A substructure II’ of an incidence structure II is called locally
complete if each line of I1 which is incident with a point of II’ is a line of
IT".

1.7. Let u € &. Define ' := {A € P: A distant u} and ¥’ := {g
€ Z: g distant u}. Then the substructure I1":= (', £’,1) of 11 = II(R)
is locally complete. For g, h € &’ define g||h ( parallel) if (g, u) = (h,u).
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Then for every A € P’ and g € L’ there is a unique h € ¥’ with h||g and
h1A.

The assertion follows immediately from 1.1 and I.3. II” is called the
affine plane (related to the line u).

ExaMmPLE. Let u = R[0,0,1]. Then #’ = {R(e, B,1): a,8 € R} and
&L = {R[a,B,Y]: &, B,y € R and (a, B) unimodular}.

Let f: R? X R® > R be a symmetric bilinear form. In the sequel we
assume 2 € R*. Call lines Rg, Rh orthogonal if (g, h)f = 0. For A C R?
let A*:= {x € R (a,x)f=0foreverya € 4).

If a € R3 satisfies (a,a)f € R* then R®* = Ra ® Ra*, and

(x,0)f .
(a,0)f

is the linear injective mapping with a = ¢ and x — —x for x € Ra*.
or, 1s called the reflection in Ra. oy, is an involution and satisfies
(X0g4 Yor)f = (x, y)f for x, y € R, ie. og, is orthogonal. oy, = o,
implies Ra = Rb.

0g,: R*> R, x- —x+2

1.8. Given a,b € R® with (a,a)f, (b,b)f € R*. The following state-
ments are equivalent.
(1) ok, and oy, commute.
(i) aog, = Aa for some N\ € R with \* = 1.
(il)) A\;a € Rb and X,a € Rb* for some A, A\, € R with \] = \,,
A=A, A +A,=1and A\ A, =0.
(iv) aog, € Ra.

Proof. Let c:= aog,. Then (*) 6x,0%.0r, = Or.- (1) = (1i). (aog,)0x,
= aog, implies acg, = Aa for some A € R. Furthermore, A> =1 as
(a,a)f = N(a,a)f. (i) = (ii). We have A*> =1 and aog, = Aa. Let
Ayi= 3(1 +A) and A,:= (1 — A). Then Aja € Rb and A,a € Rb*.
(i) = (iv). (iii) implies aogz, = (Aj@a + A,a)oz, = Aja — A\,a =
(A, — A,)a € Ra, hence Rc = Ra since og, is orthogonal. (iv) = (i)
follows immediately from ().

1.9. Let (a,a)f, (b,b)f, (c,c)f € R*. The identity o 0r, = Og, holds
if and only if any two of the vectors a, b, c are orthogonal. Then a, b, cis a
basis of R°.
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Proof. Let us assume that a, b, ¢ are pairwise orthogonal. Define
a* € R*, x » (x,a)f for x € R?; likewise b*, c*. We have aa* € R*
and ba* = 0 = ca*. Let A denote the matrix whose rows are the coordi-
nate vectors a, b, ¢, and let B denote the matrix whose columns are the
coordinate vectors of a*, b*, c¢* in the dual basis. Obviously,

aa*

hence A is invertible. This means that a, b, ¢ is a basis of R>. We have
Aoy Ogr, = —a = aodg,., bog Op, = bog,0p, = bog, = —b = bog, (cf. 1.8
(ii1) = (1)), cox 0, = ¢ = cog,. Therefore 64,0z, = og,-

Conversely, assume 0,0z, = 0z.. The reflections o,,, 0z, and also
Orp> Or. commute. From 1.8(iii) we obtain idempotent elements A, p € R
such that Aa € Rc* and (1 — A)a € Re, pb € Rc* and (1 — p)b € Re.
Pick x € Rc* . The assumption yields —xoy, = x0og,, hence

_(5x)f, , (ax)f,
" b.b)f T (a0

Furthermore, (1 — p)b, x)f = 0, thus (b, x) f = p(b, x)f. Also (a, x)f =
A(a, x)f. We conclude x € Rub + RAa. Thus we proved Rc* C Rub +
RM\a, hence R® = Rc ® Re* C Rc + Rub + RAa. Therefore ¢, pb, Aa is
a basis of R® This implies u, A € R*. Finally, since A and p are
idempotent, p =1 =X and a,b € Rc*

1.10. Let oy, = 0g,0re> Orpy = OryORes Ore = OrOr.- Lhen og,Or, 0.
= og,, Whered:= (b,c)f-a — (a,c)f- b+ (a,b)f- c. 64,0, is a reflec-
tion. Furthermore, if Ra distant Rb then Rc distant Rd.

Proof. Let d’:= (b',c")f-a" — (a’,c')f-b" + (a',b)f-c’. Let
s:= —(a,c)f-b+ (a,b)f-c. Then s € Ra* NRe™; cf. 1.9. Since a, a’,
e is an orthogonal basis (cf. .9), Ra* NRe* = Ra’. Also s’ € Ra, where
s’ is defined correspondingly to s. Thus (s, s”) f = 0. This implies

(a,c)f-(a’,b')f-(b,c')f+(a,b)f-(a’,c’)f-(c,b')f= 0.
Two similar equations arise from cyclic permutations of a, b, c¢. These
equations immediately imply (d,d’)f= 0. For x,:=a, x,:= b and
x5 := ¢ Gram’s determinant G := det((x;, x,)f) is zero, because a, b, c €
Re* = Ra + Ra’. Hence (d,d)f=(a,a)f-(b,b)f-(c,c)f — G € R*.
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Also (d’,d’)f € R*. Consequently e, d, d’ is an orthogonal basis; cf. 1.9.
We assert that oy, and o0g,0,0z. coincide on {e,d,d’}. Both of the
mappings fix Re. We have dog, = (b,c)f-a + (a,c)f-b—(a,b)f-c
since —(a,c)f-b+ (a,b)f-c<€ Rat. Two similar arguments yield
dog OriOr. = d = dog,. Similarly

d'og OriOr. = — (b, )f-a" +(a',c')f- b —(a’,b)f - ¢
since

—(a’,¢")f-b +(a’,b')f- ¢’ € Re* "Ra’* = Ra.

Finally we obtain d’og 07,0z, = —d’' = d’'og,.

Now let us assume in addition Ra distant Rb. 1.9 yields e+ = Ra +
Rb, and a, b, e is a basis of R>. Hence ¢ = Aa + pb for some A, u € R.
The coordinates of the vectors ¢, d, e in the basis a, b, e are

A, pn,0
(b,e)f+Aa,b)f, —(a,c)f + u(a,b)f,0
0,0,1,
respectively. The matrix M consisting of these three rows satisfies
detM = —X(a,c)f— p(b,c)f= —(c,c)f € R*.

Therefore, ¢, d, e is a basis. In particular, Rc distant Rd.

1.11. DeFINITIONS. For any a € R? let a* € R3* denote the mapping
x = (a,x)f. We define a sub-structure II(R, f) = (Z(R, f), L(R, f),
I) of TI(R):
Ra € ?(R,f) < a, b, cis a regular orthogonal
basis of R> for some b, c.
Regular means that (a, a)f, (b,b)f, (c,c)f € R*.

Rge #(R,f) = g=a* forsome Rac #(R,f).

Let Ra € #(R, f). The line Ra* is called the polar of Ra, and Ra is
called the pole of the line Ra*. The pair of mappings: Ra — Ra* for
Ra € P(R,f) and Ra* = Ra for Ra* € #(R,f) is a polarity of
II(R, f). A pair of points Ra, Rb € #(R, f) (a pair of lines Ra*, Rb* €
L(R, f)) is called orthogonal if RalRb*.

1.12. Let Ra € #(R,f) and Rb* € L(R, f). Then RalRb* if and
only if a, b, c is a regular orthogonal basis of R* for some c.
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Proof. If a, b, ¢ is an orthogonal basis then (a,b)f = 0, hence
RalRb*. Conversely let us assume RalRb*, i.e. (a,b)f = 0. Ra distant
Ra* (since aa* = (a,a)f € R*) and RalRb* imply Rb* distant Ra*; cf.
1.3(1) = (i1). Hence RcIRb*, Ra* for some Rc € #(R); cf. L.1. Any two
of the vectors a, b, ¢ are orthogonal. From Ra distant Ra* and Rb,
RcIRa* and Rb distant Re follows that a, b, c is a basis of R>.

1.13. Let (R, f):= {og,: Ra€ P(R,f)}. For Ra,Rb € P(R, f)

the following statements are equivalent.
(i) 0raOrs € L (R, f).

(i) RalRb*.

(1ii) Ra* L Rb*.

(iv) Ra L Rb.

(v) (a,b)f = 0.

(vi) a, b, c is a regular orthogonal basis of R® for some c.
This is obvious from 1.9 and 1.12.

I.14. TI(R, f) is called an elliptic plane if II(R, f) = II(R).

ReMARK. II(R, f) is an elliptic plane if and only if any homomor-
phism of R onto a field R induces a homomorphism of II(R, f) such
that the image II( R, f) is an elliptic plane in the usual sense.

Lemma. II(R, f) = II(R) if and only if (a,a)f € R* for every point
Ra of TI(R).

Proof. Let (a,a)f € R* for every basis a, b, ¢ of R®. Given Ra €
ZP(R). The usual vector space method can be applied in order to construct
an orthogonal basis a, b, c. Hence Ra € #(R, f). The mapping Ra -
Ra* is a bijection of Z(R) into £(R) since a regular orthogonal basis of
R?3 exists. Therefore £(R) = Z(R, f).

I.15. Let Ra, Rb € P(R, f). We write og,|0z, if 05,0z, € L(R, f);
cf. I.13. If o4, 0g,|0z, for a unique o,. € F(R, f) then we write o, uog,.
The abbreviation o, ,—0y, 1s to denote that o,,|0z.; 0x.|0rs OralOR, and
0R M0y, and op oy, for some oy, 05, € L(R, f).

PROPOSITION. Suppose that every non-unit of R is a zero-divisor and
(a,a)f € R* for every Ra € P(R) (hence II(R, f) = II(R); cf. 1.14).
(i) RalRb* < og, |0k, < Ra L Rb < Ra* 1 Rb* < f(a,b) = 0.
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(i) Ra distant Rb < there is a unique line of II(R) =II(R, f)
Jjoining Ra to Rb < Ra* and Rb* intersect in just one point < 65 M0g,.
(iii) Ra distant Rb* < Ra* distant Rb < f(a,b) € R* & ogz,—0pz,.

