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INTRINSIC TRANSVERSALITY STRUCTURES

NORMAN LEVITT AND ANDREW RANICKI

This paper introduces the notion of an intrinsic transversality struc-
ture on a Poincare duality space X". Such a space has an intrinsic
transversality structure if the embedding of X" into its regular neighbor-
hood Wn+k in Euclidean space can be made "Poincare transverse" to a
triangulation of Wn+k. This notion relates to earlier work concerning
transversality structures on spherical fibrations, which are known to be
essentially equivalent to topological bundle reductions. Thus, for n > 5, a
Poincare duality space X" with a transversality structure on its Spivak
normal fibration (i.e., with an "extrinsic" transversality structure) is, up
to a surgery obstruction, realizable as a topological manifold. An intrinsic
transversality structure, however, not only guarantees the existence of an
extrinsic transversality structure but gives rise as well to a canonical
solution of the resulting surgery problem. Thus, as our main result, an
equivalence is obtained between intrinsic transversality structures and
topological manifold structures. This yields a number of corollaries,
among which the most important is a "local formula for the total surgery
obstruction" which assembles this obstruction to the existence of a
manifold structure on X" from the local singularities of a realization of
the simple homotopy type of X" as a (non-manifold) simplicial complex.

0. Introduction. The aim of this paper is to address and, the
authors dare to hope, largely culminate a certain chain of ideas that has
recurred, if at times only implicitly, as a sort of subtext in the history of
structure theory of manifolds. Roughly stated the principle involved is
this: If one studies the category of Poincare duality spaces, where "equiva-
lence" is usually taken to mean simple homotopy equivalence, and the
corresponding bundle theory, i.e., spherical fibrations, then one notes
immediately that the analogs of Thorn transversality fail within the
category. But this failure has, as well, a positive side to it, the point being
that when an exception occurs to the general rule that transversality fails,
the exception arises because the object studied "lifts" in some sense to the
topological category where transversality holds. To take an example
essentially due to Sullivan [18], suppose we look at two manifolds Mn,
MQ, equivalent in the "Poincare category," i.e., there is a (simple) homo-
topy equivalence / : M£ -> Mn. "Failure of transversality" in this case
may be construed to mean that if we take a submanifold (or more
generally, a sub variety) F c M " , then, although / may certainly be made
transverse to V via a small deformation, there is no guarantee that
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V~^ f i s a homotopy equivalence, as would be the case for trivial
reasons if / were up to homotopy a homeomorphism, i.e, an equivalence
in the topological-manifold category. But the celebrated characteristic
variety theorem admits of the following interpretation: There is a collec-
tion of sub varieties (i.e., manifolds and Z//?Z manifolds) {J^} of M so
that f\f~lVi-* Vt a homotopy equivalence, all z, implies the normal
invariant of / vanishes and, in consequence, if Mn is simply connected, /
is homotopic to a homeomorphism.

Similar in spirit is the following result ([7], [1]). Given an arbitrary
spherical fibration ηk, k > 3 over B, consider the Thorn space T(ηk), and
a map /: Mn -> T(ηk). If ηk were an "honest" bundle, (vector, PL, PL,
TOP) then / could be made transverse to B by a small deformation. In
the Poincare category, however, transversality fails; even with Mn a
manifold, it may not be possible to arrange for f'ιB<zM to be a
Poincare-duality space with normal fibration in M equivalent to
(/1 f~xB)*^. The positive side of this failure is the following: Suppose all
such maps can be made Poincare transverse, in a mutually consistent way.
(This acquires a more precise meaning by saying that the map ^ ( η ) ->
Γ(τj) admits a section where i^(η) is the subcomplex of the singular
complex of T(η) consisting of Poincare transverse singular simplices. See
[4].) Then the conclusion is that η admits a TOP structure and, moreover,
the "Poincare transversality structure" actually arose from this bundle
structure on η via the standard transversality phenomena in the TOP
category.

