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INVARIANT SUBMANIFOLDS OF
FREE CYCLIC ACTIONS ON SPHERES

SUSAN SZCZEPANSKI

Let Z,, be the cyclic group of order m. Denote by p a free PL
(orientation preserving) action of Z,, on the sphere S2**!, k > 3. In this
paper, we study submanifolds, K2~ of the sphere which are left
invariant by the free action p. In particular, the submanifolds considered
are highly conneced, that is, m(K)=0, i<k — 1. We apply the
techniques of B-surgery theory as developed in [Szczepanski, 1983] and
some new results in this homology surgery theory which we develop
herein. We obtain a classification (up to cobordism) of invariant sub-
manifolds with given restriction 7 = p|K and a relationship between
invariant highly connected submanifclds and invariant (homotopy)
spheres.

Introduction. Let p denote a free PL (orientation preserving) action
of Z,, the cyclic group of order m, on the sphere $2**!. Two questions
involving submanifolds left invariant under such an action come to mind.
The first involves the determination of which Z, actions on which
manifolds of dimension 2k — 1 can arise as the restriction of p to an
invariant submanifold. The second is a question of uniqueness or classifi-
cation of equivariant embeddings. That is, if it is known that a given
submanifold K2*~! of the sphere $***! has a free PL (orientation
preserving) action of Z,,, denoted by 7, which is the restriction of p, it is
reasonable to ask if this equivariant embedding of the pair (K, ) is
unique (up to an appropriate notion of equivalence) and to seek a
classification of all such equivariant embeddings of (K, 7) in the case of
non-uniqueness. The case of invariant subspheres was addressed in the
work of Cappell and Shaneson using homology equivalences and homol-
ogy surgery obstruction groups (see [CS, 1974], §9-10), and in the work of
Stolzfus by using Seifert matrices (see [St, 1977], §6). Here we will be
concerned with the classification problem of equivariant embeddings of
more general submanifolds up to the equivalence relation known as
equivariant cobordism (see §1). In particular we are interested in submani-
folds of spheres which are highly connected. These are manifolds for
which the homotopy groups vanish below the middle dimension, 7,(K) =
0, i < k — 1. This class of submanifolds of the sphere arises naturally in
the study of isolated singularities of complex hypersurfaces.
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Our methods follow the philosophical approach of Cappell and
Shaneson and involve a new homology surgery theory, B-surgery theory as
developed in [Sz, 1983; §1]. The results include a classification (up to
equivariant cobordism) of invariant highly connected submanifolds with a
given free Z,, action and the establishment of a relationship between the
highly connected case and the spherical case.

Let 7 = p|u«(K) denote the restriction of p to the highly connected
submanifold, «(K), where ¢ is used to denote an embedding of K into the
sphere S2%*1 The main geometric results are summarized in the follow-
ing.

THEOREM A (See Thms. 3.1, 4.5, 4.7). The group of cobordism classes of
invariant (homotopy) spheres 1,: = C S***1 with p|io(Z,) = 7, acts on the
set of cobordism classes of invariant submanifolds 1. K C S***! with
ple(K) = 7.

(1) If H*"Y(K) # 0, this action is not transitive; the orbit space
contains an infinite set;

(i) If H*"Y(K) = 0 and either k or m is odd, then this action is
transitive;

(iii) If H*"Y(K) = 0 and both k and m are even, the orbit space of the
action has at most two elements.

Thus, we see that the variety of ways in which a manifold K with free
Z, action T may arise as the restriction of p is related to the variety of
ways in which a homotopy sphere with free Z,, action 7, so arises. There
is an infinitely greater variety of invariant submanifolds (K, ) whenever
b{""l(K )# 0. If £k or m is odd, we have a greater variety only if
H*Y(K) # 0. If kK and m are both even the variety is greater by at most
a factor of two whenever H*"}(K) = 0.

For submanifolds of $?**! PL homeomorphic to the sphere $2*~1,
the questions of which actions can arise as restrictions of an action on
S2k*1 and in how many distinct ways can a given action on S2¢*! so
arise are answered in [CS, 1974]. We are interested in studying highly
connected submanifolds, that is, submanifolds K2~ ! c $2¢*! with
m(K) =0, i < k — 1, invariant under the action p. Theorem A follows in
part from our classification of C(p,7), the set of equivariant cobordism
classes of invariant submanifolds K € S%**! for which the restriction of p
is equivalent to the given action of 7 on K (see §1).

Let #: Z[Z) - Z[Z,,], and A4 = m,_,(K). The philosophical ap-
proach found in [CS, 1974; §10] requires us to study maps of pairs
h: (V,0V) = (X,Y). In the case of invariant subspheres, it is valid to
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assume the restriction 4|9V is a homology equivalence over the coeffi-
cients Z{Z, ]. To obtain results, surgery is performed relative 4|9V in the
hope of obtaining a homology equivalence over Z[Z, to replace the map
h. There is an obstruction to performing these surgeries successfully; it is
an element of the surgery group I, ,(%). When the philosophical
approach is applied to the more general problem of invariant highly
connected submanifolds, again we wish to study maps of pairs A: (V,3V)
— (X,7Y) but in this case it is not true that the restriction 4|dV, is a
homology equivalence. For this problem, surgery relative 4|3V is per-
formed with the hope of producing a replacement for 4 which satisfies
certain homological prerequisites. In particular, there is no hope of doing
surgery relative 4|3V and producing a homology equivalence. Even if we
could, it would not lead to the results for which we hope. The surgery will
be successful if it produces a map A: (V,3V) — (X, Y) which homologi-
cally (over Z[Z,,]) is no more complicated than what is dictated by #|dV
(see [sz 1983; §1] for details). The obstruction to replacing 4 by a suitable
map is an element of the B-surgery group b, ,,(F; 4 ® A4).

Let B denote the orbit space of the action on an invariant subgroup
B c.B,,.,(%; A ® A)induced by the action of the Wall group L,, ,,(Z)
on b,,,,(%#; A®A), (see [Sz 1983; §2]). Our classification takes the
following form.

THEOREM B (See Thms. 1.5, 2.2, 3.3). There exists a subgroup B C
B,,.,(¥; A ® A) such that B acts freely on C(p, T) with orbit space

0, k odd, m even;
O(r)={Z,, kodd, modd,

Z, keven.

The subgroup B is given explicitly in terms of normal invariants and a
pairing of the groups B,, ,(F; A® A) and T, ,(F) with values in

L2k+2(zm)'

Let 7, be a free Z,, action on S***! arising as the restriction of p to
an invariant sphere. The relationship between the sets of cobordism
classes C(p, 1) and C(p, ) corresponds to the relationship between the
homology surgery groups I, .,(#) and B,,,,(#; 4 & A). That is,
there is a geometrically defined operation, tunnel sum (see [CS, 1974]; §9),
which gives a group structure for C(p, 1,) and a group action of C(p, 1)
on C(p, 7). There is an action of I,, ,,(F)onB,, ,,(%; A ® A) which
is given algebraically by taking orthogonal direct sum of forms. The
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operation of tunnel sum can be described algebraically by this action. Let
B, and B be the subgroups of Theorem B for C(p,7,) and C(p, )
respectively.