Proof. (1) and (i1) follow immediately from 1.2 and 1.13. The equiva-
lence of the first three statements of (iii) is obvious from the definitions.
The last one is a translation of 1.3 (iii).

1.16. Suppose that every non-unit of R is a zero-divisor, and that
(a,a)f € R* for every point Ra € P(R). Let 9:= 9Y(R, ) denote the
group generated by .= (R, [). We denote the elements of & by lower-
case letters and use the notations introduced in 1.15: a|b means ab € &, and
aub indicates that c|a, b for just one c. a—b is to denote that a|c; c|d; d|b
and aud and cub for some c,d.

& is invariant under inner automorphisms of 4, and (9,%) satisfies
the following properties.

(E1) If a—b and b|c then auc.

(E2) If a|b then c|a and cub and c—b for some c.

(E3) a, b, c|le implies abc € &.

(M) If a—b then ab is not an involution.

Proof. (E1) follows from 1.15(ii) and L.3(i) = (ii). (E2). Let oz,|ogp,
i.e. 0gx,0g, = Ogr, for some Rd € #(R). Then a, b, d is a regular
orthogonal basis of R?; cf. 1.9. Thus, a,b,c:= b + d is a basis of R>. In
particular, Rc € #(R) and Rc distant Rb. Hence opuo0y,; cf. 1.15(ii).
(b,c)f = (b,b)f € R* implies oy—0g,; cf. 1.15(iii). (E3) follows from
1.15(1) and 1.10. (M). Let og,—o0g,, hence (a,d)f € R*; cf. 1.15(iii).
Suppose that o, and oz, commute. From 1.8(iv) we have aoy, € Ra.
Now the formula for o5, immediately shows Ra = Rb, hence o,, = og,.

REMARK. If R has stable rank 3 (cf. 1.6) then (G, S) satisfies

(U) Leta,b € &. Then c|a and cub for some ¢ € &.

(9, &) is called the group of motions of the elliptic plane.

Let Z(R,f):= {a € Aut(R? f): deta = 1 and det(1 + a) € R*}.
The following result is a “representation theorem” for # (R, f).

1.17. Let (a, a)f € R* for every point Ra € #(R). Let Rp € P(R, f).

(a) Let «a € F(R, f) and Rg* € L(R, f) with Rg*1Rp. Then a =
OrOrOrn for some Rq € P(R,f) and Rh* € L (R, f), where Rh*1Rp
and Rg* distant Rh* and Rp distant Rq*.
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(b) Given Rq € (R, f) and Rg*, Rh* € L(R, f) such that Rg*,
Rh*1Rp and Rg* distant Rh* and Rp distant Rq*. Then o= 0z 0 O,
e (R, f).

Proof of (a). Let q:=p(a™* +1). det(a™! + 1) = deta™' -
det(1 + a) € R* implies Rg € #(R, f). Select Rj* € L(R,f) with
Rj*IRq. Let e = j(1 + a). Then Re* € (R, f), and the equation

0=(/a)f =G pa ) f+(J,p)f = (j(a+1),p)f = (e, p)f
implies Re*IRp.

R*>(q,9)f=(pa~t+p,pa~t +p)f

=2(p,p(1+a V) f=2(p,q)f.

Also, R* = (e,e)f = 2(j,e)f. Hence, Rp* distant Rq and Rj distant
Re*. In particular, Rp* distant Rj*, since Rj*IRq. Thus, Rd*IRp, Rj
for a unique line Rd* € Z(R, f).

palop,=(1/2-p(1+a)=1/2-p(1 — a7!))og,

=1/2-p(l+a)+1/2-p(1 —a 1) =p,

since p(1 + a ) =gand (p(1 + a™ ), p(1 — a™1))f = 0. Also jaog, =
J. Together with pog, = —p and jop, = —j we conclude pf = —p and
JB = —j, where B = og aog,. Therefore, x = —x for any x € Rp + Rj
= d* (apply Rp distant Rj). This yields (Rd)B = Rd, hence df = d as
det B = 1. Thus we proved B = oz,, i€e. @ = 0g,05,0z,. From 1.10 we
obtain 6g,0z, = OpOg,, Where Rh* is a line with Rh*IRp and Rg*
distant Rh*.

Rd™ Rp

. Rh*
Rj Re*

Proof of (b). deta =1 as a is a product of reflections. We want to
prove det(a + 1) € R*. Select q,, g, such that g, g,, ¢, is an orthogonal
basis. The assumption Rp distant Rg* implies Rp distant Rq,. Let
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Rd¥ € ZL(R, f) such that Rd*IRp, Rq,. Then Rd}* distant Rd} (apply
1.3, using Rp distant Rg* and Rgq, distant Rg,). By 1.10 there are lines

Re} through Rp such that og 0Oz, = 6g,0z.. The equation oz, 0z, =
OreOre, and Rd, distant Rd, imply Re; distant Re,; cf. 1.10. Hence
Re, + Re, = p* . We have
g(a+1)= 90 POrOrr T 4i = —qiOR4Or,, T 4; = 4iOr,, T 4, = Ae;,
where A, := 2(q,,e,)f((e;,e;)f)~! € R*. Hence
q*(a+1)=(Rq; + Rg,)(a+1)=Re, + Re,=p~.
Finally,
gla +1)=(q+ ‘I"Rp)ongokh +(“I°Rp°Rg°Rh +q)=Ap +w,

where w denotes the last bracket and A = 2(q, p)f((p, p)f) "' € R*.
From the reflection formula one infers that

w€2q—2—(—g-’—£)—f—p+Rg+Rh§p*.

(p,p)f
We proved R> = Rp + p* C R3(a + 1). Therefore det(a + 1) € R*.

PART II. Plane Elliptic Geometry in Terms of Reflections

1. The system of axioms. The main theorem. Our system of axioms
aims at elliptic planes over commutative rings. Under the assumptions of
1.16 of Part I the group of motions of such an elliptic plane will satisfy our
system of axioms, possibly apart from (U). If the ring has stable rank 3
then (U) will be fulfilled, but we do not know a nice property of the ring
which is equivalent to (U).
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The basic assumption. The pair (G, S) consists of a group G =
{a,B,...} and a set S = {a,b,...} # @ of involutions such that S is
invariant under inner automorphisms of G and S generates G.

NOTATIONS. a|b if ab € S. Let aub denote that there is a unique ¢
with c|a, b. Given a, b. If a|c; c|d; d|b and aud and cub for some ¢, d
then we write a—b. We say ¢ joins a to b if c|a, b. u, and | are invariant
under inner automorphisms.

AXIOMS.

(E1) If a—b and b|c then auc.

(E2) If a|b then c|a and cub and c—b for some c.
(E3) a, b, c|d implies abc € S

(M) If a—b then ab is not an involution.

(U) Given a, b. Then c|a and cub for some c.

Our last axiom implies the following two statements.

(U’) Let a € S. Then a|b for some b.

(U”) Given a, b. Then a|c; c|d; d|b for some c, d.

Axiom (M) will not be used until we study the group of motions in
§11. Moreover, in §2 and §3 only (E1), (E2), (E3) and (U’) will be used.

The main purpose of this article is the proof of the following theorem.
Simultaneously, the proof is a study of the group of motions of an elliptic
plane over a commutative ring.

THEOREM. Let (G, S) satisfy the basic assumption and (E1), (E2), (E3),
(M) and (U). Then there exist a commutative ring R, a bilinear form f:
R3® X R® — R, and a mapping o with the following properties.

1. Every non-unit of R is a zero-divisor, and 2 is a unit.

2. II(R, f) is an elliptic plane in the sense of Part 1.

3. o is a monomorphism of the group G into the group 9 such that
So C &, where (9, 5) denotes the group of motions of I11(R, f). Further-
more, (R, f) C Go.

2. Basic concepts. In this section we assume that (G, S) satisfies
our basic assumption and (E1), (E2), (E3) and (U’).

2.1. (a) |, — and u are symmetric relations on the set S. Furthermore,
they are invariant under inner automorphisms of G.

(b) alb and a, b|c implies ab = c.

(c) If a|b then aub.

(d) a—a for every a.
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(e) a|b and abc € S implies ab|c.
(f) Let d—e and a|d and bla, e. The ab—d, e.

ab

Proof. (a) and (e) are obvious. (b). Select d such that d|b, dua and
d—a; cf. (E2). (E1) implies bua. Thus, a, b|c anda, blab yields ¢ = ab.
(c) is a consequence of (b). (d). Select b € S such that bja; cf. (U”). Then
a|b; b|ab; abla and alab and b|a. Thus, a—a by (¢). (f). Our assump-
tions yield d|a; a|b; b|ab. (E1) implies dub. Finally, auab by (c). Hence
we obtained d—ab.

2.2. Let alb and clab. Then auc if and only if b—c. The figures
indicate four possible interpretations of “a|b and c|ab”.

a b
B 5 I ©
ab hb J;/c abL
c b[1a | a b |
ab a

Proof. We have b|a; alab; ab|c and buab; cf. (c). Hence, auc implies
b—ic. Conversely, the assumption b—c together with a|b yields auc; cf.
(E1).

2.3. Leta, b, c|d. Then abc € S and abc|d.

Proof. abc € S by (E3). Also a,b,cd € S and a, b, cd|d. Hence
a-b-cde S by(E3).

2.4. (1) Let a, b|g and aub. Then c|g and cua, b for some c.
(i1) Let a, b|g and a—b. Then c|g and cua and c—b for some c.

Proof. (i). Select r, s with r|a and s|b and r,sug and r, s—g; cf.
(E2). Then »—b and s—a, hence rus. Let v|r,s. We have vua, b and
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conclude v—yg and vug. Let d|g, v. v|r; r|a; alag and vua and ruag (as
r—g by 2.2) imply v—ag. Hence duag. Applying 2.2 twice we get
¢:= dgua and, likewise, cub.

ge
Proof of (ii). From 2.2 we know aubg. From (i) we obtain c|g with
cua, bg. Thus cua and ¢—b; cf. 2.2.
2.5. If ac = bd € S and aub then cud.
Proof. 2.2 yields a—bac = d, hence cud; cf. (E1).
2.6. Let a,b|c. If d|a, b and d—c implies d = c then aub.
Proof. We proceed in a number of steps.