Considerations such as these were often referred to by Sullivan,
somewhat whimsically, as the "Winkelnkemper Axiom" in honor of an
aphorism coined by H. E. Winkelnkemper in informal conversation. The
"axiom" may be stated: "Transversality unlocks the secrets of manifolds".

In the present paper we push this metaphysical principle a bit further.
The basic problem we have in hand is the detection and classification of
topological manifold structures on a Poincare duality space. Throughout
this paper we assume orientability to simplify the exposition, although our
results can certainly be extended to the unorientable case.

Classically, the problem has been thought of as a two-stage problem:
Given a Poincare duality space Xn

9 with Spivak normal fibration v, first
check whether v has a TOP (resp. PL, O) reduction. If the answer is
positive, see whether a reduction exists such that the resulting surgery
obstruction in Ln(mλX) vanishes. (In the special case πλX = {1} it is well
known that the second problem can be got round, but this fails for
arbitrary πxX.)
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The results alluded to above certainly have a bearing on the first stage
of the problem. If we think of v as a high, but finite, dimensional
spherical fibration, we may ask whether maps /: Mn -> T(v) can always
be made Poincare transverse in a mutually consistent way, i.e., does
iΓ(v) -> T{v) admit a section, or, to use the terminology of [7], does v
have a transversality structure. If so, v has a TOP reduction, and,
obviously, conversely. We note, in passing, our introduction of some new
terminology: We say that Xn has an extrinsic transversality structure iff v
has a transversality structure. (To be absolutely precise and consistent
with our terminology in §1 below, a transversality structure is actually a
section of %/{v) -> T(v) where &(v) 2 iΓ(v) is a space reflecting a
weaker kind of transversality than true Poincare transversality, which
nonetheless is seen to fail for general spherical fibrations.) Thus Xn has a
TOP-reducible Spivak normal fibration if and only if it has an extrinsic
transversality structure.

Our terminology naturally suggests that there is something we wish to
call an intrinsic transversality structure. The notion of intrinsic structure
arises from the following considerations. Heretofore, we have looked for
Poincare transversality in maps /: M -> T(η) where M is a true manifold
and η a mere spherical fibration. But we may also ask a "dual" question.
Suppose f:Xn->T(ξk)is2i map where Xn is merely a Poincare duality
space and ξk a true bundle (TOP, PL, O) over B. Can / be made
transverse, i.e., up to homotopy and, avoiding certain mild technicalities,
is it true that f~ιB is a sub-Poincarέ-duality space of Xn with "tubular
neighborhood" (f\f~ιB)*i~kΊ In general, the answer is "no," even when
ξk is a trivial bundle. More generally, if Q is a PL-stratified space, e.g., a
triangulated PL manifold, the problem of making /: Xn -> Q "Poincare
transverse" to the stratification is, in general, insoluble. However, if Xn

has a manifold structure, then it obviously can be solved. This suggests a
"metaphysical," or, to put it less politely, over-vague notion of intrinsic
transversality for Xn, namely, that all such maps /: Xn -> Q may be
made Poincare-transverse to the stratification of the range g, in a "con-
sistent" way. We make this more precise, however, by picking essentially
one such map to one such stratified space. Let Wn+k denote a regular
neighborhood of Xn in Euclidean space Rn+k

y and let it be combinatori-
ally triangulated. We then ask whether the natural homotopy equivalence
t: Xn -> Wn+k may be made Poincare transverse to the triangulation. If
so, we say that Xn admits an intrinsic transversality structure. (More
precisely, an intrinsic transversality structure is an equivalence class, in a
sense to be defined in §1 below, of transverse maps homo topic to ι)



88 NORMAN LEVITT AND ANDREW RANICKI

Now it was noted in [7] in the absence of the current terminology,
that if Xn admits an intrinsic transversality structure, then the Spivak
fibration v admits a transversality structure, (i.e., Xn admits an extrinsic
transversality structure) and hence v has a topological reduction. Thus the
remaining obstruction to putting a manifold structure on Xn is a surgery
obstruction in L^^X"). What was overlooked in [7], and which, indeed,
is the heart of the present paper, is that the topological reduction of v
arising from an intrinsic transversality structure on Xn leads to a surgery
problem with vanishing obstruction. Moreover, not only does the obstruc-
tion to the surgery vanish but, assuming n > 5, there is a canonical way of
actually doing the surgery.

