THE SPACING OF THE MINIMA IN CERTAIN CUBIC LATTICES

H. C. WILLIAMS

Let $\mathscr K$ be a cubic field with negative discriminant; let $\mu,\nu\in\mathscr K$; and let $\mathscr R$ be a lattice with basis $\{1,\mu,\nu\}$ such that 1 is a minimum of $\mathscr R$. If

$$1 = \theta_1, \theta_2, \theta_3, \ldots, \theta_n, \ldots$$

is a chain of adjacent minima of $\mathcal R$ with $\theta_{i+1}>\theta_i$ ($i=1,2,3,\ldots$), then $\theta_{n+5}\geq\theta_{n+3}+\theta_n$.

This result can be used to prove that if p is the period of Voronoi's continued fraction algorithm for finding the fundamental unit ε_0 of \mathscr{K} , then

$$\varepsilon_0 > \tau^{p/2}$$

where $\tau = (1 + \sqrt{5})/2$. It is also shown that

$$\theta_n > 4^{[(n-1)/7]}$$
.

1. Introduction. In order to discuss the problems considered in this paper, it is necessary to give a brief description of the properties of cubic lattices. For a more extensive and more general treatment of these topics we refer the reader to Delone and Faddeev [1].

Let $f(x) \in \mathbf{Z}[x]$ be a cubic polynomial, irreducible over the rationals \mathcal{Q} and having a negative discriminant. Let δ be the real zero of f(x) and denote by $\mathcal{K} = \mathcal{Q}(\delta)$ the complex cubic field formed by adjoining δ to \mathcal{Q} . If \mathcal{E}_3 denotes Euclidean 3-space, we can associate with each $\alpha \in \mathcal{K}$ a point $A \in \mathcal{E}_3$, where

$$A = (\alpha, (\alpha' - \alpha'')/2i, (\alpha' + \alpha'')/2),$$

 $i^2+1=0$, and α', α'' are the conjugates of α . Since f(x) has a negative discriminant, all three components of A must be real. If $\lambda, \mu, \nu \in \mathcal{K}$ and λ, μ, ν are rationally independent, we define the cubic lattice \mathcal{L} by

$$\mathscr{L} = \{ u\Lambda + vM + wN | (u, v, w) \in \mathbb{Z}^3 \}.$$

We say that \mathscr{L} has a basis $\{\lambda, \mu, \nu\}$ and denote \mathscr{L} by $\langle \lambda, \mu, \nu \rangle$. For the sake of convenience we will often use the expression $\alpha \in \mathscr{L}$ to denote that it is the corresponding point $A \in \mathscr{E}_3$ that is actually in \mathscr{L} . Also, if $\mathscr{L} = \langle \lambda, \mu, \nu \rangle$, we define $\alpha \mathscr{L}$ ($\alpha \in \mathscr{K}$) to be the lattice $\langle \alpha \lambda, \alpha \mu, \alpha \nu \rangle$.

If A is any point of \mathcal{L} , we define the normed body of A to be

$$\mathscr{N}(A) = \mathscr{N}(\alpha)$$

$$= \{(x, y, z) | (x, y, z) \in \mathcal{E}_3, |x| < |\alpha|, y^2 + z^2 \le |\alpha'|^2 \}.$$

This is a semi-open right circular cylinder, symmetric about the origin O of \mathscr{E}_3 , with axis the x-axis of \mathscr{E}_3 . It should be mentioned at this point that if $\alpha, \beta \in \mathscr{K}$ and $|\alpha'| = |\beta'|$, then $\alpha = \pm \beta$ (see [1], p. 274). Thus, if $|\beta'| = |\alpha'|$, then $B \notin \mathscr{N}(\alpha)$.

We say that ϕ (\neq 0) \in \mathscr{K} or the point Φ corresponding to ϕ is a minimum of \mathscr{L} if $\mathscr{N}(\phi) \cap \mathscr{L} = \{0\}$. If ψ and ϕ are minima of \mathscr{L} and $\psi > \phi$, we say that ψ and ϕ are *adjacent* minima when there does not exist a non-zero $\chi \in \mathscr{L}$ such that

$$\phi < \chi < \psi$$
 and $|\chi'| < |\phi'|$.

If

(1.1)
$$\theta_1, \theta_2, \theta_3, \ldots, \theta_n, \cdots$$

is a sequence of minima of \mathscr{L} such that $\theta_{i+1} > \theta_i$ and θ_{i+1} , θ_i are adjacent (i = 1, 2, 3, ..., n, ...), we call (1.1) a *chain* of minima of \mathscr{L} . By using Minkowski's theorem (see [1]) we can prove that such chains always exist in \mathscr{L} .

If $\mathscr{R} = \langle 1, \mu, \nu \rangle$ and 1 is a minimum of \mathscr{R} , we say that \mathscr{R} is a *reduced* lattice. In this paper we shall be concerned with the problem of how closely spaced the minima of \mathscr{R} can be. We will show that if $\theta_1 = 1$ and $\theta_4 < \theta_2 + 1$, then $\theta_2 + \theta_3 = \theta_4 + 1$. We can use this result to prove that if ε_0 is the fundamental unit of \mathscr{K} , then

$$\varepsilon_0 > \tau^{p/2}$$

where p is the period of Voronoi's continued fraction algorithm for finding ε_0 and $\tau = (1 + \sqrt{5})/2$. We will also show that $\theta_5 \ge \theta_3 + 1 > 2$ and $\theta_8 > 4$. The methods used to prove these results are completely elementary.