THEOREM C (See Thms. 3.1 and 3.2). The algebraic action of I o (F)
on B, . ,(F; A® A) induces an action of B, on B. This induced action
corresponds to the action of tunnel sum, that is,

o0 - B, - c(pyry) —= O(r,) - 0
N\

l l
0 - B - C(p,r) - O0O(r) - 0

is a commutative diagram.

We then reduce the geometric problem of Theorem A to an algebraic
one by the following.

THEOREM D (See Thms. 3.1 and 3.2). The orbit spaces of the two
actions are isomorphic, that is,

sz+2(g’_§ A®A) /Ty H(F)= C(p,7)/C(p, 7).

The statements (ii) and (iii) of Theorem A follow from a reciprocity
principle for B-surgery theory [Sz 2].

THEOREM E (See Thm. 4.5). If A* = Hom(A4, A) = 0, where
F. A7) = A, then

Boi2(F3 A0 A) /Ty o(F) =10 5(F)/Bos(F; 40 4).

In the case A* # 0 and A is the integral group ring of a finite group,
we show that the orbit space of the algebraic action is not finite (see §4);
hence we may conclude that the reciprocity formula of Theorem E does
not hold if 4* # 0, in the case A = Z[Z, ], and we obtain statement (i) of
Theorem A.

1. Let Z,, be the cyclic group of order m. Given a free orientation
preserving PL action of Z, on a PL manifold, M, the quotient space of
the action, M, is an orientated PL manifold with an identification of its
fundamental group with the group Z,,. Two actions on a manifold will be
called equivalent (homotopy equivalent) if their quotient spaces are PL
homeomorphic (homotopy equivalent) by a degree one map that preserves
the identifications of the fundamental groups with Z,.
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As in [CS, 1974], we define the suspension of a free action to be any
free action obtained from a given one by taking its join with a free action
on S!; the quotient manifold of a suspension will be called the suspension
of the quotient manifold. There is one suspension for each primitive mth
root of unity. Recall from [CS] that the quotient space of an action of Z,,
on a sphere is called a fake lens space, and the different suspensions of a
given fake lens space give rise to different actions on S2%*1, that is,
actions which are not homotopically equivalent. If L?*~! ¢ M2¥*! is an
inclusion of fake lens spaces, the normal bundle of L in M is a 2-disk
bundle with Chern class a generator of H*(L; Z) = Z,,; this generator
determines a suspension, N, of the fake lens space L.

Let p be a free action of Z,, on S?**! with M = S2**!/p_ In this
paper, we are interested in invariant codimension two submanifolds which
are highly connected, that is, submanifolds K2*~! c §2¢*! invariant
under the action of p and satisfying 7 (K) =0 for i <k — 1. Let J be
the quotient space of the restriction of p to K. Assume k > 3.

We begin by introducing the notion of the characteristic map for the
restriction p|K. This important tool provides a linear lens space against
which we “measure” the invariant highly connected submanifold K.

According to [Wall, Ch. 14], given a primitive mth root of unity, every
homotopy lens space is homotopy equivalent to the corresponding suspen-
sion of a unique linear lens space of the form L = L(m; 1,1,...,1,¢)
with (¢, m) = 1. If M contains a manifold J as described above, we will
construct the homotopy equivalence to be an extension of a map from J
to the linear lens space L. We call this homotopy equivalence the
characteristic map for the restriction p|K.

PROPOSITION 1.1. There exists a suspension N of a linear lens space L
and a homotopy equivalence f: M — N such that f~Y(L)=J and f|J:
J — L is a highly connected degree one map. That is, the map induced by
f|J on homotopy group (f|J)s: w(J)— m(L) is an isomorphism for
i <k — 1. The map f is unique up to a homotopy relative a map of bundle
neighborhoods f | R(J): R(J) = R(L).

The proof of the proposition relies on a well known argument used to
establish [CS, Prop. 6.3] in the case of a sphere, and [Sz, Theorem 2.10] in
the highly connected case. We include it here for the sake of the reader.

LeEMMA 1.2. An embedding of a highly connected codimension two
manifold K into a sphere S***! can be factored through an embedding of K
into a bundle neighborhood of the standard embedding of S**~'. The
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inclusion of K into S**=1 X D? followed by the projection unto the zero
section is a degree one highly connected map from K to S?*~1,

Proof. Let S* - S%*! — K be a generator of H,(S***' - K)=1Z
corresponding to the canonical generator of the first homology of the
circle bundle over K determined by the embedding of K. Because of the
large codimension, this copy of S* is unique up to isotopy. The embed-
ding of K clearly is contained in the complement of the interior of a
neighborhood $' X D?¥; so K c $?%71 X D? c §?**1, To see that the
inclusion of K into this $?*¥~! X D? followed by the bundle projection is
a degree one map, we consider W = §%¢~1 X D2 — int(K X D?). In the
case K is a sphere, W is a homolgoy A-cobordism. In the case K is just
highly connected, the inclusions of the boundary components will fail to
induce an isomorphism of homology groups in dimensions £ — 1 and k.
In both cases however, the inclusions do induce an isomorphism in
dimension 2k — 1. It follows from a Mayer-Vietoris sequence that the
map from K to S2¥~! described above is degree one.

Proof of Proposition 1.1. By taking advantage of the cyclic action, we
may use Lemma 1.2 to factor the embedding J C M through an embed-
ding into a submanifold of M homotopy equivalent to a bundle over a
lens space. As above, we use transversality to represent a generator of
(M) by a circle in (M — J) and obtain a decomposition of M as the
union along the boundary of S* X D?* and a (2k + 1)-manifold P with
J C int P. We may lift this decomposition to the sphere $**! and obtain
the factorization as in Lemma 1.2 for the invariant submanifold K. Thus,
P is the quotient space of the restriction of p to S**~! X D2,

Now, M is homotopy equivalent to a linear lens space of dimension
2k + 1 and the homotopy equivalence can be split along a circle repre-
senting a generator, as done above. Hence we see that P is homotopy
equivalent to a bundle over a linear lens space L. Thus, the equivariant
embedding of K into S2¥*! can be factored through an embedding into a
bundle over a sphere, and the embedding of J in the fake lens space M
can be factored through an embedding into a space homotopy equivalent
to a bundle over a linear lens space. The restriction of the homotopy
equivalence followed by the bundle projection is certainly highly con-
nected. To see that it is a degree one map, it suffices to establish this for
the map of the universal covering spaces from K to $2*~! which covers
this map. But this follows from Lemma 1.2.
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Now let N be the suspension of L determined by E(L), the normal
bundle of L in the (2k + 1)-linear lens space. We begin with the degree
one map J — L, extend this to a homotopy equivalence from P to E(L)
and then extend this to a map f: M — N which has all of the desired
properties.