(1) Let ab = cd and a, b, c,d|e. Suppose that g|c,d and g—e implies
g = e. If hla, b and h—e then h|ec, ed.

Proof of (i). (El) implies huc,d. Let m|c, h. Since m, a, b|h, (E3)
implies mcd = mab € S, i.e. mc|c,d. h—e yields eum; cf. (E1). There-
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fore, e—mc by 2.2. Our assumptions imply e = mc, i.e. ec = m|h. Simi-
larly ed|h.

(ii) Let ab = cd and a, b, c, d|e. Suppose that g|c,d and g—e implies
g = e. Then h|a, b and h—e implies h = e.

Proof. Let h|a,b and h—e. Then hlec,ed by (i). Select v such that
vle and vuc, ec; cf. 2.4 (i). (E3) implies w:= vab € §; furthermore, w|e
by 2.3. We claim

(*) If f|v,w and fi—e then f = e.

Namely, f|v,w and f—e implies f|ec, ed by (1) (take v, w, f instead of a,
b, h). Hence f, e|v, ec, and the assumption vuec yields f = e. Thus, (*) is
true. Applying (i) once more, we obtain h|ev, ew. 2.5 implies evuec, since
ev - v = ec - ¢ € S and vuc. Therefore, h|ec, ev implies h = e.

Now we are ready to prove the proposition. Let a, b|c and suppose
that aub is not true. Then e|a, b for some e # c. Select s with s|e and
sua and s+—a; cf. (E2).

st

9
a9 a /I7 e

C «

(E1) yields cus. Let t|c,s. Then p:= sab € S and ple by 2.3. The
equation tsp = tab € S shows p|st, and s—a implies stua; cf. (E1). Let
g|st,a. Since p,s, g|st, (E3) yields r:= bag = psg € S, hence b, r|ag.
Now a+—s implies cus, hence c—st by 2.2. As gjst, (E1) and 2.2 yield
cug and c—ag. Furthermore ag|a, b. The assumption in the proposition
implies ag = c¢. In particular, b,a, g|c, hence r|c by 2.3. We have
a,b, g, rjc and ab = gr. Furthermore, st|g,r and st—c and st # ¢ (the
last statement is true, since st = ¢ would imply a, s|c, e, contradicting aus
and ¢ # e). We apply (ii) and obtain an element d # ¢ with d|a, b and
dr—c. Thus we reach a contradiction.

Statement (ii) in the proof of 2.6 and the assertion of 2.6 yield
2.7. Let a,b,c,d|e and ab = cd. If aub then cud.
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2.8. Let a|c,e and b|d, e. If due and aub then cud.

Proof. aub and eud mean a—d by definition. Hence cud.

2.9. Let a,ble and c|a, f and d|b, f. If e—f and aub then cud. This
follows immediately from 2.8.

2.10. Let e|a, b; abc € S; aub and cue. Then c|e.

Proof. Let d:= abc; hle,c and g:= abh. Then gle and guh; cf. 2.3
and 2.7. We have g, hle, gd = hc, and guh. Hence e = gd = hc|g, h, ¢, d.

A similar argument shows

2.10’. Suppose that (U”) holds. Let ab = cd and q|c, d and aub. Then

qla, b. In particular, if ab = cd and aub and cud then q|a, b, c, d for some
q.

2.11. Suppose a|c, d; p|b, c; q|b, d; buc, d and puq. Then a—sb.
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Proof. The assumptions yield c—q¢q, hence aug. Furthermore, a|d;
d|q; q|b and dub. Thus a—b.

2.12. Leta,b € S. Then a—b < cub for every c|a.

Proof. “ = " 1is (E1). “ <. Select any c|a. Then cub by our assump-
tion. Let p|b,c. Select g|b such that gup; cf. (E2). Then ¢—g, hence
aug. Let d|a, g. Our assumption yields dub. Now b—a by definition.

Without success we made attempts to avoid (U) in our system of
axioms, since an analytic model may fail to satisfy (U). Observe that (U)
is valid in the particular case that a—»b or c|a, b for some ¢ holds for
every pair a, b; cf. (E1) and 2.2(c).

3. The elliptic plane and the pseudo-plane. Let again (G, S) satisfy
the basic assumption and (E1), (E2), (E3), (U").

In Part I we introduced the group of motions (¥, %) of an elliptic
plane over a ring. (¢, %) satisfies our system of axioms (except perhaps
(U)). Every pair consisting of a point Ra and its polar line Ra* corre-
sponds to a reflection a,,. With this identification, incidence and ortho-
gonality of the elliptic plane both correspond to the relation “|” on .#; cf.
1.15. Hence, in order to reconstruct the elliptic plane, we must assign both
a point and a line to each element of . Having this in mind we perform
the following construction.

Select a bijection = of S onto a set = § such that ZN G = @.
This bijection will be maintained throughout the rest of this article. Also
for the rest of this article we fix an element u € S. Let &= S, £":= (g
€ %: guu} and P = {a € #: a—u}.

We regard £ as a set of points, £ as a set of lines. A point a is
incident with a line g, abbreviated a|g or g|a, if a|g holds. Lines g, h are
called orthogonal, abbreviated g|h, if g|h holds. The incidence structure
(2, 2Z,)), together with this orthogonality, is called the elliptic plane
assigned to (G, S). The incidence structure (£’, £’,|) is called the affine
plane (with respect to u). (£, £’,]) is a locally complete substructure of
(2, %,), e if a € P’ and g € ¥ with d|g then g € Z’ (apply (E1)).
a is called the polar point of the line a.

Let 2:= {xy: x,ylu} and 2*:= {xy: x, ylu and xuy}. & is an
abelian subgroup of G; cf. (E3). For brevity, the elements of & will be
called angles. u is an element of & and is called the right angle. (More
precisely, the elements of & will serve as quantities assigned to pairs of
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lines by an angle measure.) We define an angle measure
WL XL 5D, w(g, h)=cd,
where c|g, u and d|h,u. (#’, £’,|,w) is called he pseudo-plane (of (G, S)
with respect to u). Two lines g, h € ¥’ are called pseudo-parallel if
w(g, h) = 1, and pseudo-orthogonal if w(g, h) = u.
An angle a € 2 is called regular if for all g,h € L’ w(g, h) =«
implies that g, & intersect in just one point of #’.

3.1. w(g, h)w(h, j) = w(g, j) and w(g, h) = w(h,g)~ " forall g, h, |
e

3.2. Given a € P, g€ ¥’ and o € D there is exactly one h € ¥’
such that alh with w(g, h) = a.

Proof. Let ¢ € S with c|g, u, and d:= ca. a—wu implies aud. Hence
h|a, d for exactly one h € S. Furthermore, h € #’.

3.3. D* is the set of regular angles.

Proof. Let g, h € ¥’ and a:= w(g, h) € 2*, hence cud (by 2.7),
where c|g, u and d|h, u. Then guh by 2.8, i.e. there is exactly one a € S
with a|g, h. We have h|d; d|u; u|c and huu and duc, hence h—c and
auc. Furthermore, a|g; g|c; clu and guu. Therefore, a—u, i.e. a € #’.
Conversely, let us assume a € 2\ 2*. We claim that a is not a regular
angle. Select ¢,d € S with ¢, d|u and a = cd. Then cud is not true, and
2.6 produces an element a € S with a # u and a|c,d and a—u. Thus,
¢,d|u, a, i.e. the lines ¢,d € %’ do not intersect uniquely in the pseudo-
plane and satisfy w(c, d) = a.

34. Letg,h € P’ anda € P’ witha|g, h. If guh then w(g, h) € D*.
The assertion follows immediately from 2.9.

REMARK. In 3.4 we were not able to replace the assumption guh by
the property that 4 is the only common point of g and 4 in the
pseudo-plane.

4. Products of two elements of S. From now on we assume that
(G, S) satisfies (E1), (E2), (E3) and (U) of §2.

4.1. Let ab = cd and aub. Then cud and ela, b, c,d for some e. In
particular, abc € S and a, ble and aub imply cle.



PLANE ELLIPTIC GEOMETRY OVER RINGS 355

Proof. Let e|a, b. Select f such that f|c and fue; cf. (U). Let rle, f
and s:= rab. Then s|e and rus; cf. 2.3, 2.7. Select g such that g|f and
qud; cf. (U). Then q, e, r|f, hence m:= qcr = qcabs = qds € S and m|f.

sur and euf yield s—f. In particular, mus. Also, ms = gd and qud.
Hence, g|m,s, q,d for some g; cf. 2.10’. From s—f and g|s follows guf.
Together with gud follows cud; cf. 2.8. Thus, ab = ¢d and aub and cud.
2.10’ yields immediately the assertion.

REMARK. 4.1 subsumes the statements 2.5 and 2.10.
Due to 4.1 the following definition makes sense.

DEFINITION. Let &:= {ab: aub}. To every ab € & corresponds a
unique ¢ with c|a, b, called the support of ab. Let #:= { ghq: guh and

support(gh)—q}. %= { pq: p—q}.

The following remarks are obvious.

aub if and only if ab € &, for any pair a, b; cf. 41. &, F and F#, are
invariant under inner automorphisms of G. Furthermore, %,C %. If
a €&, F orF, then a ! € & F, %,, respectively.

For arbitrary subsets &/, Z#C Glet ¥%:= {af: a €, B € #}.

42. &= SF=%S = SF, = %,S. Furthermore, support(xp)—x for
every p € & and every x € S.

Proof. If p € # then S¥> ap = p°-a € #S for any a. Thus the
second and the last equality are clear. Also %S 2 %,S. So it suffices to
prove

(1) #,S 2 & and

(2 &2 S#.

Proof of (1). Let ab € &. Then ac—b, where c|a, b; cf. 2.2. Hence
ab = c(ac)b € S%,.
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Proof of (2). Let g, h|p and guh and p—q. Let x € S. We claim
xghq € &, and y—x, where y:= support(xghg). Select f|x with fup; cf.
(U). Applying (E3) one can assume g|f. p—q yields huq. Let r|h,q.
From 2.8 we obtain fur. Let s|f,r. Then t:= xgs € S and ¢|f. Also
v:= shq € S and v|r. We have r|v,s; f|t,s; vus (namely vs =gh € &
since g—p) and fur. Hence tv € & by 2.8. Therefore, xghq = xgsshq =
tw € &. From g|p; pl|h; h|r; guh; pur (since p—gq) follows g—r. Thus
xt = gs € &. We have observed vus and fur. 2.8 yields fuy. Together
with x|f; flt; t|y follows x—y.