2. Preliminary results. From [1] or Williams and Dueck [3] we see that if $\mathcal{R}_1 = \mathcal{R}$ (a reduced lattice), $\theta_g^{(m)}$ is the minimum of \mathcal{R}_m adjacent to 1 and \mathcal{R}_{m+1} is defined to be $(1/\theta_g^{(m)})\mathcal{R}_m$, then $\theta_n\mathcal{R}_n = \mathcal{R}_1$, where \mathcal{R}_n is a reduced lattice and

$$\theta_n = \prod_{i=1}^{n-1} \theta_g^{(i)}.$$

We shall need to make use of these results together with several others established in [3]; however, we first give some simple lemmas concerning points of \mathcal{R} . Throughout this work we will use θ to denote the minimum of \mathcal{R} adjacent to 1, ω to denote the minimum of \mathcal{R} adjacent to θ , and χ to denote the minimum of \mathcal{R} adjacent to ω . That is, $\theta = \theta_2$, $\omega = \theta_3$, $\chi = \theta_4$. Note that if $\gamma \in \mathcal{R}$, $|\gamma| < \theta$, and $|\gamma'| \le 1$, we must have $\gamma = 0$ or $\gamma = \pm 1$. We also have

LEMMA 2.1. If $\alpha \in \mathcal{R}$ and $0 < \alpha < \theta + 1$, then either $\alpha = 1, 2$ or $|\alpha' - 1| > 1$. Further, if $\alpha, \beta \in \mathcal{R}$, $\alpha \neq \beta$, and $\theta < \alpha$, $\beta < \theta + 1$, then $|\alpha' - \beta'| > 1$.

Proof. We have $-1 < \alpha - 1 < \theta$; thus, if $|\alpha' - 1| \le 1$, we get $\alpha - 1 = 0, 1$. Since $\theta < \alpha$, $\beta < \theta + 1$, we have $|\alpha - \beta| < 1$. It follows that if $|\alpha' - \beta'| < 1$, then $\alpha = \beta$. If $|\alpha' - \beta'| = 1$, then $\alpha = \beta \pm 1$, which is also impossible.

From this result we see that $|\theta' - 1| > 1$ and if $\chi < \theta + 1$, then $|\omega' - 1| > 1$ and $|\chi' - 1| > 1$.

In order to develop further results we define

(2.2)
$$\eta_{\alpha} = (\alpha' - \alpha'')/2i, \qquad \zeta_{\alpha} = (\alpha' + \alpha'')/2$$

for any $\alpha \in \mathcal{K}$. Note that

(2.3)
$$|\alpha'|^2 = |\alpha''|^2 = \alpha'\alpha'' = \eta_\alpha^2 + \zeta_\alpha^2.$$

Also, if $\alpha \in \mathcal{R}$ and $\eta_{\alpha} \in \mathcal{Q}$, then $\alpha \in \mathbb{Z}$ and $\eta_{\alpha} = 0$ (see [3]). Hence, $\eta_{\alpha} \neq 0$ if $\alpha = \theta_i$ (i > 1).

LEMMA 2.2. If $\alpha, \beta \in \mathcal{R}$, $|\alpha'| < 1$, $|\beta'| < 1$, $|\alpha' - 1| > 1$, $|\beta' - \alpha' + 1| > 1$, then $|\beta' - \alpha' + 2| > 1$.

Proof. Since $|\beta'| < 1$, we have $\zeta_{\beta} > -1$ by (2.3). Further, since $|\alpha'| < 1$ and $|\alpha' - 1| > 1$, we must have $\zeta_{\alpha} < 1/2$; thus, $\zeta_{\beta} - \zeta_{\alpha} + 1 > -1/2$ and

$$|\beta' - \alpha' + 2|^2 = |\beta' - \alpha' + 1|^2 + 2(\zeta_{\beta} - \zeta_{\alpha} + 1) + 1 > 1.$$

LEMMA 2.3. If $\alpha, \beta \in \mathcal{R}$, $|\alpha' - 1| > 1$, $|\alpha' + 1| > 1$, $|\alpha'| < 1$, $|\beta'| < 1$, $\eta_{\beta}\eta_{\alpha} > 0$, and $|\beta' - \alpha'| > 1$, then $|\eta_{\alpha}| > |\eta_{\beta}|$.

Proof. Suppose $|\eta_{\alpha}| \leq |\eta_{\beta}|$ and consider Figure 1.

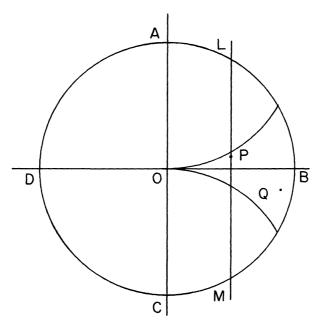


FIGURE 1

Here $P = (|\eta_{\alpha}|, \zeta_{\alpha}), \ Q = (|\eta_{\beta}|, \zeta_{\beta})$. Let the chord through P parallel to AC meet the circle ABCD (radius 1, centre O) at L and M. Since $|\alpha' + 1| > 1$, we have PL < 1; also, since $|\alpha' - 1| > 1$, we have PM < 1. Since $\overline{PQ} < \max(\overline{PL}, \overline{PM})$, we get $\overline{PQ} = |\beta' - \alpha'| < 1$, a contradiction.

In the next sequence of lemmas we prove a number of results concerning points $\alpha \in \mathcal{R}$ such that $|\alpha'| < 1$. We first define $\kappa(\alpha)$ for $\alpha \in \mathcal{R}$ by

(2.4)
$$\kappa(\alpha) = (\zeta_{\alpha} - 1/2)^{2} + (\sqrt{3}/2 - |\eta_{\alpha}|)^{2}$$
$$= \zeta_{\alpha}^{2} - \zeta_{\alpha} + \eta_{\alpha}^{2} - \sqrt{3}|\eta_{\alpha}| + 1.$$

LEMMA 2.4. If $\alpha \in \mathcal{R}$, $|\alpha'| < 1$, and $\kappa(\alpha) \ge 1$, then $\zeta_{\alpha} \le 0$, $|\eta_{\alpha}| \le \sqrt{3}/2$, and $|\zeta_{\alpha}| \ge |\eta_{\alpha}|/\sqrt{3}$.