If P were actually a bundle over the lens space L, we could proceed
as in [Sz, Lemma 2.2] and produce the characteristic map of the semi-local
knot J C P. For the more general case at hand, it is still true that the
obstructions all lie in cohomology groups which must vanish since P is
homotopy equivalent to such a bundle. It is fairly obvious that once
defined on 9P, there is no obstruction to extending this to a map
f: M — N. That f is a homotopy equivalence and the extent to which it is
unique follows from [Sz, Lemmas 2.2 and 2.3].

Related to the notion of characteristic map for the restriction p|K is
the notion of highly connected characteristic submanifolds. A highly
connected characteristic map of submanifolds associated to a homotopy
equivalence f: M — N, where N is a suspension of L**7, is a restriction
map g|g 'L: g7 'L —» L where g: M — N is homotopic to f, transverse
to L and g|g 'L is a highly connected map. If g|g 'L is actually a
homotopy equivalence, g 'L is called a characteristic submanifold. In
what follows, we will use the phrase “highly connected characteristic
submanifold” to describe the submanifold g~'L together with the restric-
tion map, g|g L.

Reviewing [CS], we note that in the case of an invariant sphere of p,
L may be chosen to be the quotient space of the restriction of p. The
characteristic map then is an extension of the identity map on L [CS, p.
325]. Further, P is a bundle over a lens space and the embedding L € M
factors through a semi-local knot L C E(L) = P (see [CS, p. 302]). Thus
it is shown [CS, Prop. 9.1] that characteristic submanifolds of M are
exactly the quotient spaces of invariant spheres of p. In like manner, it
follows from our definitions and Proposition 1.1 that an analogous
statement can be made in the highly connected case where P is homotopy
equivalent to E(L). If in addition to J, the homotopy lens space M
contains a characteristic submanifold, i.e. a codimension two homotopy
lens space, L, then P is in fact a bundle over L and the embedding
J € M factors through a semi-local knot J € E(L) = P over a highly
connected degree one map g|J: J — L (see [Sz, p. 29]). In [CS, 9.2], it is
stated that the obstruction to the existence of L lies in Z, and is zero if k
and m are not both even. This discussion allows us to make the following
statement.
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PROPOSITION 1.3. The quotient spaces of highly connected invariant
submanifolds of p are exactly the highly connected characteristic sub-
manifolds of M = S***+1/p.

Our first goal is to classify up to cobordism all invariant embeddings
of K into S***! Let K, and K; be two such invariant embeddings.
There is a Z,, action, p, on S***! X I obtained by taking the action of p
on the first factor and the trivial action on the second. We say that K,
and K, are equivariantly cobordant if there exists a submanifold W of
S2k+1 x I, invariant under the action p, PL equivariantly homeomorphic
to K X I and meeting the boundary transversely in W = (K, X 0) U
(K; X 1). Note that in particular, p| K, and p| K, are equivalent.

Let 7 denote a Z,, action on a highly connected manifold K2*~1.
Suppose that p has an invariant submanifold equivalent to ( K, 7). The set
of equivariant cobordism classes of invariant submanifolds for which the
restriction of p is equivalent to 7 is denoted by C(p, 7).

We now use the tools set up in Propositions 1.1 and 1.3 to see that
there is a suspension N of a linear lens space L and a unique homotopy
equivalence f: M — N preserving polarization (i.e., orientation and iden-
tification of fundamental groups) for which J = K/7 is a highly con-
nected characteristic submanifold. Two such submanifolds associated to f,
say J,=g 'L, i =0,1, are cobordant if and only if there exists a
homotopy G of the maps g, and g, transverse regular to L X I with
G|G YL X I) amap of s-cobordisms into L X 1.

An argument similar to the discussion leading up to Proposition 1.1
shows that the classes C(p, 7) correspond exactly to the cobordism classes
of highly connected characteristic submanifolds for f that are PL homeo-
morphic to J via a polarization preserving map. Having identified the
appropriate description of the objects we wish to study, we now proceed
and look for a classification in terms of certain surgery obstruction
groups. We first verify that certain homological conditions are satisfied
and that all is set up so that an element in such an obstruction group can
be defined.

Let W = CI(M — R(J)) be the closed complement of a bundle
neighborhood of J such that the restriction f|W is a map to D** X S! =
CI(N — R(L)). Let #: Z|Z] — Z[Z,,] be the map induced by the map of
fundamental groups which in turn is induced by the inclusion D?* x S*
C N. As a consequence of Proposition 1.1 and Lemma 1.2, we observe
that f|W is a degree one normal map and the induced map on homology
with local coefficient, A = Z[Z,], enables us to conclude that f|W is
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A-homology highly connected, that is, the map induced by f|W on the
homology groups with coefficients in A is an isomorphism in dimension
i < k — 1. In other words, K,(W; A) = 0fori < k — 1, where K,(W; A)
denotes the kernel of the split surjections of homology groups induced by
f|W, (see [Wall, 2.2] and related discussion for more detailed description
of these kernel groups).

LEMMA 1.4. Let f: M — N be the characteristic map for J C M. Then,
for all j, the sequences

0K, (W,0R; A) > K,(aW; A) > K;(W; A) > 0
and
0- K, (R(J),8R; A) > K,(3R; A) > K,(R(J); A) >0
are exact, and
K;(dR; A) = K,(R(J); A) ® K;(W; A).

Proof. This follows immediately from Proposition 1.1 and the Mayer-
Vietoris sequence.

Let A = K, _,(J; A). It follows from the above and the fact that f|J
is highly connected that K, _;(dR; A) is isomorphic to 4 as a A-module,
and that K,(dR; A) = 0for i < k — 2. Also, K,(W; A) is isomorphic to
A (as a A-module); this follows in part from the high connectivity and
from duality.