Thus the primary result, stated here with some terminology still
undefined and more precisely as Theorem 1.27 below:

THEOREM. Intrinsic transversality structures on Xn are in one-to-one
correspondence with ̂ τov{Xn) = topological manifold structures on Xn.

The plan of the paper is as follows: In §1 we give a brief review of
results to date (in precise terminology) and after suitable definitions have
been made prove the result just stated as Theorem 1.27, leaving incom-
plete certain details concerning the algebraic surgery spaces L*(G) and the
assembly map. We also prove the relatively minor extensions of 1.27.

In §2 we give some further applications; in particular, some necessary
and sufficient conditions for making a manifold into a covering space are
announced as well as some results on decomposing manifolds as Cartesian
products.

In §3 we apply the missing details concerning surgery spaces and the
assembly map. In particular, we give a brief exposition of the notion of
quadratic Poincare complex (QAPC), a category the understanding of
which is vital to our methods of proof. Indeed, one must go further: Our
whole approach depends on the insight that surgery problems may be
"algebraicized," i.e., may be represented on the "chain level" by QAPC's
whose bordism type is the classical surgery obstruction element, while at
the same time, the QAPC category is itself "quasi-geometric" in that those
objects are amenable to the "cut and paste" techniques which one
associates with geometric topology. Thus one may algebraicize without
losing track of the "schematic diagrams" so useful in picturing the
topology of manifolds.

Finally, §3 concludes with some further observations on the algebraic
nature of the structure set S^τoF(Xn) of manifold structures on Xn. We
show as well that the total surgery obstruction of Ranicki [13] may be
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characterized on the "cycle" level as the obstruction to the existence of an
intrinsic transversality structure. That is, if we take an arbitrary embed-
ding Xn c Wn+k and measure with sufficient insight its failure to be
Poincare transverse to a given triangulation of Wn+k we obtain a repre-
sentative on the cycle level of the total surgery obstruction. We then
briefly indicate how, given a specific triangulation of X itself as a
simplicial complex, this leads to a "local combinatorial formula" for the
total surgery obstruction where in one adds up, in a suitable sense, the
failure of links of simplices to be homology spheres to obtain a repre-
sentative of the total surgery obstruction.

1. Intrinsic and extrinsic transversality structures. For the moment,

we consider (finite) Poincare-duality spaces, within the meaning of the
following definition

1.1. DEFINITION. A (finite) Poincare-duality space of formal dimen-
sion n is a finite CW complex X such that if Wn+k is a compact,
codimension-0 submanifold of Sn+k, k > 3, with Wn + k homotopically
equivalent to X, and mx dW -> πλW an isomorphism, then the inclusion
dw -» W has Sk~ι as its homotopy-theoretic fiber.

Likewise, (X, dX) is an ̂ -dimensional Poincare pair iff, given Wn + k a
codimension-0 submanifold of Dn+k, k > 3, and vn+k~ι = Wn+k Π

Sn + k-ι ( a codimension-0 submanifold of dWn+k) such that (W9 V) is the
homotopy type of (X, dX), and rπλ dV -» T^F, π^dW — int V) -> πλW are
isomorphisms, then the inclusion dW - int V c W has fiber Sk~ι, as does
3 F c Fwith

dV c dW-intV

i i
V c W

a map of (k — l)-spherical fibrations.
We use the abbreviations PD-space and PD-pair for Poincare duality

spaces and pairs respectively.
If X is an ^-dimensional PD-space then, with Wn + k as in the

preceding definition, the (k — l)-spherical fibration dWn+k c Wn+k de-
termines a unique stable spherical fibration v called the Spivak normal
fibration of X. If X, dX is a P-pair, then with Wn+k, Vn+k'1 as above,
(dW — int V) c W similarly determines a unique stable fibration over X.
Now let η denote a (k - l)-spherical fibration over some arbitrary base
space B, η: S(η) -> B. The Thorn space T(η) is: Jf(η) U cS(τj)
= mapping cylinder of η).