Proof. Since $|\alpha'| < 1$, we have $|\eta_{\alpha}| < 1$ and $|\zeta_{\alpha}| < 1$; thus,

$$-\sqrt{3}/2 < \sqrt{3}/2 - 1 < \sqrt{3}/2 - |\eta_{\alpha}| < \sqrt{3}/2$$

and $(\zeta_{\alpha} - 1/2)^2 \ge 1/4$ by (2.4). If $0 < \zeta_{\alpha} < 1$, this latter result is not possible; hence, $\zeta_{\alpha} \le 0$. If $|\eta_{\alpha}| > \sqrt{3}/2$, then $|\zeta_{\alpha}| < 1/2$ by (2.3) and the fact that $|\alpha'| < 1$; thus, by (2.4)

$$\kappa(\alpha) < -1/2 + \zeta_{\alpha}^2 + \eta_{\alpha}^2 - \zeta_{\alpha} < 1/2 - \zeta_{\alpha} < 1,$$

which is also not possible. Since $|\eta_{\alpha}| < \sqrt{3}/2$, we have $|\eta_{\alpha}| < 3(\sqrt{3} - 1/\sqrt{3})/4$ and

$$(|\eta_{\alpha}|/\sqrt{3} + 1/2)^2 + (\sqrt{3}/2 - |\eta_{\alpha}|)^2 \le 1.$$

It follows that since $\kappa(\alpha) \ge 1$, we must have $|\zeta_{\alpha}| \ge |\eta_{\alpha}|/\sqrt{3}$ by (2.4). \square

COROLLARY 2.4.1. If $\alpha \in \mathcal{R}$, $|\alpha'| < 1$, and $\kappa(\alpha) \ge 1$, then $|\alpha' + 1| \le 1$.

Proof. By the lemma, $1-|\eta_\alpha|/\sqrt{3}>0$ and $0<\zeta_\alpha+1\le 1-|\eta_\alpha|/\sqrt{3}$. Thus,

$$|\alpha'+1|^2 = \left(\zeta_\alpha+1\right)^2 + \eta_\alpha^2 \le \left(1-|\eta_\alpha|/\sqrt{3}\right)^2 + \eta_\alpha^2 \le 1$$
 as $|\eta_\alpha| < \sqrt{3}/2$.

LEMMA 2.5. If $\alpha, \beta \in \mathcal{R}$, $|\alpha'| < 1$, $|\beta'| < 1$, $|\alpha' - 1| > 1$, $\eta_{\alpha}\eta_{\beta} > 0$, $\kappa(\alpha) < 1$, and $|\alpha' - \beta'| > 1$, then $\kappa(\beta) > 1$.

Proof. The point $(\eta_{\alpha}, \zeta_{\alpha})$ must lie in the Reuleaux triangle (see [3]) with vertices O (the origin), $(\sigma\sqrt{3}/2, 1/2)$, $(\sigma\sqrt{3}/2, -1/2)$, where $\sigma = \operatorname{sgn}(\eta_{\alpha})$. If $\kappa(\beta) \leq 1$, then $(\eta_{\beta}, \zeta_{\beta})$ is in the same Reuleaux triangle as $(\eta_{\alpha}, \zeta_{\alpha})$; hence, $|\alpha' - \beta'| \leq 1$, which is impossible.

LEMMA 2.6. If $\alpha, \beta \in \mathcal{R}$, $|\alpha'| < 1$, $|\beta'| < 1$, $|\alpha' - 1| > 1$, $|\alpha' + 1| > 1$, and $\kappa(\beta) \ge 1$, then $|1 - \alpha' - \beta'| > 1$.

Proof. Since $|\alpha'| < 1$, $|\alpha' + 1| > 1$, and $|\alpha' - 1| > 1$, we have $|\zeta_{\alpha}| < 1/2$ and $1 - 2\zeta_{\alpha} > 0$. Since $|\alpha' - 1| > 1$ and $\kappa(\beta) \ge 1$, we also have

(2.5)
$$|1 - \alpha' - \beta'|^2$$

$$= 1 + \zeta_{\beta}^2 - 2\zeta_{\beta} + \eta_{\beta}^2 + 2\zeta_{\alpha}\zeta_{\beta} + 2\eta_{\alpha}\eta_{\beta} + \zeta_{\alpha}^2 - 2\zeta_{\alpha} + \eta_{\alpha}^2$$

$$> 1 + \zeta_{\beta}(-1 + 2\zeta_{\alpha}) + 2\eta_{\alpha}\eta_{\beta} + \sqrt{3}|\eta_{\beta}|$$

by (2.4) and the fact that $|\alpha'-1|>1$. By Lemma 2.4, we have $\zeta_{\alpha}\leq 0$; hence, if $\eta_{\alpha}\eta_{\beta}\geq 0$, we get $|1-\alpha'-\beta'|>1$. If $\eta_{\alpha}\eta_{\beta}<0$, then from (2.5) and Lemma 2.4 we get

$$|1 - \alpha' - \beta'|^2 > 1 + |\eta_{\beta}|((1 - 2\zeta_{\alpha})/\sqrt{3} + \sqrt{3} - 2|\eta_{\alpha}|).$$

Since $\zeta_{\alpha} < \sqrt{1 - \eta_{\alpha}^2}$, we have

$$(1-2\zeta_{\alpha})/\sqrt{3} + \sqrt{3} - 2|\eta_{\alpha}| > (1-2\sqrt{1-\eta_{\alpha}^2})/\sqrt{3} + \sqrt{3} - 2|\eta_{\alpha}|.$$

But
$$2/\sqrt{3} > 1 > |\eta_{\alpha}|$$
 and $\sqrt{1 - \eta_{\alpha}^2} / \sqrt{3} < 2/\sqrt{3} - |\eta_{\alpha}|$; hence,
$$\left(1 - 2\sqrt{1 - \eta_{\alpha}^2}\right) / \sqrt{3} + \sqrt{3} - 2|\eta_{\alpha}| > 0.$$

COROLLARY 2.6.1. If $\alpha, \beta \in \mathcal{R}$, $|\alpha'| < 1$, $|\beta'| < 1$, $|\alpha' - 1| > 1$, $|\alpha' + 1| > 1$, $|\beta' - \alpha'| > 1$, and $|\beta' - \alpha' + 1| < 1$, then $\kappa(\gamma) < 1$, where $\gamma = \beta - \alpha + 1$.

Proof. We have $|\gamma'| < 1$; thus, if $\kappa(\gamma) \ge 1$, then $|1 - \alpha' - \gamma'| = |\beta'| > 1$, which is not so.

We will also require some lemmas whose proofs have already appeared in [3]. We will only give the statements of these results here; however, we mention that the proofs of these lemmas are elementary and require, for the most part, only results from simple plane geometry.