Let f, and f; be characteristic maps for J, and J;, respectively,
where J, and J; represent elements of C(p, 7). Suppose that their restric-
tions to the respective complements W, and W, are normally cobordant
relative dR with underlying manifold Z. From the Mayer-Vietoris se-
quence for 0Z = W, U W), we obtain an identification

A® A=K, R, A) DK (W; A) =4

where 7, is the projection map [Sz, p. 36]. This cobordism determines an
element in the surgery obstruction group, y € b,, ,,(%#; 4 ® A). This
element, vy, is the obstruction to performing surgery on the interior of Z
which results in a new manifold, Z, which homologically (over A) is an
h-cobordism. As the cobordism is relative dR, we obtain a normal
cobordism (F,B): (ZU R(J)XI)—> N X1 between f, and f; by
taking the union with f|R(J) X id; along 0R X I. (Recall that J, and J;
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are highly connected characteristic submanifolds for a homotopy equiva-
lence f: M — N.) This process of “glueing in” describes geometrically an
algebraically defined homomorphism

Li: By o(F; A © 4) > Ly 5(Z,,)

with 1,(y) = o(F, B). The algebraic definition of this homomorphism will
be given in §3; briefly, it is the homomorphism obtained from a pairing of
By o F; A ® A)and b, ,(id; ; 4 ® A) with valuesin L,,,,(Z,,) by
considering the “orbit” of the trivial element of B,,,,(id, ; 4 & A4).
Using the definition of the B-surgery group and the notation in [Sz, §1],
we may describe it as a “forgetful” homomorphism; if (A: H — G;
(G; 6,Y)) represents y € b,,,,(F#; A & A), then j,(y) may be rep-
resented by the unimodular form obtained from (G; 6,{) by tensoring
withZ .

From the above discussion and the fact that the process of glueing in
results in a cobordism from N to itself, we conclude that the image in
L,,.,(Z,) of an element of b,, ,(%; A ® A) arising in the geometric
setting currently under study lies in the image of the surgery obstruction
map

s:[EN, G/PL] - L,,.,(Z,).

Let BC B,,.,(#; A ® A) be the subgroup consisting of all elements
with this property. By the realization theorem of B-surgery theory [Sz,
Theorem 1.11], each y € B,,,,(%#; 4 ® A) determines a map (H,C)
which is a normal cobordism, relative 0R, of f,|W, to a map
h: Y - D?** x S! for which the conclusion of Lemma 1.4 holds and for
which o(H,C) = y. The image of B in L, ,(Z,,) acts trivially on the
homotopy classes of maps into N; hence if y € B, then # U f|R(J) is a
characteristic map for a representative of an element of C(p, 7).

Besides the algebraic action described above, there is a well-defined
action of L%, . ,(Z) on B,, ,,(#; A & A) which is given by orthogonal
direct sum of forms [Sz, p. 42]. In this setting, this action may be realized
geometrically by taking connected sum with a map to S2¥*? with surgery
obstruction in L, ,(e) = L,,,,(Z). We are now prepared to describe
a relationship between the geometric C(p, ) and the algebraic
B .o F; 4 0 A).

THEOREM 1.5. The subgroup B C B,, . ,(#; A & A) acts on the set
C(p, 7). Moreover, there is an action on B induced by the action of
L,,.,(Z) on B,, ,(F; A& A); the orbit space of this action, B acts
freely on C(p, 7).
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Proof. That the action on C(p, 7) described in the above discussion is
well-defined follows by an argument similar to that in [Sz, Theorem 2.7],
applied to the restriction of f to the manifold P obtained in the proof of
Proposition 1.1.

The second statement requires a description of the elements of B
which act trivially.

Let D C L,, . ,(Z) be the image of the surgery obstruction map

s: [228%%-1 x §', G/PL] - Ly, .,(Z).
First, by restricting the action of L,, . ,(Z) to the subgroup D, we obtain
an action of D on BC B, ,(#; A ® A). Let (H,C): Z » D** x §*
X I be a normal cobordism, relative 0R X I, from f, to f; with o(H,C)
= y € B. We realize § by performing surgeries in a neighborhood of the

boundary component d0R X I. Let (G, B) be the normal cobordism from
H |9R X I to itself, relative (4R X 0) U (0R X 1) obtained from

H|AR X Id X Id; OR X I X I - (S?* "' x §Y) X I X I

by taking connected sum with a normal map to S2**? which represents
de L, ,(e)=L,, ,(Z). Taking the union along dR X 0 X I, the alge-
braic action of D on B given by orthogonal sum of forms is realized
geometrically, thatis, 6(GU H) =6 - vy.

It remains to show that if y € B acts trivially, then y is in the orbit of
the zero element of b,, . ,(#; A ® A); that is, there exists a § € D such
that 8 - 0 = y. If y acts trivially, (H, C) is a cobordism from f to itself.
Let F = f, X id; this represents the zero element. Consider the map
H U F, the union taken along H|dR X I = f,|dR X id. This gives a
cobordism from f, U — f, to itself; we keep in mind that this is normally
cobordant to the identity on S2*¥ X S'. Now consider the surgery obstruc-
tion of G into $** X S X S! obtained from H U F by identifying along
the map f, U f,. By the Kunneth formula of [Sh, 5.1}, L,, . ,(Z & Z) =
L,,.«(Z)® L,, ,(Z) and so o(G) is determined by o(f, U — f,) =0
and ¢ € L, ,(Z), where o is the surgery obstruction associated to the
map HU F. Let H, be a normal map from f; |dR X id to itself with
obstruction —o. Applying the constructions and analysis of G as above to
the map H, U H U F, we find that the element in L,,  ,(Z) vanishes. It
follows that o(H,U H) € B,,.,(%; A ® A) vanishes and so, taking
o =208, we obtain —8 -y =0, or that y is in the orbit of the trivial
element.

Thus, having defined C(p, r), we are able gather a fair amount of
information concerning its structure by applying notions from surgery
theory. In particular, the realization of surgery obstructions by cobor-
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disms and the various relationships one can establish algebraically and
sometimes geometrically among different surgery theories and surgery
groups played an important role in our discussions so far. We turn now to
an investigation of some of the underlying algebra.

2. In this section, we define and describe a homomorphism
1,: B, (#; A® B)—> L,,(A) where #: Z[w] > A is a ring epimor-
phism. In the preceding section, we indicated how this homomorphism
enters the study of invariant highly connected submanifolds of a free
cyclic action on a sphere. In particular, we saw that

14: B2 (F; 40 4) > Ly, ,,(Z[Z,))

where the ring epimorphism % : Z[Z] - Z[Z,,] is induced by the inclusion
map CI(M — R(J)) = M corresponds to the geometric process of glueing
in R(J). Needless, to say, the discussion here will rely upon notions and
ideas set forth in [Sz, §1]. While we do not intend to reiterate the technical
contents of that paper, we will include here helpful descriptions of terms
and refer the reader to the above paper for more precise definitions.

We begin by recalling the definition of b,,(#; A ® B). Briefly, an
element of this group is represented by

a=(A: H-G,(G;0,¢))

where A is a homomorphism of Z# modules which induces an exact
sequence H, » G, = A — 0 after taking tensor product with A, and
(G; 6,¢) is an (—1)"-Hermitian form over Zw which determines a
unimodular form over A after taking tensor product with A. There are
some further properties satisfied by the form and the homomorphism
which will be discussed as needed. We begin with this description of a as
a form on H which factors through a form on G with the property that
the factorization is unimodular after tensoring with the “weaker” ring A.
Note that the unimodular form (G,; 6,,{,) represents an element in
Ly, (A).