>4
—_
~<< j

4.3. Let ab = cd. If a—b then c—d. In other words: cd € %, if and
only if c—d, for any pair ¢, d.

Proof. Let g|c. Then gd = (gc)ab € S, = &; cf. 4.2. 2.12 yields the
assertion.

44. Fy = SSNF.

Proof. Let abe #. Let cla. Then ¢b = ca - ab € S#= &, hence
cub; cf. the remarks preceding 4.2. 2.12 yields the assertion.

45. F={ye G:yxeforall x} = {y € G: xy € & forall x}.

Proof. “C ” is an assertion of 42. Let y be an element of the
right-hand set. Select an arbitrary q. Then yq = gh € &. Let p|g, h. We
want to prove p—q. By 2.12 it is enough to verify xg € & for any x| p. So
let x|p. We can assume k& = x; cf. (E3). Then xqg = gy = (vg)® € & by
our assumption.

REMARK. We shall prove a “representation theorem” for %; cf. 6.4.
This theorem is the synthetic counterpart of 1.17.
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5. G =4&S. We continue to assume that (G, S) satisfies (E1), (E2),
(E3) and (U).

51. & C S& = 68.
Proof. Let a, B € & and a:= support(a), b:= support(B). Due to

(U) we can assume a = gh, 8 = rs, h|r and hub. Then aff = g(hr)s and
b—nhr. Hence suhr, and aff € S¢.

a e /o(, h nr
9 r
B
S A
< b

52. 88§ c &6 C &8S.

Proof. Given a, b, c. Select g, h such that g|c; gub; h|b, g; cf. (U).
From 2.4(i) and 2.2 we obtain v such that v|h and v—>b, g. Then vugh
and vuc since v—g and g|c. Thus,

abc = (abv)(vc) € SFEC EE;
cf. 4.2. 5.1 finally yields the conclusion abc € &S.

C
g
\A/‘ gh b

@-

53.G = SSS8S = &SS.

Proof. 5.1 and 5.2 yield
SSSSS C &S - SS C EES C ESS € SSSS € SSSSS.

This proves the assertion.

54.G=¢6S = S6.
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Proof. Let a € G. We can write a = fcd, where 8 € &; cf. 5.3. Let
s := support(B). Select ¢ such that ¢|c and rtus; cf. (U). Then 8 = ab for
some a, b with b|s,t and a—t. Select g such that g|d and quz. Using
(E3) we obtain bc = b’c’, where b’,¢’|t and ¢’|q. qut implies g—ic’, and
a—t implies aub’t. Thus,

a = abcd = ab'c’d = a(b't)(tc')d € £6 C S¢&;
cf. 5.1.

5.5. If (M) holds then C; = {a € G: x* = x for every x} = 1.

Proof. Let a € C;. We have a = B¢, where B € &; cf. 5.4. Select ¢
such that t|c and rus:= support(f); cf. (U). Then 8 = ab for some a, b
with b|s,¢. t* =t yields t* =1¢, hence ¢t = a by (M), since t—a. Let
d:= ab. Then d € S and ¢, d|a and a = dc. Select e such that e|d and
eua and e—a; cf. (E2). Then euc. Let s|e,c. We have e—cs and
e=¢e"=e“= e, hence e = cs; cf. (M). Finally, from a, e|d,c and aue
follows d = ¢, 1.e. a = 1.

6. A class of automorphisms of (#, Z, |).

6.1. DErFINITION. To every y € # (cf. §4.1) we define a mapping 7. :
S — S, x — support(xv); cf. §4.1. We collect some properties of T..

62 Lety e #.

(a) x—xT, for every x.

(b) T, is a bijection.

(¢) alb = aT |bT, t for all a, b. In other words: a|bT, < aT,,-1|b.
(d) aub < aTubT, foralla, b.
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Proof. (a) follows from 4.2.

(b) Given y € S and y = ghq with p|g, h and guk and p—q. We
want to show y = support(xy) for just one x. Consider the figure of 4.2.
From (U) we obtain r, v such that v|y and vuq and r|q,v. Then pur
since p—q. Using (E3) we may therefore assume h|p,r. Let s:= hqu.
Then s|r and sh = vq € &. From suh and rup we obtain s—p, hence
sug. Let f|s,g. guh and pur yield fur; cf. 2.8. Together with suv
follows f—u, hence fuy. Let t|f, y. Now x:= tsg satisfies xy = fv and
support(xy) = support(fv) = y. Let us assume support (x’y) =y for
some x’. Perform the construction in the proof of (2) in 4.2 with
g’ h',r',... instead of g, h,r,... Then x’y = ¢tv" and xy = w, where

b
..’

t',v,t,vly =y’ Let t":= tv'v. Then t”|y and t"x" = tx € & as y—x
and t|y. Therefore ¢,¢”|y, f. Furthermore, yuf as y—x. Hence ¢ = ¢”
and x = x’.

(o) Let x:=aT, and y:= bTi; ie. x = support(ay) and b=
support( yy !). The foilowing statements are equivalent. a|b; yy a € S;
ayy € S; ylx.

(d) follows immediately from (b) and (c).

6.3. For every y € # the mapping X — %, g+ gT induces an
automorphism of (2, %, ).

Proof. Define a mapping # —»> £, % — J, where y = xT 1. The pair,
consisting of the two mappings, is an automorphism of (£, %, |); cf.
6.2(b) and (c).

64. Let y E F andp € S.

(a) Let ghq = v = g'h’'q’, where g, h, g’ , h’|p. Then gh = g’h’ € & and
q=q'—p.

(b) Y = Bq for some B € & and q such that support(B) = p and p—q.

Proof. (a) We have gh = yq € #S = &; cf. 4.5.
qT,~+ = support(gy ") = support(hg) = p = support(h’g’)

= support(g'y~!) = ¢'T,-.

Hence ¢ = ¢’—p by 6.2(a) and (b).

(b) Let 8§:= y~'. The mapping Ty is surjective; cf. 6.2(b). Hence
qTs = p for some g; i.e. support(f8) = p, where B = ¢6. Furthermore,
pr—q by 6.2(a).
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7. Pseudo-semirotations. We refer to the notions and notations
introduced in §3. In particular, u € S is a fixed element, and the point set
of the pseudo-plane is ' = {4: a—u}; the set of lines is £’ = {g:
guu}.

Our next aim is to show that the pseudo-plane is a generalized
semi-rotation plane in the sense of [8].

Let a« € 9 and ) € #'. The pseudo-semi-rotation H = H, , assigned
to the center y and the angle « is a mapping of %’ into .#’, where xH is
the line passing through the foot of the pseudo-orthogonal of x through p

~<>

xH

such that w(x, xH) = a. This definition yields immediately:

71. w(x,xH) = a for every x € ¥’ and H = H, ,. In particular,
w(x,z) = w(xH, zH) forall x,z € ¥’.

72. Let a,,a,,a, € ¥’ and X € P’ with a,, a,, a,|X. Let us assume
that w(a,, a,) € @*. Then every pseudo-semi-rotation H satisfies a,H |z,
where 2 € P’ is the unique point with 2|a,H, a, H.

Proof. Let H = H; ,. For h € £’ let i’ € S be the element with the
property h'|u, h. For i =1,2,3 let ¢; = a,H and let b, € ¥’ denote the
pseudo-orthogonal of a; through p. Let d; denote the foot. With these




PLANE ELLIPTIC GEOMETRY OVER RINGS 361
notations the definition of H implies for i = 1,2, 3:

(1) a’b!=u and ajc/ =«
x;:=xa,d; €S asx,a},d;|a, (cf.(E3)),

1

yi=ybd, €S asy,b,d/lb,
and fori = 1,2
(2) z;i=zcld, €S asz,cl,d;|c.

Furthermore, aja) € 2*.
An elementary calculation yields

(3) xxy=y =2z, and Xx,x;=y,y; = z,2;,
where z; = zcid, but z; € S is still unknown.

We have a,|d,, x,; b,|d,, y,; a,b, € & (since w(a,,b,) = u € P*)
and x,d, = xa, € & as a)|u and u—x. 2.8 implies

(4) X, 0, €6.

We apply 2.8 once more, using the relations a,|x, x;; a,|x, x,; xx; =
ajd, € & (since aj|u and u—d,); a,a, € & (since w(a,, a,) € 2*). Thus

(5) X%, € 6.

Let e:= support(x,y,). (3) implies x,y,x; € S and x,y,y; € S. (4
and 5.1 yield x,, y;|e. Therefore, support(x,x,) = e. Since x;x,z, € S we
obtain z,|e; cf. 4.1. A simple calculation involving only (1) and (2) yields
zy = z,y,y;- We have proved z,, y,, y;le. Hence z; € S. This stands for
zcidy € S. Moreover, c3d; € & and c¢; = support(cid;) since cjju and
u—d,. 4.1 implies z|c;.

7.3. The following property holds in the pseudo-plane. (A) There are
regular angles a, B,y € 2* such that a8 = 7.

Proof. Select g, h, j with g, h, jlu and g|h and jug, h. This choice is
possible by 2.4(i). Let a:= gj, B:= jh, y:i= u. a, B, y fulfill the desired
property; cf. 3.3.

7.4. To any x there exist a,, a, such that a,, a,|x; aua,; a,, auu; and
cla, with c—u, a, for some c.

Proof. From (U) we get a,|x with auu. Let r|u, a,. As a;r—u (cf.
2.2) there is c|r with c—u and cuayr; cf. 2.4(i1)). From c¢—a, and a,|x
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follows cux. Let a,|x, c. We conclude aua, and auu; cf. (E1).

7.2 and 7.4 assert that every pseudo-semirotation H = H;, , induces a
(unique) mapping £’ —» £’ such that g|a implies gH|aH for each
g€ and a € #’. Hence we shall regard a pseudo-semi-rotation as a
mapping of ¥’ and #’.