LEMMA 2.7 (Lemma 6.1 of [3]). If $\alpha, \beta \in \mathcal{R}$, $|\alpha'| < 1$, $|\beta'| < 1$, and $2\alpha = \beta + 1$, then $|\alpha' - 1| \le 1$.

LEMMA 2.8 (Lemma 5.4 of [3]). If $\alpha, \beta \in \mathcal{R}$, $|\alpha'| < 1$, $|\beta'| < 1$, $|\alpha' - 1| > 1$, $|\beta' - 1| > 1$, $\eta_{\alpha}\eta_{\beta} > 0$, $|\alpha' - \beta'| > 1$, and $|\alpha' + 1| > 1$ (< 1), then $|\beta' + 1| < 1$ (> 1).

LEMMA 2.9 (Lemma 6.2 of [3]). Let $\alpha, \beta, \gamma \in \mathcal{R}$, where α, β, γ are distinct, $|\alpha'| < 1$, $|\beta'| < 1$, $|\gamma'| < 1$, and $|\alpha' - 1| > 1$, $|\beta' - 1| > 1$, $|\gamma' - 1| > 1$. If $\eta_{\alpha}\eta_{\beta} > 0$ and $\eta_{\beta}\eta_{\alpha} > 0$, there cannot exist any b such that

$$b \le \alpha, \beta, \gamma < b + 1.$$

LEMMA 2.10 (Lemma 6.3 of [3]). Let $\alpha, \beta \in \mathcal{R}$ such that $|\alpha'| < 1$, $|\beta'| < 1$, $\beta > \alpha > 1$, and $|\beta'| < |\alpha'|$. If $\eta_{\alpha}\eta_{\beta} > 0$ and $|\alpha' + 1| \le 1$, then $\beta \ge \alpha + 1$.

LEMMA 2.11 (Lemma 6.5 of [3]). Let $\alpha, \beta, \gamma \in \mathcal{R}$ such that $|\alpha'| < 1$, $|\beta'| < 1$, $|\gamma'| < 1$, $|\alpha' - 1| > 1$, $|\beta' - 1| > 1$, $|\gamma' - 1| > 1$, $|\beta' + 1| \le 1$, $\eta_{\alpha}\eta_{\beta} < 0$, $\eta_{\beta}\eta_{\gamma} > 0$. If $|\beta' - \alpha'| > 1$ and $|\beta' - \gamma' + 1| > 1$, then either $|\alpha' - \beta'| \le 1$ or $|\alpha' - \beta' + \gamma' - 1| \le 1$.

3. The main results. We are now able to use the lemmas of §2 to prove our main results. We first prove an extension of Lemma 2.11.

THEOREM 3.1. If $\alpha, \beta, \gamma \in \mathcal{R}$, $|\alpha'| < 1$, $|\beta'| < 1$, $|\gamma'| < 1$, $|\alpha' - 1| > 1$, $|\beta' - 1| > 1$, $|\gamma' - 1| > 1$, $|\beta' + 1| \le 1$, $\eta_{\alpha}\eta_{\beta} < 0$, $\eta_{\beta}\eta_{\gamma} > 0$, and $|\beta' - \gamma'| > 1$, then either $|\alpha' - \beta'| < 1$ or $|\alpha' - \gamma'| \le 1$, where $\lambda = \beta - \gamma + 1$.

Proof. If $|\lambda'| > 1$, the result follows from Lemma 2.11. Note that since $\eta_{\alpha}\eta_{\beta} < 0$, we cannot have $|\alpha' - \beta'| = 1$, for this would imply that $\alpha = \beta \pm 1$ and $\eta_{\alpha} = \eta_{\beta}$. Similarly $|\alpha' - \gamma'| \neq 1$. If $|\lambda'| = 1$, then $\beta = \gamma$ or $\beta = \gamma - 2$. Since $|\beta' - \gamma'| > 0$ and $|\beta'| < 1$, $|\gamma'| < 1$, neither of these is possible.

If $|\lambda'| < 1$, we will consider two cases; however, we first notice that $|\gamma' + 1| > 1$ by Lemma 2.8 and $\eta_{\gamma}\eta_{\lambda} = \eta_{\gamma}(\eta_{\beta} - \eta_{\gamma}) = |\eta_{\gamma}|(|\eta_{\beta}| - |\eta_{\gamma}|) < 0$ by Lemma 2.3. Also $\kappa(\lambda) < 1$ by Corollary 2.6.1.

Case 1 ($\kappa(\alpha)$ < 1). In this case we see from Lemma 2.5 that $|\alpha' - \lambda'| \le 1$.

Case 2 ($\kappa(\alpha) \ge 1$). In this case we have $|\alpha' + 1| < 1$ by Corollary 2.4.1. Suppose $|\alpha' - \gamma'| > 1$ and $|\alpha' - \lambda'| > 1$. Since $|\beta' - \gamma'| > 1$, we have $|\lambda' - 1| > 1$; thus, $|\lambda' + 1| > 1$ by Lemma 2.8. If $\rho = \alpha - \lambda + 1$ and $|\rho'| > 1$, then either $|\gamma' - \rho'| \le 1$ or $|\gamma' - \alpha'| \le 1$ by Lemma 2.11. Since $\gamma - \rho = \beta - \alpha$, we get $|\beta' - \alpha'| < 1$. If $|\rho'| = 1$, then $\alpha = \lambda$ or $\alpha = \lambda - 2$ and, as above, neither of these is possible. If $|\rho'| < 1$, then $\kappa(\rho) < 1$ and also $\eta_{\rho}\eta_{\gamma} > 0$ (Corollary 2.6.1 and Lemma 2.3). Since $\kappa(\gamma) < 1$ by Corollary 2.4.1, we get $|\gamma' - \rho'| \le 1$ by Lemma 2.5.

We are now able to show that if $\theta_4 < \theta_2 + 1$, then $\theta_4 + 1 = \theta_2 + \theta_3$.

THEOREM 3.2. If $\chi < \theta + 1$, then $\eta_{\theta}\eta_{\omega} < 0$, $|\chi' + 1| < 1$, $\kappa(\theta) < 1$, $\kappa(\omega) < 1$, and $\chi + 1 = \theta + \omega$.