We will show that this “forgetful” assignment induces a well-defined
homomorphism 1,: B,,(%#; 4 ® B) > L,,(A). Since this assignment
clearly respects the addition operations on forms and the obstruction
groups are the equivalence classes of the respective additive relations, it
suffices to show that the induced map on the groups is well-defined, i.e., if
a and B are two representatives of an element 6 € b, (%#; 4 © B), then
the corresponding unimodular forms are two representatives of 1, €
L,,(A); it is enough to check this for the trivial element.
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LemMA 2.1. Let a =(A: H - G, (G; 0,Y)) represent the trivial
element of B,,(%; A ® B). Then, the associated unimodular form over A,
(Gy; 64, Y ,) represents the trivial element of L,,(A). Moreover, (G; 0,)
represents the trivial element of T, (F).

Proof. By definition, « is equivalent to a representative 8 which is
strongly equivalent to zero (see [Sz, §1, p. 142]). That is, certain algebraic
conditions are satisfied by the form and homomorphism of B. Essentially,
these conditions amount to the existence of a submodule on which the
form vanishes and a “splitting” of the form and homomorphism (over A)
with respect to this submodule.

By [Sz, Lemma 1.4], we may choose B8 to be of a very special type.
There exist forms &, strongly equivalent to zero over id,, such that
a®§ ®8,® - ®J, is strongly equivalent to zero. The operation, @,
as defined in [Sz, §1], is not simply orthogonal sum of forms. However,
the effect of adding these §,’s is to change the unimodular form of «a by a
kernel in the sense of Wall. That is a is changed by something which is
strongly equivalent to zero in the theory of Wall. It follows that we may as
well assume that « is strongly equivalent to zero (in the sense of b-theory)
to begin with.

We will show that (G,; 6,,y,) is a Wall kernel [Wall, p. 47]. Let
K C H be a trivialization for a, that is, on this submodule K, the induced
from (H; ¢, p) vanishes and K, is a free direct summand of H, such that
the composition

(%) coker Ag, |, — coker A¢, iy
is an isomorphism, where A¢, is the adjoint homomorphism of the form

¢,, and coker4¢, = A ® B. Since « is strongly equivalent to zero, we
may extend a basis for K, to one for H, = K, ® Q, so that

018
Ad, =
Pa ( 5+ 0)
in terms of this decomposition. The restriction to Q, yields the exact

sequence
O—)B*——)QA—)KI—aA—)O’

where the identification 4 = cokerd is derived from (*) and in a similar
manner B* = kerd. We have the following commutative diagram, over A,

0O - B* - H > G —-»> 4 - 0
I = I m br | =

where 7 =m - A* - 40: G > K* C H*.



158 SUSAN SZCZEPANSKI

That the last vertical map is an isomorphism follows from the
definition of a factorization A and a trivialization K; in particular, from
the identification of the two cokernels with 4 C 4 ® B = cokerA¢,.
Similarly, taking advantage of the duality required of a representative a,
that is,

ker A, = (coker Ap,)*

[Sz, p. 7], we see that the first vertical map is an isomorphism. From this
diagram we may conclude that K ¥ is a direct summand of G, and that
A|Q, = 8 and A|K, is an isomorphism onto ker 7. We obtain a splitting
of 7 by lifting a basis of the direct summand K c H, to G,. This basis
for K¥ C G, may be extended to a basis of G, so that A is the direct sum
of the restrictions A | K, and A|Q,. It readily follows from the factoriza-
tion of the adjoint map

Ady = N*- A6, - A,

0 ([
0= (3715

We may even arrange that y = 0 by choosing the splitting of 7: G, = K
more carefully. Hence, (G,; 0,, ¥, ) represents zero in the Wall group.
The last statement of the Lemma follows from a generalization of the
above argument using the fact that the image of the trivialization of «,
A(K) is a pre-subkernel for (G; 6,¢) in the sense of Cappell-Shaneson
[CS, p. 286] and so, (G; 0,¢) represents zero in the homology surgery

group I‘Zn(‘g-)'

that in terms of this basis,

The next thing we will discuss is the geometic realization of the two
forgetful homomorphisms

14:B,,(#; 4@ B) > L,,(A)
and,

1,:5,,(%; 48 B) > T,,(F).

To realize the first of these, we consider the following situation. Let
f: (P,dP) - (Y,0Y) be maps of pairs such that f|0P = g|dP and
h = f U g is a homotopy equivalence,

dim(XU Y)=dim(3Y) + 1 =2n - 1.
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We have the following diagrams

m(X)
7 N
m,(3Y) m(XUY)
N 7
Wl(Y)
and for all i,
K,(P; A)
7 N
K;(0P; A) K(PUQ; A)=0
N 7
Ki(Q; A)

where A = Z[7,(X U Y)] = Z[x]. Hence,
K, (3P; A) = K,(P; A) ® K,(Q; A)
for all i. Let
F:ZLmY] > A, A=K,  (P;A) and
B=K, (P,dP; A) =K, ,(Q; A).

By [Sz, Theorem 1.11], each element y € b,,(%#; 4 ® B) may be real-
ized as the surgery obstruction of a highly connected normal cobordism
(F,B): W—-YXI from (f,b), relative the boundary, to a map
fo: (Py, 0P) — (Y,09Y) with the same properties over A. That is, the above
diagrams are unchanged if we replace P by P,. It follows that A, =
fo U g is a homotopy equivalence.

THEOREM 2.2. There is a well-defined homomorphism
1*: B2n('9z-, Ae B) - L2n(ﬂ)‘

Moreover, 1, may be realized geometrically, i.e., in the situation described
above, 1,(v) = o((g X id) U F).

Proof. The first statement follows from Lemma 2.1, and the discus-
sion preceding it. The second requires further discussion.

To show that 1,(y) = o((g X id U F), we consider first the case
when the generators of A = K, _,(P; A) are spherical. Suppose that there
exists a set of imbedded spheres in 3P whose images in P generate
K,_(P; A). If we assume that f|dP is highly connected, this condition
is clearly satisfied. Since these are imbedded in P we may arrange that
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the images in P are disjoint and unlinked by viewing each in its own copy
of 0P X I and applying the arguments of [Sz, 1.2]. We then use these
spheres as in [Sz, 1.2] to realize the unimodular form through which
the form on K,(W; A) factors and thus obtain an element o(F, B) €
B,.(#; A ® B) represented by

a=(u:: K,(W) > K, (W, P), (K,(W, P); 6,%))

where 6 and y are given respectively by the intersection and self-intersec-
tion numbers. Each of (n — 1)-spheres bounds a disk in Q since fU g is a
homotopy equivalence. We may arrange that these are disjoint in Q X I
by again viewing each in its own copy of Q and each sphere in its own
copy of (0P X I) X I. It s easy to see that the k-chains resulting from the
union of a generator for K,(W, P; A) and the corresponding disk in Q
represent generators of the form which represents o((g X id) U F) €
L, (m), and as we have arranged that the disks are disjoint and
spheres unlinked, the intersection and self-intersection forms on
K, (WU Q X I, A) are just those on K, (W, P; A).