It is easy to check that H; , is injective if and only if ua € 2%, i.e.
a €F. Then H=H,  is already a bijection (of &’ and P’) with
gla < gH|aH. '

75. Let a €DNF and y € P'. Then gH, , = ¢T,,'T,,, for any
g € P’. Each bijective pseudo-semirotation can be uniquely extended to an
automorphism of (P,Z,]) (the elliptic plane where the orthogonality is
not taken into account).

Proof. yu € # since y—u. Write a = bc with b, clu and u = ab.
Then ua € & by 4.2 and ua = ac, so auc. Further, yua = (acy)’ € #,
since support(ac) = u—y. Let H:= H; ,, g€ ¥’ and h:= gH. Take
g’|lu, g and h'|u, h. Then a = g’h’. Let ¢ denote the pseudo-orthogonal of
g through  and let f be the foot. Then y, g’u, f|c, hence z:= f(g'u)y €
S and z|c. We have zyu = fg’. Therefore 2T, = g. Now zyua = fg'a = fh’
yields zT,,, = support( fi') = h. The second assertion follows from the

first one together with 6.3 and 7.4.

>
N
&
«
[]
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8. Transvections. Let g,h €.%’. We write gw)h if x|g and x»«h;
or x|h and x—g for some % € #’. Clearly, g(w)h implies guh.
We need this technical term in the proof of 9.1.

81. Letg,h € &£’ and a € P’ such that a|g, h and guh. Then gW)h.

Proof. Let b|g,u. Then bua. Select c|g such that cua, b; cf. 2.4(i).
Then ¢ € #’ and c—h.

8.2. Leta € S. Then g, h|a for some g, h € L’ with gu)h.
This is a reformulation of 7.4.
8.3. Let g, h|u; a|h; auu; guh. Define /"D recursively:
N O = {4} U{Zg} u{pe?: ylg} u{xeL’ x|u},
N D = () U{jz € P y|x,, x, and x,(W)x, for some x,,x, € ./V(’)}

U{x € £": x|y, y, andymy, for some,, 9, € /D }.
Then /'® =P U P’

Proof. Let ¢:= ug. Select b|g such that b—u and buu; cf. (E2). Then
cub,u and b,& € #°©. Then aub since a—g. Let e|a, b and let f denote
the pseudo-parallel of e through #&. Then gue, f; e—u; c—e, f.

(1) (peP: yle} cHD,

o OO)>

Proof. Let yle. As u—e there is a unique x € ¥’ with x|#, . Then
x(We.Frome € /D and x € &/ it follows that j € 4.

2) (5 € ylfand y—u) € HO.
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Proof. Let y|f and y—u. Then x|y, ¢ for a unique x. We have c—e,
hence z|e,x and zuc for some 2 € #. Then 2 € 4P by (1). Also,
¢ € /Y and zuc. Hence x € #®. ¢c—f implies xuf. Select w|f such
that w—u and wuy; cf. 2.4(ii). Then # € 2’ and w—x. Hence f(u)x.
Together with f € /@ follows y € 4@,

(3) {xe&Z: y|f,xand z|e, x for some y, z with y—u} C 4",

Proof. From yuuf and fue follows y-—e, hence yuz. Together with
(1) and (2) this yields x € #"©.

(4) P CNO.

Proof. Let y—u. Select jlu with juf and j—f; cf. (E2). Let m:= ju.
Then muf. Let ;' and m’ denote the pseudo-parallels of j, m, respec-
tively, through the point . Then any two of the lines e, j’, m’, and also
of the lines f, j’, m’, intersect uniquely in a point of the pseudo-plane.
Therefore, j/,m’ € #°®; cf. (3). Also, j'um’. Therefore j’(@m’ by 8.1.
Thus, y € & ©.

Clearly, (4) implies %’ € &, Therefore ZC A&/ ® by 8.2.

8.4. DEFINITION. Let 2 € # and g € % such that g|z. An automor-
phism 7 of (£, Z,|) is called a transvection whose center is 2 and whose
axis is g if X7 =% and yr =y for any point X of g and any line y
through 2.

8.5. Let z|g and a, b, z|h such that a, buz and hug. There is at most one
transvection T having axis g and center % such that at = b.

Proof. Suppose, 7, and 7, satisfy the above properties. We apply 8.3
with z instead of u. The automorphism 7:= 7,7, of (2, Z, |) fixes each
point and each line of #"©. 8.3 implies that 7 is the identity on the set
NP

8.6. Let z|g and a,b,z|h such that a,buz and hug. There is a
transvection 1 of (P, ZL,|) (cf. 8.4) whose center is 2 and whose axis is g
such that ar = b. 7 is unique. Moreover, if yug then ytug for any line

y € %; and if x—g then x'—g, where Xt = x', for any point X € P.

Proof. 8.5 states the uniqueness.
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In order to construct 7 we may assume g = u, since our notion of the
pseudo-plane may be introduced with respect to an arbitrary element
g€ S. Thena,be P and h e &L’.

Hn

Secondly, we may assume hju. Namely, let 4’ denote the pseudo-
parallel of & through #; let a’, b’ be the feet of the pseudo-orthogonals of
h’ through c‘z},ﬁ, respectively. If 7 is a transvection with center 2 and axis
u such that a’r = b’ then clearly = will also fulfill 47 = b. Let m:= bh.
Select v such that v|m; v—h; vuh; cf. (E2). Then vua, u and v—u. Thus,
b€ P and rla,v for some r with ruh. a:= w(r,m) € #, N 2. Let
=TT, JTiLT,,; cf. §6 and 7.5. We regard 7 as a mapping £ — Z. 7

vua® bua
\
r S TQ \ u
S \ )
-[Z

. AN
A
u

.
u’

<>

induces an automorphism of (£, Z,|); cf. 6.3. Let 7 also denote this
automorphism. We contend that 7 satisfies our requirements. 7.5 implies

(1) H, H; , is the restriction of 7 to the pseudo-plane (#’, £’,)).
From this we conclude

(2) yr =y forany y € &’ with y|z,

3y pselfdo-parallel y7 forany y € &/,

(4) ar = b.
Since uT,.! = v, vT,,, = u, uT;,}, = b and bT,, = u one obtains
(5) ur = u.

The statements (3) and (5) imply

(6) X7 = x for each point % of the line u.
Finally, we want to prove

(7) yT =y for each line y through the point 2.
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(If y is an affine line or if y = u then this is clear; cf. (2) and (5). For an
arbitrary y however the arguments are not at all obvious.) Let y|z. We
have h = uz = bm. Hence mz = bu € ¥ and yum. Let e|y,m and
y’:= yT,.}. The identity

support(em bu) = support(ez)

together with e, z|y yields y’ = em. Furthermore, y’,b,v|m. Hence,
y”:= y’bv € S and y”'|m. Thus, by the above observation,

support( y”vu) = support( y’bvou) = support( y’bu) = y.
In other words, y” = yT,.'. We have proved

YT AT, oo = »"'T, . = support( y”vua) = support( y’bvvua)

vua vua

= support(y'bua) = y'T,,, = yT,,'T,

bua*

This means that yr = y.
The additional assertion of 8.6 is clear from (1).

9. Coordinates. If R is a commutative ring with 1 then II(R) =
(2(R), Z(R),I) will denote the projective plane over R, II'(R)=
(Z(R), £’(R),I) will denote the affine plane over R, viewed as a
substructure of II(R), where R[0, 0, 1] is the line of infinity.

9.1. There is a commutative ring R with 1 and an embedding & of the
pseudo-plane (P', ¥’,|) (viewed as an incidence-structure) into the affine
plane 11'(R), and an element k € R* (group of units) with the following
properties.

(1) #Z’¢ = #'(R). R[0,1,0], R[1,0,0] € ¢, u§ = R(0,0,1).

(i) Dy:= {R(a,B): &, B € R and a* + kB* € R*} is a commutative
group, where multiplication is given by

R(a,B) - R(y,8) = R(ay — kB8,ad + By).
Let m: Z'(R) X #Z'(R) — D, denote the mapping
(R[a,B,€], R[Y,8,7]) » R(kay + BS,ad — BY).
Then m is an angle measure of the affine plane I1'( R). The mapping
©: 9 D,, w(g,h)— m(gé, hé), where g, h € ¥,

is well defined (i.e. does not depend on the choice of g, h). t is a monomor-
phism of the group 2 into the group D,. Call Q € D, regular if any two
lines 2, T of II'(R) with m(Z,1") = Q intersect in exactly one point of
II’(R). Let D} denote the set of these regular angles Q. Then 9*. = D§.
Furthermore, ut = R(0,1).
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(iii) Every non-unit of R is a zero-divisor.

(iv) Let a € P’ and g € P’ be such that a — g. Then a§ distant g§.
(“distant” is defined in Part I.) Let g h €%’ and g)h. Then g¢ distant
h (definition of (i) see §8). Let 4,b € 2’ and aub. Then a¢ distant Y3
Ifa, b € &', gla, b for some g and a§ distant b§ then aub.

Proof. First, let us recollect
(1) If ylaand 4 € #’ then y € &¥’.

The main result of 9.1 will be obtained from 5.5 of [8]. We apply this
theorem to the pseudo-plane. In [8], the technical denotion “a fern g” for
apoint @ € #’ and a line g € £’ means: Each point X € &’ of g has a
unique joining line y to 4; and w(g, y) € @*; i.e. g, y define a regular
angle.

(2) “a fern g” if and only if a—g, foranya € #’ and g € Z’.

Proof. Suppose that “4 fern g” holds. Let 4 denote the pseudo-or-
thogonal of g through 4. Let ¢ be the foot. The assumption together with
(1) yields auc and w(g, h) € 2*. 2.9 implies hug. Hence a—g. Con-
versely, let us assume a—g. Let X € &’ with x|g. Then aux. Therefore,
yla, x for just one y € #’; cf. (1). Furthermore yug. 3.4 yields w(g, y) €
9*.

(E) Given g € #’. Then “a fern g” for some a € #’.

Proof. Let h|u, g. Then gh—u. Select a such that a|h and augh and
a—au; cf. 2.4(ii). Then a € #’ and a—g, hence “a fern g”; cf. (2).

Now we have proved that the pseudo-plane fulfills all of the require-
ments of 5.5 in [8]. This theorem yields the main assertion of 9.1, together
with (i) and (ii), after an easy conversion into projective terms. This
conversion is carried out in the following small type section.