Proof. We first note that $|\theta'| < 1$, $|\omega'| < 1$, $|\chi'| < 1$, and $|\theta' - 1| > 1$, $|\omega' - 1| > 1$, $|\chi' - 1| > 1$. Also, if $\rho_1, \rho_2 \in \{\theta, \omega, \chi\}$ and $\rho_1 \neq \rho_2$, then $|\rho'_1 - \rho'_2| > 1$ by Lemma 2.1.

Case 1 ($\eta_{\theta}\eta_{\omega} > 0$). By Lemma 2.4 we must have $\eta_{\theta}\eta_{\chi} < 0$. Further, by Lemma 2.10, we must also have $|\theta'+1| > 1$. By Theorem 3.1, we get $|\rho'| \le 1$, where $\rho = \chi - \omega + \theta - 1$. Now $0 < \rho < \theta$; thus, $\rho = 1$ and $\chi = \omega - \theta + 2$. Since $\omega - \theta + 1 = \chi - 1$, we have $|\omega' - \theta' + 1| > 1$; consequently, $|\chi'| = |\omega' - \theta' + 2| > 1$ by Lemma 2.2. It follows that we must have

Case 2 ($\eta_{\theta}\eta_{\omega} < 0$). Here we have $\eta_{\chi}\eta_{\theta} > 0$ or $\eta_{\chi}\eta_{\omega} > 0$. In either case, by Lemma 2.10 we get $|\chi' + 1| < 1$. If $\eta_{\chi}\eta_{\omega} > 0$, then $|\omega' + 1| > 1$ by Lemma 2.8 and $\kappa(\omega) < 1$ by Corollary 2.4.1. Also, by Theorem 3.1 $|\rho'| \le 1$, where $\rho = \theta - \chi + \omega - 1$. Since $-1 < \rho < \theta$, we get $\rho = 0$ or 1.

As before, we cannot have $\rho = 1$; hence, $\rho = 0$ and $\chi + 1 = \theta + \omega$. Since $\theta = \chi - \omega + 1$, we get $\kappa(\theta) < 1$ from Corollary 2.6.1. Similarly, if $\eta_{\chi}\eta_{\theta} > 0$, then $\kappa(\theta) < 1$, $\kappa(\omega) < 1$, and $\chi + 1 = \theta + \omega$.

By using the remarks at the beginning of §2, we can extend this result to show that if

$$\theta_{n+3} < \theta_{n+1} + \theta_n$$

in (1.1), then

$$\theta_{n+3} + \theta_n = \theta_{n+1} + \theta_{n+2}.$$

We can also improve two of the results of Theorem 3.2 in

LEMMA 3.3. If
$$\chi < \theta + 1$$
, then $|\theta' + 1| > 1$ and $|\omega' + 1| > 1$.

Proof. If
$$|\theta' + 1| \le 1$$
, then $\zeta_{\theta} \le 0$ and
$$-2\zeta_{\theta} \ge \zeta_{\theta}^2 + \eta_{\theta}^2 > \zeta_{\omega}^2 + \eta_{\omega}^2 > 2\zeta_{\omega} \qquad (|\omega' - 1| > 1).$$

It follows that $\zeta_{\theta} + \zeta_{\omega} < 0$ and, as a consequence, $|\chi'| = |\theta' + \omega' - 1| > 1$, which is impossible.

If $|\omega' + 1| \le 1$, then $\zeta_{\omega} \le 0$ and

$$|\eta_{\omega}| \le \sqrt{1 - (1 - |\zeta_{\omega}|)^2}.$$

Since

(3.2)
$$2|\zeta_{\omega}| = \zeta_{\omega}^2 + 1 - (1 - |\zeta_{\omega}|)^2,$$

we get

(3.3)
$$2|\zeta_{\omega}| \ge 1 - (1 - |\zeta_{\omega}|)^2 > |\eta_{\omega}| (1 - (1 - |\zeta_{\omega}|)^2).$$

Also, since

$$\left(|\eta_{\theta}|\sqrt{2|\zeta_{\omega}|} - \sqrt{1 - \left(1 - |\zeta_{\omega}|\right)^{2}}\right)^{2} \geq 0,$$

we see, using (3.2), that

$$\left(1-\eta_{\theta}^{2}\right)\zeta_{\omega}^{2} \leq \left(\sqrt{2|\zeta_{\omega}|} - |\eta_{\theta}|\sqrt{1-\left(1-|\zeta_{\omega}|\right)^{2}}\right)^{2}$$

and

$$|\zeta_{\omega}|\sqrt{1-\eta_{\theta}^2} \ + |\eta_{\theta}|\sqrt{1-\left(1-|\zeta_{\omega}|\right)^2} \ \leq \sqrt{2|\zeta_{\omega}|}$$

by (3.3). Now $\zeta_{\theta} < \sqrt{1 - \eta_{\theta}^2}$; hence from (3.1) we get

$$\zeta_{\theta}|\zeta_{\omega}| + |\eta_{\omega}||\eta_{\theta}| - |\zeta_{\omega}| < \sqrt{2|\zeta_{\omega}|} - |\zeta_{\omega}| \le 1/2.$$

Since $\zeta_{\omega} \leq 0$ and $\eta_{\omega} \eta_{\theta} < 0$, we find that

$$-2\zeta_{\omega}+2\zeta_{\omega}\zeta_{\theta}+2\eta_{\omega}\eta_{\theta}>-1.$$

But

$$|\chi'|^2 - |\omega'|^2 = |\theta' + \omega' - 1|^2 - |\omega'|^2$$
$$= |\theta' - 1|^2 - 2\zeta_{\omega} + 2\zeta_{\omega}\zeta_{\theta} + 2\eta_{\theta}\eta_{\omega};$$

thus, since $|\theta' - 1| > 1$, we have $|\chi'| > |\omega'|$ when $|\omega' + 1| \le 1$ and this is impossible.

We will also need to make use of the following result and its corollaries.