For the general case, we must find the disjoint unlinked spheres which
will represent generators of 4 = K, _,(P; A), and then proceed similarly
to the above. To do this we generalize the argument used in [Sz, 1.2] for
the case of toral generators. We may view F as the union of two maps G
and F’ to the product Y X I, where G: U —» Y X [0,1/2] is a cobordism
relative 0P from P to M obtained as follows. Let {x;}, i = 1, m repre-
sent classes in K, _,(dP) whose images in P generate K, _;(P; A). These
classes may be represented by cycles, each in its own copy of dP X I. We
perform surgeries on each copy so that the resulting map is highly
connected. That is, the map restricted to dP X I is normally cobordant,
via a highly connected map, g: Z — 0P X I X I, to a highly connected
map. We replace F: W — Y X I by a map represented schematically by

F fl1aP x id x id
-g - g - g
fxid - - -
g g g

and now G: U = Y X [0 X 1/2], where U is the union of the support of
the surgeries in each copy of 9P X I. Now generators of K, _,(P; A) are
represented by spheres in M which we have arranged to be disjoint and
unlinked. We may proceed as above. We do note that although the
surgeries may change the form a,

o(F,B)=o(F'UG)€B,, (F; A®B).
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In fact, the effect of taking the union with g’ U — g’ is to add a form
trivial over Z[ ], thus changing the unimodular form by a Wall kernel.

3. We now turn our attention to the comparison of C(p,7) and
C(p, 1) where 7 is the restriction of p to an invariant highly connected
manifold K and 7, is the restriction to an invariant sphere.

While not every free Z, action on S?**! has an invariant codi-
mension two sphere, this is the case if k£ and m are not both even, [CS,
Corollary 9.3].Further, the obstruction defined in [CS, 9.2] to a particular
T, arising as the restriction of p to an invariant sphere lies in Z,. Thus, it
is very often the case, that given 7 = p| K, we may produce a 1, = p|2, a
restriction to a homotopy sphere.

Let J = K/t be a highly connected characteristic submanifold [see
§1] of the homotopy lens space M = $?¥*1/p with characteristic map
f: M — N, restricting to amap f|J: J — L where N is a suspension of a
homotopy lens space L. We will assume that what is most likely is in fact
true, i.e., L = 2 /1, is a characteristic submanifold of M, 7, = p| 2.

In [CS, 10.3], a classification of C(p,7,) is obtained in terms of
homology surgery groups. In particular, it is shown that there is a
subgroup of the cokernel of the natural map

L2k+2(Z) - F2k+2(f)

which acts freely on C(p, 1,) with orbit space 0, Z,, or Z depending upon
the parities of k£ and m.

By our classification result, Theorem 1.5, for 7, _,(J) = 0, there exists
a subgroup B, € B,,,,(%; 0 ® 0) = T, . ,(F) such that B, acts freely
on C(p, 7,) where B, is the quotient of B, by the image of the composite
of the surgery obstruction map

[225241 X ST, G/PL] = Ly,,(Z)

and the natural map L,, . ,(Z) — I’,,,,(%). This constitutes an alternate
description of the subgroup and action described in [CS, Corollary 10.4].
This description has the advantage of pointing towards a group
structure on C(p,7,). Let £ be the normal bundle of the embedding
L ¢ M with total space E(§). In this case, every embedding L C M
factors through a semi-local knot into E(§) over the identity map id ;. The
cobordism classes of such semi-local knots is denoted by C(id,, §), (see
[Sz, p. 153]). Combining this with Proposition 1.3, we may identify
C(p, ) with C(id;, &) in [Sz, p. 153]. There is a group operation defined
on the latter set. Let ¢; and ¢, be two semi-local knots, that is, embed-
dings of L into E(§). The composition or tunnel sum of ¢, and ¢,, written
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4 * &y, is defined in [CS, p. 305] as follows. Let T be a tubular neighbor-
hood of ¢;(L) and let g: T — E(£) be the canonical bundle map. Then,
t; + ¢, is defined to be the composition.

L3E@)STC E(%).

This is well-defined, up to isotopy.

It follows as above that C(p, 7) may be identified with C(f|J, §), the
set of cobordism classes of semi-local knots over f | J into §&. We define %,
an action of C(p, 7)) on C(p, ) by tunnel sum. Let ¢; and ¢, represent
elements of C(id,, §) and C(f|J, £) respectively. The action of ¢; on ¢, is
defined to be the composition

JSE®)STC E()

where g and T are as above.

As we saw in the previous section, there is a well-defined action of
Lpi2(F)on b, ,(F; A& A) given by orthogonal sum of forms. Let
B, and B be the groups defined in Theorem 1.5 for C(p, 7,) and C(p, 7)
respectively. Consider the diagram

o
Dpia(F) - By (F; 40 4)
Jx \ A/ Jx

Lyi:a(Z,,)
where & is given by the action mentioned above and the homomorphisms
to L,,.,(Z,,) are the “forgetful” homomorphisms. It is obvious from the
definitions that the diagram commutes. It follows that &/ restricts to
& | By: B, — B. Similarly, the diagram

Lykia(Z)
v N

o
sz+2(y; 0) = I‘2k+2(5‘-) - sz+2(ﬂ_; A A)

commutes where the homomorphisms from L,,,,(Z) are given by the
orthogonal sum action on the B-surgery groups; it follows that there is a
well-defined homomorphism

s/: By—> B.

To appreciate the relationship between the algebraically defined ac-
tion & given by orthogonal sum and the geometrically defined action %
given by tunnel sum, we consider the geometric interpretation of & given
by the realization theorem of surgery theory.
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THEOREM 3.1. There exists a homomorphism s/ B, — B and an action
B: C(p,7y) = C(p,T) such that the diagram

0- BO _)C(p’TO)
& | @
0— B - C(p,7)

commutes.