Let M be a compact PL manifold.
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1.3. DEFINITION. A map /: M -» T(η) is said to be Poincare Trans-
verse Regular (PT) iff P =f~1M(η), Q=f~ιcS{-η) are codimension-0
submanifolds of M meeting in f~ιS{t\) = dP = dQ with

dP -» S(η)

\n |n
P -> J?η~B

a map of (k — l)-spherical fibrations.
If this is the case, then P is an n — k dimensional Poincare space

with Spivak normal fibration (f\P)*η Θ vM\P9 where vM denotes the
stable (PL) normal bundle of M; likewise, if Mm is compact with
boundary 3M, then the condition that /: Mm -> T(η) be PT is that:

(1)/ |3M isPT

(2) P = f'\Jf(η))9 Q = f-\cS(η))
are codimension-0 submanifolds meeting in f~1(S(η)) = dP — 3M, a
codimension-0 submanifold of 3P, so that the diagram

dP - 3M ^ S{η)
\n \n
P -• Jΐ(η)~B

is a map of (k - l)-spherical fibrations. If we set Δ = 3P - int f~\S(η))
= (/13M)"1(^(τ))), then clearly (P, Δ) is a Poincare pair.

Consider the standard ^-simplex Δ*, and a singular ^-simplex of
), σ: Δ̂

1.4. DEFINITION, σ is said to be a PT simplex if σ is a PT map as are
all the faces of σ.

The PT simplices form a subcomplex ^(η) of the singular complex
S(T(η)) - Γ(η), so that there is, in effect, a natural map #^(r)) -^ Γ(η).
Given a simplicial complex # and a map /: j£ -> Γ(η), / factors up to
homotopy, through #"(τj) if and only if it is possible to deform / so as to
be PT on every simplex of K.

p

Generalizing, we see that a homotopy class of sections W(η) +* T(η)
yields a way of deforming arbitrary maps /: K -> T(η) to maps PT on
each simplex. This is unique in the sense that if fv f2 are the results of
two such possible deformations, then they are homotopic through a
homotopy which is PT on each simplex of some triangulated homotopy
cylinder.

In [7], a result was given which claimed that, given a 4-connected base
space, X, and a Λ>dimensional spherical fibration η over X, homotopy



INTRINSIC TRANSVERSALITY STRUCTURES 91

classes of sections of iP~(η) -> T(η) [i.e. transversality structures on η]
are in one-one correspondence with topological reductions of η.

In [1] this result was somewhat improved in that the connectivity
assumption on X was reduced from 4-connected to 1-connected. However
the reader should be aware that in [1] the space i^(η) is replaced, in the
statement of the theorems, by a somewhat smaller subspace consisting of
PT singular simplices of T(η) which are, first of all small with respect to a
certain open covering of T(η). Moreover, it is also assumed that for
simplices σk+2 in this subcomplex the inverse image of M(η) under σ:
Δ*+2 -> T(η) is homotopy equivalent to a 2-manifold (with boundary
homotopy equivalent to σ"1(M(η) c Δk+1).

Our first aim is to give stronger versions of this result and, in
particular, to study the case when πλB is aribtrary. We contend that the
most perspicacious way of looking at things involves shifting focus from
the study of the fiber of ^(η) -* T(η) and considering instead a map s
from T(η) to a certain space L_k_ι(π1B) (depending only on the funda-
mental group of the base). \u_k_ι{τrιB) is a ^-connected space with the
property that πk+rL_k_ι(π1B) is the Wall group LA._1(7Γ15). Simulta-
neously, we shall define s: T(η) -> L_k_ι({l}) and this map turns out to
be of primary significance for our subsequent results.

In the construction of this map, and the determination of its fiber, it
will be necessary to consider a weaker property (in fact several weaker
properties) for maps to T(η) than the PT property defined above.