THEOREM 3.4. If $\chi < \theta + 1$ and there exists some $\rho \in \mathcal{R}$ such that $\rho \notin \{\theta, \omega, \chi\}, |\rho'| < 1, |\rho' - 1| > 1$, then $|\rho' - \psi'| < 1$ for some $\psi \in \{\theta, \omega, \chi\}.$

Proof. Suppose that there exists some $\rho \in \mathcal{R}$ such that $\rho \notin \{\theta, \omega, \chi\}$, $|\rho'| < 1$, $|\rho' - 1| > 1$, and $|\rho' - \psi'| \ge 1$ for each $\psi \in \{\theta, \omega, \chi\}$. We first note that if $|\rho' - \psi'| = 1$, then $\rho = \psi + 1$. If $\rho = \psi - 1$, then $0 < \rho < \theta$, which contradicts the definition of θ . If $\rho = \psi + 1$, then $|\rho' - 1| = |\psi'| < 1$, which is also impossible. Thus, $|\rho' - \psi'| > 1$ for all $\psi \in \{\theta, \omega, \chi\}$. Since $\eta_{\theta}\eta_{\omega} < 0$, $|\theta' + 1| > 1$, $|\omega' + 1| > 1$, we must have $|\rho' + 1| < 1$ (Lemma 2.8). Put α equal to that one of θ or ω such that $\eta_{\alpha}\eta_{\rho} < 0$ and let β be the other one. We have $\alpha + \beta = \theta + \omega = \chi + 1$. Further, $|\rho' - \alpha'| > 1$ and $|\alpha' + 1| > 1$; thus, by Theorem 3.1, we get $|\beta' - \lambda'| \le 1$, where $\lambda = \rho - \alpha + 1$. Since $\beta - \lambda = \beta - \rho + \alpha - 1 = \chi - \rho$, this is impossible.

COROLLARY 3.4.1. If $\chi < \theta + 1$ and there exists $\rho \in \mathcal{R}$ such that $\rho \in \{\theta, \omega, \chi\}, |\rho'| < 1$, and $|\rho| < \theta + 1$, then $\rho = 0$.

Proof. Since $|-\rho'| = |\rho'|$, we may assume with no loss of generality that if $\rho \neq 0$, then $\rho > 0$. Since $|\rho'| < 1$, we must have $\theta < \rho < \theta + 1$. Thus, by Lemma 2.1, $|\rho' - \psi'| \ge 1$ for all $\psi \in \{\theta, \omega, \chi\}$, which is impossible by the theorem.

COROLLARY 3.4.2. If $\chi < \theta + 1$, there does not exist any $\rho \in \mathcal{R}$ such that $|\rho'| < 1$ and $\chi < \rho < \chi + 1$.

Proof. Suppose such a ρ does exist. If $|\rho'-1| < 1$, then, since $|\rho-1| < \theta+1$, we can only have $\rho-1 \in \{\theta,\omega,\chi\}$ by the previous result. Since $\rho \neq \chi+1$, $|\theta'+1| > 1$, $|\omega'+1| > 1$, we must have $|\rho'-1| > 1$ and, as a consequence, $|\rho'-\psi'| < 1$ for some $\psi \in \{\theta,\omega,\chi\}$. Since $0 < \rho - \chi < \chi + 1 - \chi \le \omega$, we find by the previous corollary that $\rho - \psi = \theta$. If $\psi = \omega$ or χ , then $\rho \ge \chi+1$; thus, $\psi = \theta$ and $\rho = 2\theta$. If $\rho = 2\theta$, then $|\omega'| < |\theta'| < 1/2$ and $|\omega'-\theta'| < 1$, which is impossible. \square

Let $\rho = \theta_5$, the minimum adjacent to $\chi = \theta_4$. We can now show the following unconditional result concerning ρ .

THEOREM 3.5.
$$\rho \geq 1 + \omega$$
 or $\theta_{n+5} \geq \theta_{n+3} + \theta_n$ in (1.1).

Proof. Suppose $\rho < 1 + \omega$ and let $\mathcal{R}^* = (1/\theta)\mathcal{R}$. If $\theta^* = \omega/\theta$, $\omega^* = \chi/\theta$, $\chi^* = \rho/\theta$, then θ^* is the minimum adjacent to 1 in \mathcal{R}^* , ω^* is the minimum adjacent to θ^* , and χ^* is the minimum adjacent to ω^* . Since $\rho < 1 + \omega$, we have $\chi^* < (1 + \omega)/\theta < \omega/\theta + 1 = \theta^* + 1$. By Theorem 3.2, we have $\theta^* + \omega^* = \chi^* + 1$ and

$$\omega + \chi = \rho + \theta$$
.

If $\chi \ge \theta + 1$, then $\rho \ge \omega + 1$. If $\chi < \theta + 1$, then $\rho \ge \chi + 1 > \omega + 1$ by Corollary 3.4.2.

In fact, we actually get cases in which $\rho = 1 + \omega$. For example, consider D = 239, $\delta^3 = D$, $\mathcal{R}_1 = \langle 1, \delta, \delta^2 \rangle$. In $\mathcal{R} = \mathcal{R}_{312}$, we get

$$\theta = (6 + 17\delta + 7\delta^{2})/247,$$

$$\omega = (74 + 45\delta + 4\delta^{2})/247,$$

$$\chi = (253 + 17\delta + 7\delta^{2})/247 = \theta + 1,$$

$$\rho = (321 + 45\delta + 4\delta^{2})/247 = \omega + 1.$$

Note also that if $\mathcal{R} = \mathcal{R}_{313}$ here, we have $\theta = (191 - 3\delta + 7\delta^2)/332$, $\omega = (217 + 47\delta + \delta^2)/332$, $\chi = (76 + 44\delta + 8\delta^2)/332$. In this case $\chi < \theta + 1$ and $\chi = \theta + \omega - 1$. Also, $\rho = (408 + 44\delta + 8\delta^2)/332 = \chi + 1$.