Proof. Let o/ and # be as described above. Let y be an element of
By C Iy o(F) =B, 2(F; 0), x € C(p, 7). We may view x as a semi-
local knot into a 2-disk bundle § over f|J: J — L. Let h, = f|W, be the
restriction of f to the complement of the semi-local knot representing x,
where f is the characteristic map. We may realize y € B, by a cobordism,
G, relative boundary from the identity on S(§) X I to the complementary
map for a semi-local knot over id: L — L. Let H = h, X id; taking the
union along the identity on S(§¢) X 0 X I, we see that &/(y) = 6(G U H);
also, we have that GU H U (f|T(J) X id,) is a cobordism between the
characteristic maps of the semi-local knots representing x and /() - x.
But this cobordism is exactly the same as the one obtained from the
description of the tunnel sum operation of y-0 € C(p,7,) on x €

C(p, 7).

Next we investigate the relationship between O(7,) and O(r), the
orbit spaces of the actions of B, and B, respectively. Consider C(p, 7,) as
the classes of semi-local knots of L C E(§), 0E = S(§¢) = §?1 x SL
Recall that two elements x and y in C(p, 7,) will be in the same orbit if
and only if there is a cobordism F between their characteristic maps, f,
and f,, such that ¥ = F~!(S(£) X I) is an s-cobordism and F|V is a
simple homotopy equivalence; in particular, ¥V is a diffeomorphic to
S(§) X I. For the case at hand, we note that by Lemma 1.3 and the
definition of C(p, ;) there is a normal cobordism, G, from f, to f, with
underlying manifold an s-cobordism. Viewing x and y as semi-local knots
and arguing as in [Sz, 2.5 and 2.6], we conclude that x and y are in the
same orbit if and only if this map G is normally cobordant relative f, U f,
to a map F with the properties described. The obstruction to finding such
a map is just the surgery obstruction o(G|G}(S(¢) X I)) € L,,,(Z). By
[Sh,51}), L,,,(Z)= L, (e). For C(p, 1), we view x and y as semi-local
knots into E(£) over g: J — L. Recalling that the normal invariant of g
necessarily vanishes and arguing as in [Sz, Lemma 2.5], we may apply the
same reasoning to this case to conclude that O(r) is given in a similar
fashion as the surgery obstruction of the restriction (to the appropriate
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subspace) of a normal cobordism between the characteristic maps f, and
f,- The vanishing of this obstruction implies that the restriction is nor-
mally cobordant relative boundary to a map of s-cobordisms [Sz, Lemma
2.6].

THEOREM 3.2. The natural map %: O(1y) = O(7), induced by the
operation of tunnel sum, is a bijection.

Proof. That # is one to one follows easily from the definition of
tunnel sum and the action of B, on B. Again, we view elements of C(p, 7)
as semi-local knots over g: J — L. Since g is normally cobordant to id,,
the cobordism G |G~1(S(¢) X I) described above determines an element
o in the image of

[SL,G/PLI 3L, \(Z,) 5L, .,(Z),

p' induced by the projection p: S(¢) — L. By the argument in [CS, pp.
331-332], the image of this composition is O(7,). Hence, & is onto.

We conclude with a description of the orbit space of the action of B
on C(p, 7).

THEOREM 3.3. The orbit space, O(), (where n = 2k — 1) is given by

Z,, kodd, modd,

0, k odd, m even;
o(r) =
Z, keven.

Proof. This is a direct consequence of the above theorem and [CS,
Corollary 10.4].

4. Combining Theorems 3.1 and 3.2, we have the diagram of exact
sequences

0—- B, >C(p,7,)~0(7,)—0
x4 2 1)
0- B - C(p,7) = 0(r) =0

where .7 is the homomorphism derived from the action of & of T, , ,(%)
onb,, . ,(#; A ® A)and % is the action given by tunnel sum. Thus, any
questions concerning the orbit space of the geometric action may be
rephrased in purely algebraic terms. In this section, the quotient of
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Bb,,.,(%; A ® B) by the action of I, ,(F) is shown to depend upon
A ® B. (In the geometric situation studied in the previous sections,
B = A.) In particular, if A* # 0, the orbit space of &/ is non-trivial and
in fact quite large. Hence, it will follow that the collection of equivariant
embeddings of a highly connected submanifold is significantly larger than
the set of equivariant embeddings of a homotopy sphere in the case
A* + 0. If A* = 0, we have that Z is a transitive action, or has an orbit
space with at most two elements, depending in part upon whether the
group Z,, is of odd or even order.
Let
a=(\: H- G,(G; 0,¢))

represent an elementin b,, . ,(#; 4 ® B) and 8 = (G; 6,{) an element
in I, . ,(&). As a consequence of the proof of Lemma 2.1 we have the
following statement concerning the notions of strongly equivalent to zero
in the two theories (see [Sz, p. 142] and [CS, p. 286)).

LemMa 4.1. If a is strongly equivalent to zero in the sense of B-surgery
theory, then B is strongly equivalent to zero in the sense of I'-surgery theory.

An analogous statement holds for notions of “equivalent to zero” in
the respective surgery groups. The converse is not true, in general, and it is
this that is closely related to the question concerning the orbit space of the
action 7.

Using the above lemma, it is easy to formulate an alternative defini-
tion for the notion of “strongly equivalent to zero” which we state here
without verification. Recall that the form on G induces a form on H. The
kernel of the adjoint of the form on H, is isomorphic to the dual of the
cokernel of this adjoint, and so, it may be identified as 4* & B*.

PROPOSITION 4.2. The form a is strongly equivalent to zero if and only if
A(H) C G contains a pre-subkernel K (as defined in [CS, pp. 286-T)) such
that over the coefficient ring A, A|A* maps A* monomorphically onto a
submodule of K ,.

Thus, the orbit space will involve the submodules A( H) but not their
extensions by B*. In the discussions and proofs to follow, it is useful to
think in terms of the case B* = 0.

THEOREM 4.3. If A* # 0, the action of T, . ,(F) on
B,i.2(F; 4 ® B)

is not transitive.
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Proof. 1t suffices to show that there exist non-zero elements of
Bb,,..,(¥#; A & B) with representatives

a= (A H-G,(G;0,¢))
such that B = (G; 6, ) represents zero in I, ,,(%). This follows from

the fact that the orbit space may be identified with the kernel of the
“forgetful” map

141 By ys(F; 4 ® B) > Ty (F).

Let B be a fixed representative of zero in I, , ,(#); we may assume
that B is strongly equivalent to zero. For any homomorphism A: H - G
of free Z[7]-modules with coker (A &, id,) = 4 and ker(A ® ,, id,) =
B*, the induced form a will be strongly equivalent to zero only if the form
on G vanishes on A(A4*) C G. By composing with an automorphism of
H, we may easily arrange the failure of this condition. Clearly, stabiliza-
tion does not alter the form on the submodule A(4*) and so can not
correct for this failure.

By first considering the situation A = Z, we may deduce that this
orbit space is in fact quite large when A* # 0 and A = Z[x], for 7 a
finite group.