5.5 of [8] provides an embedding { of (#’,.Z’,|) into a structure (A, R), where 4 is an
algebra over the commutative ring R such that 4 = R + Rw for some w € 4 with
k:= —w? € R*. The point set of (A4, R) is A. A line is a set a + Rb, where a € A and
b € A* (group of units of 4). Incidence is given by inclusion. The angle-measure of a pair
of lines is M(a + Rb,c + Rd):= R*b™'d € A* /R*. The mapping A,,: 4*/R* - D,
R*(a + Bw) = R(a,B) is an isomorphism (D, is defined in the theorem). R*(a + Bw)
€ A* /R* is regular if and only if B € R*; cf. [8], 2.1. Let A denote the following
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embedding of 5#(A, R) into IT'(R).
e+ nw - R(e,m,1)

(y+6w)+R(a+ Bw)—= R[-B,a,—ad + BY].

Then (M(g, h))Ay = m(gA, hA) for any two lines g, h of (A4, R) (m is defined in
9.1(i1)). Let £:= {A. Now we obtain 9.1 together with (i) and (ii) from Theorem 5.5 of [8].

Proof of (iii). Suppose p € R\ R*. We have g¢ = R[0,1,0] for some
g€’ and af = R(p,0,1) for some a € #’; cf. (i). A line h € ¥’
through a will never satisfy A—u; namely, suppose the contrary. Then (2)
implies “% fern h”. From 5.5 and 5.2 of [8] we obtain R(Ap,0,1) =
R(1,0,1) for some A € R; a contradiction. Consequently, uua fails to
hold. Hence j|a, u for some j # g. Let j§ = R[v, x,0]. Then » # 0 and
pr = 0.

Proof of (iv). Pick @ € #’ and g € ¥’ such that a—g. We want to
prove a§ distant g€. Let h be the pseudo-orthogonal of g through a. Let
b denote the foot. Then “a fern g” by (2). 5.5 of [8] implies that a¢ and b&
have a unique joining line (in the affine plane IT’(R)), hence also in
II(R) and that g&¢ and h§ intersect uniquely in II’(R), hence also in
II(R). Due to (iii) this yields a¢ distant b¢ and g¢ distant h¢; cf. 1.2.
Thus a¢ distant g§; cf. 1.3.

Let g, h €%’ and g(w)h. We want to prove g distant h§. We can
assume a—h and a|g for some a € #’. Then a§ distant h§ by the first
statement of (iv). In particular, g¢ distant hé.

Let g,h €%’ and a|g, h for some a € #’. If guh then gw)h (cf.
8.1), hence g¢ distant A¢ according to the above proof.

Let @,b € #’ and aub. We assert af distant b¢. Let gla, b. Select
h|b such that hug. Then a—h and h € #’, hence a§ distant h¢; cf. first
statement of (iv). In particular, 4§ distant be.

Conversely, let us assume 4, bew, gla, b and a§ distant b&. Then
aub, since h|a, b implies h € ¥’ and g&, h&lag, be, hence g¢ = hé and
g=h.

REMARK. Let Q@ = R[a;, a,, 03] € £’(R) and w = R(w;, w,) € D,.
Then the line I':= R[ayw;-a,0,, a,0, + kayw,,0] satisfies m(Q,T') =
R(w,, w,).

9.2. Let g|r and j|s and r, h, s|u (hence rhs € S). Suppose guu. There
is a unique d € S with d|gr, rhs. Furthermore,

ghj € S = d|Js.
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rhs

Proof. We have a:= ghj = (gr)(rhs)(sj). If d|gr, rhs, sj for some d,
(E3) yields a € S. Conversely let us assume a € S. guu implies u—gr
(cf. 2.2), hence rhsugr. Let d|rhs, gr. Then d|sj by 4.1.

9.3. (Algebraical description of pseudo-semi-rotations). Let y € &’
and w € 9. Let § = R(yy, y5,1) and wi = R*(w,,w,). Let H=H, .
Then

w ke, —kwy,
(gH)£=R[g17g2’g3] W @ W1
0 O W,

for every g € £’ with g§ = R[g,, 85, 83) If w € F then w, € R*; hence
the linear transformation given by the matrix is bijective.

Proof. Let j denote the pseudo-orthogonal of g through j. Then
J§ = R[g,, —kgy,v], where y = ky,8, — »,8,. The foot § is

qé = R(_Ygz — kg183,781 — g2g3,kg12 + 322)

Obviously the line £ obtained by multiplication of g§ with the above
matrix is incident with §§ and satisfies m( g¢, 2) = R(w;, w,).

q
RLg, kg, ] AN
- Rlg,9,9,]
DR
R[y1 ,yz’ﬂ
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If w €% then wu € &. Thus wu is a regular angle of (#’, Z’,)).
Hence, (wu)t = R(—kw,,w,) is a regular angle of II’(R); cf. 9.1 (ii).
This means that w;, € R*.

94. Let g,h,j €L’ and hlu. Let g6 = RI', h{ = RZ, j¢{= RQ,
where T, 3, Q € R3*. Then

ghi € S « det(T',Z,Q2) = 0.

Proof. Let rlu, g; slu,j and t:= rhs. Let d|gr,t; cf. 92. Let I =
[gl’ 82> g3]’ 2= [hl’ hz,O]’ Q= [j17 j27 .]3] We have

(hs)" = R(hzjl = hyjys gy + k—lhzjz)

and d = gH, , . 9.3 yields d¢ = RA, where

it,hs*
A= [—g1h1jz + gihyji — 8k — k_lgzhzjz,
g hyj1 — &hijy + &ihaja + kglhljl’gB(h2j1 - hljl)]'
Moreover, (js)& = RO, where 8 = (kjy js, j,js, kj? + j?). Hence, A6 =
(kj2 + j#) - det(T, =, Q). Since kj? + j? is a unit, the following statements

are equivalent: d|js; A8 = 0; det(T', =, Q) = 0. Now, 9.2 yields the asser-
tion.

N
A
u

95. Let g, h, j €L’ and g, h|c and guh. Let g = RZ, h§ = RQ,
jé = RT, where 2,2,T € R**. Then j|c < det(Z,Q,T) = 0.

Proof. Let r|g,u and s|h, u. Select y|h such that yus and y—s; cf.
(E2). Then y € #’ as y—u. From y—s and s|u follows yuu. Let d|y, u
and e:= du. s—y and y|d implies sd € &, hence a:= se € #. Let
H:= H;, H is a bijective pseudo-semi-rotation; cf. 7.3. Moreover,
hH = d|u. From 9.3 we obtain a linear bijective mapping ¢: R** — R3*
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such that (gH)£ = R(Zy), (hH)£ = R(QY), GH)E = R(TY). 9.3 yields
(1) gH-hH-jHE S « det(Zy, 2y, TY) =0 < det(Z,2,T) = 0.

We can view H as an automorphism of the incidence structure (£, %, |);
cf. 7.5. Since ¢ is the only intersection of g and A, ¢H will be the only
intersection of gH and hH. Therefore, 4.1 implies

(2) jl¢e jH|¢cH < gH-hH - jH € S.
(1) and (2) together yield that j|¢ holds if and only if det(Z,Q, I') = 0.

&f
To<> O>

>

yoo

9.6. There is a unique extension of & to an embedding of (P, ¥, |) into
(Z(R), £'(R),]).

Let & also denote this extension. If c € ¥’, a,b|c and aub then a¢
distant b¢.

Proof. Let ¢ € #. According to 7.4 we may select lines g, h € &’
such that g, hlc and g(W)h. Let g§ = RZ and h§ = RQ. 9.1 (iv) implies
g€ distant h¢. Thus, g€ and k¢ intersect in just one point R(Z X Q) of
II(R). Let j €%’ and j¢= RI. By 9.5 the following statements are
equivalent.

jle; det(Z2,2,T)=0; JjE¢IR(E X Q).

Hence we can define ¢§:= R(Z X ), and there is no other choice.

Proof of the last statement. Let v|c,u. Select w such that w|v and
wr—ic, u; cf. 2.4. Then w € #’ and wua, b. Let d|a,w and e|b,w. Then
d,e € £’ and w§ distant c§; cf. 9.1(iv). In particular,

(1) wé distant a¢;
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cf. 1.3. We have due (since d—b) and d,e € ¥’ and w € #’; hence
d(w)e by 8.1 and

(2) d¢ distant e§;

cf. 9.1(iv). (1) and (2) implies a¢ distant e; cf. 1.3. In particular, a¢
distant b§.

9.7. Finally, we want to attach coordinates to every line of the elliptic

plane.

Let j € Z.

Select r such that r|j and ruu (cf. (U)). Let hlu,r and b:= hu.
Select g|u such that guh and g—h.

A

(1) There is a transvection 7 and a point a with the following
properties. alh and auu; #@ is the center and g is the axis of 7; ar = b,
jre &’

Proof. Select ¢ such that t|h and ruu and r—u; cf. (E2). Then tub.
There is a transvection 7 of (2, &, |) with center & and axis g such that
#r =7, cf. 8.6. Then jr €%’ as jr|f and f € P’. Let 4:= br'. Then
alh and a—g by 8.7, hence auu.

For the rest of this section we select 7 and a according to (1).
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(i1) There is an invertible matrix A such that

(+) (9r)é=(96)4, and  (xx) (y7)é=47"(y§)

for every point y € 2 and every line y € &£’.

Proof. Observe that a point y € P, where p§ = R(y,, »,, 3), lies on
the line u if and only if y, = 0.

Let g‘g = R[gl? gZ’O]a a¢ = R(al, a,, a3)’ i)g = R(al’ azaO), hé§ =
Rla,, —a,,0]. Then h(w)g by 8.1, hence h¢ distant g&; cf. 9.1 (iv). Thus
we can assume a, 8, + a,8, = 1. Let

1 0 -—a;g
A=10 1 —asg, |-
0 0 1

We apply 8.3 in order to prove (*) and (*#*). According to 8.3 it is enough
to prove (*) and (*x) for p € /D NP and y € /D N Z’, respectively,
(we use the notations introduced in 8.3). We proceed by induction.

For i = 0 the assertion is easily verified.

Now let us step from i to i + 1.

Let p e/ DNP If ) € /D then there is nothing to prove.
Otherwise, |x;, x, and x;(@)x, for some x;,x, € A/ N.ZL’ Then x,¢
distant x,§ by 9.1(iv), and (x,7)§ = A Yx ;€) by our assumption. Also
0= (pr)é- (x;m)€=(pr)é- A7 (x;4) and 0 = p¢ - x;&. Therefore
()¢~ A1 = ¢, ie (J1)€ = (PE)A.