If we let $\mathcal{R}_1 = \langle 1, \mu, \nu \rangle$, where $\{1, \mu, \nu\}$ is a basis of the algebraic integers of \mathcal{K} , then \mathcal{R}_1 is a reduced lattice and there exists an integer p-such that $\mathcal{R}_{p+1} = \mathcal{R}_1$. In this case ε_0 (> 1), the fundamental unit of \mathcal{K} , is given by the formula

(3.4)
$$\varepsilon_0 = \theta_{p+1} = \prod_{i=1}^p \theta_g^{(i)}.$$

The value p is called the period of Voronoi's continued fraction algorithm for finding ε_0 . By using the reasoning similar to that of Pen and Skubenko [2], we can prove

THEOREM 3.6. If p is the period of Voronoi's continued fraction algorithm for finding ε_0 , then $\varepsilon_0 > \tau^{p/2}$, where $\tau = (1 + \sqrt{5})/2$.

Proof. If
$$\mathcal{R} = \mathcal{R}_i$$
, then $\rho \ge \omega + 1$ and
$$\theta_g^{(i)}\theta_g^{(i+1)}\theta_g^{(i+2)}\theta_g^{(i+3)} \ge 1 + \theta_g^{(i)}\theta_g^{(i+1)}.$$

Since $\mathcal{R}_{p+1} = \mathcal{R}_1$, $\mathcal{R}_{p+2} = \mathcal{R}_2$, $\mathcal{R}_{p+3} = \mathcal{R}_3$, we get $\theta_g^{(p+1)} = \theta_g^{(1)}$, $\theta_g^{(p+2)} = \theta_g^{(2)}$, $\theta_g^{(p+3)} = \theta_g^{(3)}$; thus, we get

$$\varepsilon_0^4 = \left(\prod_{i=1}^p \theta_g^{(i)}\right)^4 = \prod_{i=1}^p \theta_g^{(i)} \theta_g^{(i+1)} \theta_g^{(i+2)} \theta_g^{(i+3)} \\
\ge \prod_{i=1}^p \left(1 + \theta_g^{(i)} \theta_g^{(i+1)}\right) \\
\ge \prod_{i=1}^p \left(1 + \left(\prod_{i=1}^p \theta_g^{(i)} \theta_g^{(i+1)}\right)^{1/p}\right)^p \\
= \left(1 + \varepsilon_0^{2/p}\right)^p.$$

If we put $\eta = \varepsilon_0^{2/p} > 1$, then $\eta^2 \ge \eta + 1$. It follows that $\varepsilon_0^{2/p} > \tau$.

Thus, if R is the regulator of \mathcal{X} , we have $R > p(\log \tau)/2$.

4. Further results. In this section we will obtain some results on the spacing of the first few minima of \mathcal{R} . We first require the following technical lemma.

LEMMA 4.1. If $\chi < \theta + 1$, then

- (i) $|\theta'|$, $|\omega'| > 1/2$;
- (ii) $|2\omega' + \chi'| > |\omega'|$, $|2\theta' + \chi'| > |\theta'|$, $|2\theta' + \omega'| > |\theta'|$;
- (iii) $|\theta' + \chi'| > |\chi'|$;
- (iv) $|2\chi' + \theta'| > |\chi'|$.

Proof. (i) The method of proof of (i) is given in the proof of Corollary 3.4.2.

(ii) Since $|\omega'| > |\chi'|$, we have

$$|2\omega'+\chi'|\geq 2|\omega'|-|\chi'|>|\omega'|.$$

Similarly, $|2\theta' + \chi'| > |\theta'|$ and $|2\theta' + \omega'| > |\theta'|$.

(iii) We note that

$$(4.1) \quad 2\zeta_{x}\zeta_{\theta} + 2\eta_{x}\eta_{\theta} = |\chi' + 1|^{2} - |\chi' + 1 - \theta'|^{2} + |\theta' - 1|^{2} - 1.$$

Since $\omega = \chi + 1 - \theta$, we get

$$|\theta' + \chi'|^2 = |\theta'|^2 + |\chi'|^2 + |\chi' + 1|^2 - |\omega'|^2 + |\theta' - 1|^2 - 1.$$

Since $|\theta'| > |\omega'|$ and $|\theta' - 1| > 1$, we have

$$|\theta' + \chi'| > |\chi'|$$
.

(iv) From (4.1) we get

$$|2\chi' + \theta'|^2 - |\chi'|^2 = |\chi'|^2 + 2|\chi'|^2 + 2|\chi' + 1|^2 - |\omega'|^2 + |\theta'|^2 - |\omega'|^2 + 2|\theta' - 1|^2 - 2.$$

Since

$$|\chi'|^2 + |\chi' + 1|^2 \ge \zeta_{\chi}^2 + (\zeta_{\chi} + 1)^2$$

$$= \frac{1}{2} (4\zeta_{\chi}^2 + 4\zeta_{\chi} + 1) + \frac{1}{2} \ge \frac{1}{2}$$

we get

$$|2\chi' + \theta'| - |\chi'| > 0.$$

We are now able to find possible candidates for further minima when $\chi < \theta + 1$.

LEMMA 4.2. If $\chi < \theta + 1$, $\chi + 1 < \rho < \chi + 2$, and $|\rho'| < 1$, then $\rho \in \{\chi + \theta, \chi + \omega, 2\chi\}$.

Proof. Since $\chi < \rho - 1 < \chi + 1$, we cannot have $|\rho' - 1| \le 1$, by Corollary 3.4.2. Since $|\rho' - 1| > 1$, by Theorem 3.4, we must have some $\psi \in \{\theta, \omega, \chi\}$ such that $|\rho' - \chi'| < 1$. If $\psi = \theta$, then

$$\omega = \chi + 1 - \theta < \rho - \psi < \chi + 2 - \theta = \omega + 1 < \chi + 1;$$

hence, $\rho - \theta = \chi$ by Corollary 3.4.1 and 3.4.2. If $\psi = \omega$, then $\theta < \rho - \chi < \theta + 1$. By Corollary 3.4.1, we can only have $\rho = 2\omega$, which is impossible by Lemma 4.1, or $\rho = \omega + \chi$. If $\psi = \chi$, then $1 < \rho - \psi < 1 + \theta$ and $\rho - \chi \in \{\theta, \omega, \chi\}$.

COROLLARY 4.2.1. If ρ satisfies the conditions of the lemma and ρ is also a minimum of \mathcal{R} , then $\rho = \chi + \omega$.

Proof. If $\rho = 2\chi$ or $\rho = \theta + \chi$, then $|\rho'| > |\chi'|$, which is not possible.