Let #,: Z[ 7] — Z be an epimorphism and write 4 as a direct sum of
its free and torsion parts, A = F(A) ® Tor(A). Once more taking ad-
vantage of properties of the principal ideal domain Z, we observe that 4*
will be a direct summand of both H and G over the coefficients and we
may actually write

a=(A:A4*0 F=H-> G=A4*® F(4) ® E, (G; 0,¢)).

We make the following observations concerning the restrictions of A
and the adjoint map, 460 over A with respect to this decomposition of G
and H.

(1) A| A* is an isomorphism onto 4*;

(2) AB|A* is an isomorphism onto F(A)* € G* and F(A)* is
identified with A* = ker A\*;

(3) A0| F(A) is an isomorphism onto A** C G* which in turn, by
the statement dual to (1) and the restriction of the composition

G¥*>H*>A®&B—-0
is identified with F(4) C 4 & B;

(4) the restriction of 6 to A* ® F(A) is a Wall kernel. It follows that

a determines, by restriction, a form over A,

a|=(N|F: F>E,(E; 6,y))
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which represents an element in b,, ,,(id;; Tor(A4) ® B). We may argue
from the definitions that this determines a map of the surgery groups
7a:Byya(idz; 4 ® B) > By, (id,; Tor(4 & B)).
Using the reciprocity formula which we discuss below, we identify the
target group with the Wall group L,, , ,(e). The homomorphism
Biia(Fo; A® B) > Ly, s(e)

is the same as the composition of the natural surjections
By P 4@ B)b’rzku(g‘—o)k’Lzmz(e)-
For the case A* = 0, we have
Boyio(F; tor(4 @ B))l;rzkn(%)’jf’lfzkn;

It follows from the reciprocity formula that the map 1, is an isomor-
phism. We are interested in the comparative sizes of the kernels of the two
compositions. We may construct a monomorphism

ky: By, .2(F; tor(4 ® B)) > B,,,,(F; A ® B)

as follows. Let K be a free Z[7] module of the same rank as the free
abelian group A4*. Let k be the standard kernel over Z[w] with free
module K ® K*, that is, k is the canonical representative of the trivial
element in both L,, ,,(7) and I}, ,(%,; Z[7] — Z). Suppose

ay=(A: H— G,(G; 8,¢))

represents an element in B,, , ,(%,; tor(4 & B)). Then k,(a,) is repre-
sented by

a=(ALuHeoK->Goe Ko K* ((G;0,y)L«)),

where ¢ is the inclusion onto the first factor of K @ K *. We note that K,
is identified with the direct summand A* of the kernel of the form on
(H ® K),. Checking the definitions, we readily see that this is well-de-
fined. Moreover, this same construction produces a homomorphism

ky: By .5(id; tor(4 @ B)) = B, ,,(id,; 4 © B)
which is an inverse to 7,.
Now to see that the kernel of
B,ii2(Fp; 4@ B) > T 1 (F)
contains an infinite number of elements we mimic the construction of the

homomorphism k,. In this case, let a, represent the trivial element of
B,...,(%; A ® B) and replace the trivial k by any form S8 on K & K*
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representing an element in the kernel of j,: I}, ,,(%) = L,,..(e). Itis
well known that this kernel is quite large. Combining a, and B, as before,
we obtain an element « representing an element in b, ,,(%#,; 4 ® B),
not in the image of k, and in the kernel of j,. That distinct choices of the
equivalence classes [ 8] determine distinct classes [a] follows since 1,[a] =
1,[B]. We summarize this discussion in the following.

PROPOSITION 4.4. Let Fy. Zlm]l > L be a ring epimorphism. The
homomorphism

1,: Bzmz(%; A®B)— rzuz(-%)a

is an isomorphism is A* = 0. If A* + 0, ker 1, is infinite.

To reach our desired geometric conclusion, we combine Proposition
4.4 with the observation that the images of the natural maps

Dyi2(F) = Tpin(H)
and
Byii2(F; 40 B) > By ,(F; 49 B)
are large, #,: Z[w] » Z and &: Z[7] - Z[Z,].

THEOREM 4.5. If A* # 0, the action of C(p,7,) on C(p, ) induced by
tunnel sum is not transitive. The orbit space is not finite.

Proof. This is a restatement of Theorem 4.3 and a summary of the
above discussion. The second statement follows from Proposition 4.4.

Thus, we see that in the case A* # 0, there exists an infinite collection
of equivariant embeddings of a given highly connected submanifold in
S§2k+1 which are not related by the operation of tunnel sum with an
equivariant homotopy sphere.

To complete our study of the algebraic action, &/, we consider the
case A* =0. Let a = (A: H - G, (G; 0,¢)) represent an element in
(ker1l,) C B,,,,(F; A & B). We assume as before that 8 = (G; 6,¢) is
strongly equivalent to zero. By Proposition 4.2, in this case, a will be
strongly equivalent to zero if and only if there exists a trivialization of 8
which in fact is a trivialization of a. That is, « is strongly equivalent to
zero if and only if A(H) contains a pre-kernel. (Compare with Proposi-
tion 4.4). The set of stable equivalence classes of pre-subkernels of the



FREE CYCLIC ACTIONS ON SPHERES 169

trivial form in I, ,,(%) is the surgery obstruction group I, (&) C
L,,.(A). In a future paper, we define b,,,,(%#; 4 ® B) to be the
subgroup of T,,,,(%) whose elements have representatives which are
trivializations of a as well as 8. The relationship between the orbit space
of the algebraic action, 2/, and the quotient of these two groups is given
by the following reciprocity formula.

THEOREM 4.6. Let A* = 0. There is an isomorphism between quotients
of surgery obstruction groups which relates T-surgery theory to B-surgery
theory and odd dimensional groups to even dimensional groups. In particu-
lar, the natural map

sz+2(-af§ A B)/r2k+2(9—) - r2k+3(g)/B2k+3(‘9z—; A ® B)

is an isomorphism.

For the geometric situation at hand, this theorem has the following
consequence.

THEOREM 4.7. If A* = 0 and if either k or m is odd, the action of
C(p, ) on C(p,T) is transitive; that is, any equivariant embedding of a
highly connected submanifold of a S***! is obtainable (up to cobordism)
from any other by taking its tunnel sum with an equivariant embedding of a
homotopy sphere. If both k and m are even, the orbit space has at most two
elements.

Proof. By the above, the orbit space is given as the quotient of the
inclusion

B,..,(#:Z|Z] > Z[Z,]; 4 ® B) » 1, ,(#: Z[Z] - Z[Z,]).

But since L,,_ ;(Z,,) = 0 for k or m odd, this must be zero. The case of k
and m even follows similarly since L, 5(Z,) = Z, in this case.
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