Let y e /"D N¥’ We want to prove (**) and may assume
y|%,, X, for some points %;, X, € /) with xux,. From 9.6 follows %,¢
distant %,§. The assumption yields (£;7)§ = (%,§) 4. Finally, 0 = (X,7)§
(y1)éE=(%,6)A4 - (yr)§and X;§- y§ =0 for j = 1,2 implies 4 - (y7)§
= y¢, hence (y7)€ = 471(y$).

Now let 4 be a matrix such that (ii) holds. Since jr € &', (jr)§ €
ZL’(R) is well-defined. (jr)¢é- A~ ! is a line of II(R). We define
jé:= (jr)é- A1, Then for any y € # the following statements are
equivalent: 17§ PEI(j7)€- A7 (9€)AL(jm)& (by (+) (P7)EN(JT)E
pr|j7; p|j. Hence the above definition extends ¢ to an embedding of
(2, Z,)) into II(R). Clearly, the extension is unique. We summarize our
results.

PROPOSITION. There is an embedding § of (P, Z,)) into II(R). § is an
extension of the mapping ¢ of 9.1. If aub then a¢ distant b¢ for any
a,b € P. If a—j then a¢ distant j& foralla € P andj € L. If guh then
gé& distant h¢, forallg,h € £.
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Proof of the last three assertions. Let aub. Let jla, b. If j € £’ then
a¢ distant b¢ by 9.6. Otherwise jr € %’ for some transvection 7 accord-
ing to the previous construction. Then a4r§ distant br¢, ie. a¢A distant
b&A, where A is a matrix as in (ii). Thus a§ distant bE.

Let a—j. We want to prove a¢ distant j§. By the previous considera-
tion we may assume j € .%”. Select a point b such that b|j and b—u.
Then aub, hence

(1) a¢ distant b¢

by our first statement. Let h|a, b. Since b € 2’ and juh 8.1 yields j(w)h,
hence

(2) Jj& distant h§

by 9.1(iv). (1) and (2) implies a¢ distant j¢; cf. 1.3.

Finally, let us assume guh. Let b|g, h and a|h such that aub. Then
a—g and a¢ distant g¢ by what we have proved. In particular, ¢ distant
g&; cf. 1.3.

10. The bilinear form. We want to describe the polarity & — £,
x = X in terms of a bilinear form. Assumptions and notations of previous
sections are preserved; in particular, kK € R* is the element introduced in
9.1.

101. Let x € ¥’ with x—u and x§ = R[x;, x,, x;]. Then £ =
R(kxy, x,,Ix3) for somel € R*.

Proof. Let y|u,x. Then y¢ = R[x,, —kx;,0] and y£Ix§. Choose z|x
with z—y and zuy. This implies zuu and z—u, hence z§{ = R[z,, z,, 1];
cf. 9.1 (iii). Obviously, y¢ distant z£. Thus the unique point of intersec-
tion is

& = R(kx,, x,, —x,2, — kx;z,) = R(kx,, x,, Ix3),
where /:= —x;'(x,z, + kx,z;). Moreover, X € #’, hence %¢{ € #'(R).
This is equivalent to Ix; € R*.

>
<
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10.2. Let g € £’ with g—u; g€ = R[ g1, 85, 83), 86 = R(kgy, &5, 183).
Let H = H, , be a pseudo-semi-rotation with center i, h:= gH, h{ =

R[hy, hy, hy). Then hE = R(khy, h,y, Ihs).

Proof. Let a|g,u. Then hlgg and ag—u. Let r|h,u, hence a = ar.
Choose s € S with s|h and s—r and sur. This choice implies suu and
s—u. Let t|u, s and c:= at. st—u and c|u implies stuc. Let b|c, st. From
s, r,aglh follows (st)cg = sr(ag) € S; cf. (E3). Furthermore, stuc and
b|st, c. Hence g|b by 4.1. Therefore, a, b|g, hence a§, b£1g€. The rest is a

simple calculation involving coordinates. We have
8¢ =R(g, 8,8,  até=R[-g, kg,0[;
hé=R[hy, by, b, ré = R[—h,, kh,,0].
Let
sé = R[sy,s,,5;], hence tf£=R[—s,,ks;,0];
b¢ = R[b,, b,,b;], hence c&= R[—b,,kb,,0].
Then stf = R(—ks,s5, — 5,53, ks? + s2), and st£1b¢ means that
(1) (ksyb; + s,b,)s; —(ks? + s3)b, = 0.
Likewise, E§|h implies
(2) (khyg, + h,8,)8; —(kg? + g3)hs = 0.
From 9.1(ii) and ¢t = a = ar we have
(3) R*(ks\by + 535y, —51b, + 5,b,)
= R*(kh,g, + h,8,, — 8, + gih,).
In other words

(3’) ksiby + s,b, = )\(kglhl + gzhz) and

—s5,b, + 5,0, = N(—g,h, + gih,) for some A € R*.
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(3") implies
(4) (kgb, + gzbz)(kslz + Szz) = A(khs, + hzsz)(k&2 + g%)
In the next line, (1), (3") and (2) yield the first, the second and the third
equality:
(5) b3g3(ks12 + 522) = (ks1by + 5,b,)5,8;
= N(kgihy + 8,1,) 8555 = Nhys;(kg? + g2).
Finally, (4) and (5) imply
A(khys, + hys, + Thysy) (kg + g3) = (kgib, + g,b, + Ibygs)(ks? + s2).

The right side is zero because b{1g§ = R(kg,, 8, Ig;). Therefore, khs, +
h,s, + lhys; = 0. We conclude h§ = r§ X s§ = R(khy, h,, Ihy).

10.3. Let jlu, g, h and g, huu and g—u. Let g§ = R[g,, &,, 8] and
h& = R[hy, h,, h3). If 8¢ = R(kgy, 8,,185) then h§ = R(khy, h,, lh;).

e

Proof. Select s|h with suj and s—j. Then s—u and s—j, hence also
suu. Let v|u, s and w:= sv. We have sugj. Let m|s, g/ and n|u, m. There
are pseudo-semi-rotations mapping g to m and w to m. Thus, by the
previous lemma, mé = R[km,, m,, Im,] and W& = R[kw,,w,, Iw;] (g, m,
w—u implies g,, m,,wy; € R*). Since wH = h for some pseudo-semi-ro-
tation H whose center is i, 10.2 finally yields h¢ = R(kh,, h,, Ih).

W

A
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10.4. There is an | € R* such that $§§ = R(kg,, g,,18,) for every g € ¥
with g§ = R[g1, 8, 83]-

Proof. Let x,y € § with x§ = R[0,1,0] and y¢ = R[1,0,0]. Select
r|x with r—u and ruu, and ¢|y with #—u and ruu. From 9.1 follows
ré = R[1,0,a] and t§ = R[0,1, B], where a, 8 € R*. We have m|rx, ty for
some m. Moreover, m—u and muu. Let m§ = R(m;, m,, m,;) and / € R*
with m§ = R(km,, m,,Im,); cf. 10.1. From 10.2 we conclude 7§ =
R(k,0,la) and ¢ = R(0,1,B).

&, !
y m 7
A X r/>\<

We claim g¢ = R(kg,, g,,18;) for every g €%, where gf=
R(g;, 8, &3]

First, let us assume g €.%’, ie. guu. Let hlu,g. Then hé{=
R[—g,, kg;,0]. Let v|rx,h and wity, h. Then v§ = R|[g,, g,,ag;] and
w¢ = R[g,, &, Bg,]- By 10.1, g§ = R(kg,, g,,1g;) for some [/’ € R. Thus
9¢ = R(kg,, g,,'ag,) and w¢ = R(kg,, g,,1'8g,); cf. 10.3.

N

t
— t
y| N D :
V r
a X N Tx

On the other hand, v is the image of r under a pseudo-semi-rotation
with center &. Hence 0§ = R(kg,, g,,/ag;); cf. 10.2. The same conclu-
sion, with 7 instead of r, yields W¢ = R(kg,, 8,,Bg,). Using kg2 + g2 €
R* and a € R* we obtain /g, = I'g,. Likewise, Ig, = I’g,. Hence / = /.

Finally, let g be an arbitrary line € .. From 7.4 we get v,w € &’
and ¢ € #’ with v,w|g; vuw; c|w; c—v. From 9.1(iv) we obtain &¢
distant v§. Hence v§ distant wé. Thus, in II( R) the lines v¢, w¢ have just
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one point of intersection, namely g£. Let vé = R[v,,v,,v,] and w¢ =
R[w;,w,,w;]. Then ¢ = R(kv,,v,, Iv;) and w§ = R(kw;, w,, lw;) by the
previous special case. From v¢ distant w§ and k,/ € R* follows ¢
distant w&. Hence

g€ = D& X WE
= R[I(v;w; — v3w,), kl(vwy — vyw3), k(vw, — v,w))].
Finally,
g€ = vE X w§

= R[kl(v,w; — vyw,), kl(vsw; — vyw3), kl(vw, — vawy)].

10.5. We define a symmetric bilinear form

where k and / stem from 10.4.

PROPOSITION. Let a,b € S and 4¢ = RA, bt = RB.
(a) a|lbifand only if f(A, B) = 0.
(b) f(A, A) € R*.

Proof. (a) Let A =(ay,a,,a;) and B = (b,,b,,b;). Then b§ =
R[Ib,, kib,, kb,]; cf. 10.4. The following statements are equivalent. a|b;
alb; a¢lbé; f(A, B) = 0. (b) We have a—a and thus a¢ distant aé; cf.
the proposition in §9.7. This means that f(A4, A) € R*; cf. part L.

10.6. f(A, A) € R* for any point RA of 1I(R); i.e.II(R, f) is an
elliptic plane in the sense of §1.

Proof. Let RA be a point of II(A4) and let m be an arbitrary maximal
ideal of R. We want to prove

(%) f(4,4) & m.
Let ~ denote the canonical homomorphisms
“R-> R:=R/m

~:R*> R, R* o R
Let a denote the canonical homomorphism of II(R) onto the projective
plane II( R) over the field R:

a: RX - RX
a: RY » RY,
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where RX is an arbitrary point and RY a line of II(R). First we will
show

(%) Pta = P(R)a = #(R).