LEMMA 4.3. If
$$\chi < \theta + 1$$
, $\chi + 2 < \rho < \chi + 3$, and $|\rho'| < 1$, then $\rho \in \{\theta + \chi, \omega + \chi, 2\chi, \chi + \theta + 1, \chi + \omega + 1, \chi + 2\theta, \chi + 2\omega, 2\chi + 1, 2\chi + \theta, 2\chi + \omega, 3\chi\}.$

Proof. Since $\chi + 1 < \rho - 1 < \chi + 2$, we see by Lemma 4.2 that if $|\rho' - 1| < 1$, then $\rho = \chi + \theta + 1$, $\chi + \omega + 1$, $2\chi + 1$. If $|\rho' - 1| \ge 1$, then $|\rho' - \psi'| < 1$ for some $\psi \in \{\theta, \omega, \chi\}$. If $\psi = \theta$, then

$$\chi < \omega + 1 < \chi + 2 - \theta < \rho - \psi < \chi + 3 - \theta = \omega + 2 < \chi + 2.$$

Thus, $\rho - \theta \in \{\chi + 1, \chi + \theta, \chi + \omega, 2\chi\}$. (Note that $\theta + \omega + \chi = 2\chi + 1$.) If $\psi = \omega$, then $\chi < \rho - \chi < \chi + 2$ and $\rho - \omega \in \{\chi + 1, \chi + \theta, \chi + \omega, 2\chi\}$. If $\psi = \chi$, then $2 < \rho < \chi + 2$ and $\rho - \chi \in \{\theta, \chi, \omega, \chi + 1, \chi + \theta, \chi + \omega, 2\chi\}$.

COROLLARY 4.3.1. If ρ satisfies the conditions of the lemma and ρ is a minimum of \mathcal{R} , then

$$\rho \in \{\omega + \chi, \omega + \chi + 1, 2\chi + 1, 2\chi + \omega\}.$$

Proof. We have $2|\chi'|$, $3|\chi'| > |\chi'|$; the other possibilities are ruled out by Lemma 4.1.

THEOREM 4.4. If $\chi < \theta + 1$, there does not exist a set of minima $\{\mu_1, \mu_2, \mu_3, \mu_4\}$ of \mathcal{R} such that

$$\chi + 1 \le \mu_1 < \mu_2 < \mu_3 < \mu_4 < \chi + 3.$$

Proof. Put $\mathcal{R}^* = (1/\mu_1)\mathcal{R}$, $\theta^* = \mu_2/\mu_1$, $\omega^* = \mu_3/\mu_1$, $\chi^* = \mu_4/\mu_1$. Since $\chi^* < (\chi + 3)/(\chi + 1) < 1 + \theta^*$, we must have

(4.2)
$$\mu_4 + \mu_1 = \mu_2 + \mu_4$$
 (Theorem 3.2),

and $\mu_1, \mu_2, \mu_3, \mu_4 \in \{\chi + 1, \chi + \omega, \chi + \omega + 1, 2\chi + 1, 2\chi + \omega\}$ by Corollaries 4.2.1 and 4.3.1. If $\mu_1 \neq \chi + 1$, then (4.2) cannot hold. If $\mu_1 = \chi + 1$ and $\mu_2 \neq \chi + \omega + 1$, then (4.2) again cannot hold. Thus, we must have $\omega_1 = \chi + 1$ and $\mu_2 = \chi + \omega + 1$. It follows that $\mu_2 - \mu_1 = \omega - 1$ and we can only have $\mu_3 = 2\chi + 1$, $\mu_4 = 2\chi + \omega$.

Since $\chi+1$ is a minimum, we have $|\chi'+1|<|\chi'|$, and therefore $\zeta_{\chi}<-1/2$. Since $\zeta_{\omega}<1/2$, we get $2\zeta_{\chi}+\zeta_{\omega}<-1/2$ and $|2\chi'+\omega'+1|<|\omega'+\chi'|$. Thus, if μ_5 is the minimum adjacent to $\mu_4=2\chi+\omega$, then $\mu_5\leq 2\chi+\omega+1$. Since $\rho^*=\mu_5/\mu_1$, the minimum adjacent to χ^* in \mathscr{R}^* , must satisfy $\rho^*\geq \chi^*+1$, we get $\mu_5\geq \mu_4+\mu_1=3\chi+\omega+1>2\chi+\omega+1$, a contradiction.

COROLLARY 4.4.1. If $\theta_1 = 1$ in (2.1), then $\theta_8 > 4$.

Proof. If $\theta_4 \ge \theta_1 + 1$, put $\mathcal{R}^* = (1/\theta_4)\mathcal{R}$, $\theta^* = \theta_5/\theta_4$, $\omega^* = \theta_6/\theta_4$, $\chi^* = \theta_7/\theta_4$, $\rho^* = \theta_8/\theta_4$. By Theorem 3.5, we have $\rho^* \ge \omega^* + 1$; hence, $\theta_8 = \theta_4 \rho^* \ge (\theta_1 + 1)(\omega^* + 1) > 4$. If $\theta_4 < \theta_1 + 1$, then $\theta_8 > \theta_5 + 3 > 4$ by the theorem.

It follows from Corollary 4.4.1 that in \mathcal{R}_i we have

$$\prod_{j=0}^6 \theta_g^{(i+j)} > 4;$$

hence, from (2.1), we get

$$\theta_n > 4^{[(n-1)/7]}$$
.

REFERENCES

- [1] B. N. Delone and D. K. Faddeev, *The Theory of Irrationalities of the Third Degree*, Amer. Math. Soc., Providence, RI, 1964.
- [2] A. S. Pen and B. F. Skubenko, Estimation from above of the period of a quadratic irrationality, Mat. Zametki, 5 (1969), 413-418.
- [3] H. C. Williams and G. W. Dueck, An analogue of the nearest integer continued fraction for certain cubic irrationalities, Math. Comp., 42 (1984), 683-705.

Received July 6, 1984. Research supported by NSERC of Canada Grant #A7649 and by the I. W. Killam Foundation.

UNIVERSITY OF MANITOBA WINNIPEG, MANITOBA CANADA R3T 2N2