Proof of (++). Let RB € #(R), where B € R®. We claim RB € P{a.
One can assume B = (b, b,,1) or B = (1,0,0) or B = (A, 1,0) for some
b,, b, € R or A € R, respectively. In the first case RB € #'(R) = P’§ C
P¢, hence RB = (RB)a € Pta; cf. 9.1(i). Let g, h € % be lines such
that g§ = R[0,1,0] and h§ = R[1,0,0]; cf. 9.1(i). In the second case
follows RB = R(1,0,0) = (gu)¢ € ¢, hence (RB)a € Péa. Now we
consider the last case B = (A,1,0). The line J:= R[1, —A,0] € £(R)
joins the point #¢ to the point RB. Furthermore, m(g§, J) = R(A,1)is a
regular angle, since (1,0), (A, 1) constitute a R-basis of R%. Thus m(k¢, J)
= w(h, j)¢ = m(h§, j§) for some j € L’ with jlu; cf. 9.1(i1), Z* = Dg.
This implies j¢ = J. Finally, RB = (ju)§ € 2§ since (ju)§1J, u§. Thus we
have proved RB = (RB)a € P¢a in each of the three cases.

Now we deduce (*). From (*#) follows that (RA)a = R4 = (a¢)a for
some @ € P. Let a¢ = RB, where B € R®. Then RA = RB and f(B, B)
€ R*; cf. 10.5. Thus, A = pB for some p € R\ 'm, and f(4,4) =
2 - f(B, B) # 0. This concludes the proof.

11. The group of motions. In this section we assume that (G, S)
satisfies all of our five axioms. For the first time we shall also use (M).

11.1. If guh and g—h then gug*.

Proof. Let a|g, h. Suppose that gug” does not hold. Then b|g, g* and
b—a for some b # a; cf. 2.6. In particular, buh. Let j|b, h. Then b—hyj,
and guj since g—h. Together with b, b"|g, j follows b = b" = b"/. (M)
yields b = hj. Thus, a,b|g, h. Finally, guh implies the contradiction
a=b.

11.2. 2 € R*.

Proof. Let g € # such that g& = R[0,1,0]1a¢ = R(0,0,1). Select j
such that j|# and jug and j—g. Then jug, h, where h:= ug. Thus, j§
distant g§, h§; cf. the proposition in §9.7. Therefore j¢ = R[1, A, 0] for
some A € R*. Let g:= j& Then

R(X,1) = m(j¢, g¢) = (W(J, g))e = (w(g,q))e = m(gé, g¢);

cf. 9.1(ii). Thus, g§ = R[1, —A,0]. 11.1 implies jug, hence j¢ distant g&;
cf. 9.7. This means that A + A € R*.
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We have proved that II(R, f) is an elliptic plane over the ring R in
the sense of Part I and that 2 is a unit (10.6 and 11.2). In particular, the
reflection og in any point £ of II(R, f) is well-defined.

Every a € G induces an automorphism & of the elliptic plane
(2, 2,]):

a: )%H;Zforﬁe?, and
y—y*foryel.

@ is called the motion induced by a. The mapping ~ is a homomorphism of
the group G into the group of automorphisms of (£, .Z, |), and the kernel
is the center C; of G. In 5.5 we have proved C; = 1. This yields

11.3. The mapping G- Gisan isomorphism of the group G onto the
subgroup G of the group of automorphisms of (P, %, ).

Let (¢, %) denote the group of motions of the elliptic plane II(R, f);
cf. Part I. Hence = {0g: & € #(R)}, and ¥ is the group generated by
.

If Q is a point of II(R, f) and T is its polar line (cf. Part I) then we
define o := oy In particular, o, = 0, for any a € &.

114. Let g€ S and % € P. Then (x9¢ = (%), In other words,

g¢ = §og€ for every g.
The proof consists of four steps.

11.4(a). Let cug and c—g. Then (c®)§ = (c€)o,.

Proof. Let r|c, g. Select r” such that r’|g; r’ur and r’—r; cf. (E2).
Then cur’. Let ¢’|c,r” and a:= cc’. Then aug. Let h|a, g. r’—r implies
c’ur. Together with cug follows c¢’—g. Furthermore, c’'ug since c—g.

>
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Hence d’:= c’®uc’; cf. 11.1. The proposition of §9.7 yields d’¢ distant
¢’&. This implies

(1) o 0, in(9,%).
Let b:= af and d:= c%. Then b = dd’|h. Hence a¢, §¢, b&1h¢ and
(2) 0,¢0,:0,; € L,

by 1.15 and 1.10. The analogue conclusion applies to the lines c&, g¢, d§
since they pass through the point 7¢. Thus, 6,0,.0,. = or for some line T’
of II(R, f) through #§. The identity

(3) Out0r0qt = 000:£0:0104:040¢ = Oag0gOp

together with (2) yields

(4) 0,010, €.

r—r’ implies 7§ distant r’§; cf. 9.7. In particular, I distant r’¢; cf. 1.3.
Thus

(5) opuo,, in(9,9).

Now we use (1), (4) and (5) in order to apply 2.10 to (¥4, .#). (Note that

2.10 does not require (U)). 2.10 yields op|o,., hence T'I#’¢; cf. the
proposition in 1.15. Thus we obtain

T, géI?;’—,?’é and 7¢ distant 75 .

This implies I' = g¢, hence o, = 0. 1.8(iv) yields d§ = (c€)o,. This is
the assertion.

11.4(b). (;c\g)é = (%§)0,; for each pair x, g with xug.

Proof. Let h|g, x. Select ¢ such that c|x; cuh and c—h. Then d:= cx
satisfies d|x; duh; d—h. Also cug and dug. From c|x; x|h; h|g; cuh
and xug follows c—g. Likewise, d—g. 11.4(a) shows (c®)€ = (c§)oy
and (d%)§ = (d§)o,.. Hence (x5)§, (2£)0,1(c*)é, (d*)§. Furthermore,
(c®)§ distant (d®)¢£. Thus, (x9)€ = (2§) 0.

x>
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11.4(c). (y5)§ = (¥§) 0, for each y, g with yug.

Proof. Let x|g, y. Select x” such that x’|y and x"ux and x’—x. Then
x, x'u 8. x,gand x', g fulfill the requirements of 11.4(b). Furthermore, %£

distant x’£. This yields the assertion.

Now we are ready to prove 11.4. Given g, x. Select y such that y|x
and yug; cf. (U). Let a|g, y. Select z such that z|a and z—g, y; cf. 2.4(i).
Then xuz. Let y’|x,z. The two pairs y, g and y’, g satisfy the
assumptions of 11.4(c). Furthermore, yuy’ since y—:z. Hence y¢ distant
y’€, and 11.4(c) implies (x8)§ = (X§) o,

11.5. There is a monomorphism o: G — 9 such that
0: g > 0, forevery g,

and F (R, f) C Go.

Proof. We want to extend the mapping ¢: S =&, g0, to a
homomorphism of G into 9. Let a,,...,a, € S. Let a:=a, --- a, and
Y= 0,¢ - 0, . Applying 11.4 n times we obtain
(*) at=a, ---a,t==¢&y; ie. x® %E = (%¢)y forevery x.
Suppose a = 1. We want to prove y = id. From (*) follows that & = Qy
for every Q € #¢. vy is a linear mapping R*> — R3, and the points
R(0,0,1), R(1,0,0), R(0,1,0), R(1,1,1) are elements of £¢; cf. 9.1(i)
and 9.7. Hence they are fixed points of y. It follows that there is some
A € R* such that Xy = A X for every X € R?. We obtain A2 = 1 since y
is an orthogonal mapping, and A*> = 1 since dety = 1. Thus A = 1 and
y = id 3. Now we have proved that o can be extended to a homomor-
phism o of G into ¢, namely

o:a=a; -+ a,>Y =0, " O,

If « € kernelo then y = id, and (*) implies X& = X for every X € £.
Since the mapping ~ is injective (cf. 11.3) we conclude a = 1. Thus we
have proved that ¢ is injective.
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Finally, let p € #(R, f). We have &£ = R(0,0,1) and g¢ = R[0,1,0]
for some g; cf. 9.1(i). From 1.17(a) one obtains p = 0go,.0r, where I' is a
line through #2¢ with g¢ distant I', and  is a point with @ distant u£. The
angle m(g&, I') is regular (cf. 9.1(ii)) since the lines I' and g¢ intersect in
just one point of the affine plane II’( R) and since every non-unit of R is
a zero-divisor; cf. 9.1(iii) and [3], 2.3. 9.1(ii) yields I" = j§ for some j € £.
Also @ = §§ for some g, since each affine point of II(R) is the £&-image
of some point of (£, Z,1); cf. 9.1(1). We conclude p = (ggj)o € Go.

Appendix: Fixed point theorems. Let (G, S) satisfy the system of
axioms introduced in §1 of Part II. We reformulate 4.1:

1. Let ab = cd and c, d|q. If aub then cud and g|a, b

2. Let a, b|d and aub and cud. Then c*® = c implies ab = d|c.

Proof. Let g|c,d. Then h:= gab € S since g, a, b|d. Also h|d. 1.
implies hug. Furthermore, cud. Hence c—h, and ¢ = ¢ = ¢8" = ¢"
yields ¢ = h|d; cf. (M). Therefore, g|h = ¢ and g, h|d. Hence d = gh =
ab; cf. 2.2(b).

3. Let a, b|d and aub and c—d. If ¢*® = c then ¢ = d.

Proof. (E1) implies cua, b. Let g|a,c and h|b,c. We have c|g, h and
c* = cb|g, h. Furthermore, guh by 2.9. Thus ¢ = ¢® = ¢#, and c—ga by
2.2. Therefore ¢ = ga by (M). Likewise, ¢ = hb. Thus c|a, b, and aub

yields ¢ = d.
N—-
h
a

N

d

4. Let a—b and cua,b. If c*® = c then ab = gh, where gl|a,c and
h|b, c.

A
C

hi g
a

Lo Y B
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Proof. a—b implies gaub. Let d|ga, b. Then cud, since cua implies

c—ga. Furthermore, ¢ = ¢®® = ¢#%%, We apply 2 (with ga, b, c, d instead
of a, b, ¢, d) and obtain gab = djc. Thus, d|c,b and h|c,b and cub.
Hence d = h, and finally ab = gh.
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