As a preliminary step, we consider normal transversality (NT) for
maps of manifolds to T(η).

1. DEFINITION. If Mm is an (oriented) manifold we shall say that /:
Mm -> T(η) is NT iff f~ι(Jΐ(η)) = U is a codimension-0 subrnanifold of
Mm with boundary V = f~ι(S(η)) so that U is of homotopy dimension
m — k, and so that the homomorphism

Γl[U]: Hm-k(U,Z)-* H0(U,Z)

is an isomorphism, where U = /*Φ(η) Π [[/, V], Φ(τj) is the integral
Thorn class of Γ(τj), /*Φ(τj) its pullback to Hk(U,V) and [U,V] the
m-dimensional orientation class of (£/, dU) = (£/, V).

The definition of the NT property for the case when Mm has
non-void boundary is the obvious generalization of the property above. As
it turns out, the NT property is a rather weak one, in the sense that any
map may be deformed to an NT map, and two NT maps which are
homotopic may be connected by an NT homotopy.
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If /: Mm -* T(η) is an NT map, we shall call U = f-\J?(η)) and
η-normal subspace of Mm. If Mm = Sm we shall simply call U an
η-normal space. (The notion of normal space is due to Quinn [11].)

We may define an NT singular simplex of Γ(η) in analogy to PT
simplices. The collection of NT simplices form a subcomplex of the
singular complex of T(η). However, since the NT property is, in homo-
topic terms, a "generic" one, it is easily seen that the subcomplex of NT
simplices may simply be identified, up to homotopy, as T(η) itself.

Now consider the following property, which we label ST

1.6. DEFINITION. A map /: Mm -» T(η) (Mm oriented, as before) is
said to be ST iff / is NT and, moreover, U = /~1(-^(η)) has the property
that

Π[U]: H™-k-J(U,Z) -> Hj(U,Z)

is an isomorphism for all j .
Here it must be emphasized that the coefficients for homology and

cohomology are simple. In other words, we have U a "Poincare duality
space" of dimension m - k in the naive sense that cohomology in
dimension m — k — j is "Poincare dual" to homology in the complemen-
tary dimension j . Of course, if πλU = {1} this says that U is a P.D. space
in our original sense and, of course, if U is an orientable PD-space in our
original sense then it certainly has this property. Note, however, that if
πi(U) =£ {1}, it does not necessarily follow that U is a PD-space. In
particular, it may not be the case that F c U is, up to homotopy, a
(k - l)-spherical fibration. Thus PT implies ST but not conversely. As
before, we may take the subcomplex of ST singular simplices, denoted by
Z(η), and we have W(η) c Z(η).

On the other hand, consider once more an NT map /: Mm -> Γ(τj).
In [16, §7.3] (refining an idea of Quinn [11]) there is associated to
U = /"1(M(r/)), the given η-normal subspace of Mn

9 a quadratic alge-
braic Poincare complex [Q.A.P.C] Qf of dimension n — 1 over the ring
Z(^B) (B = base of η). Recall [14] that Q.A.P.C.'s form a bordism
category. That is, one may define the notion of π-dimensional Q.A.P.C.-
with-boundary (over a given ring), whose boundary is an (n — 1)-
dimensional Q.A.P.C. (without boundary). Thus, one readily defines
bordism between two such objects. Since "disjoint union" and "X/"
operations are defined, bordism classes of ^-dimensional complexes form
a group, and, in fact, the group of bordism classes of ^-dimensional
Q.A.P.C.'s (over Z(τr)) may be identified with the Wall group Ln(π).
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Now if the NT map /: Mm -> T(η) is, in fact, PT, it is seen that Qf

is the null Q.A.P.C. The converse is more-or-less true, that is, (assuming
m - k > 5), if Qf is Q.A.P.C. bordant to zero, then / may be deformed
to a PT map. We shall not be using the converse, however, as we cannot
actually prove it.

This leads to the notation of QT maps. Specifically,

1.7. DEFINITION. A QT map of Mm to T(η) is a pair (/, J) where / is
an NT map /: Mm -> T(η) and / is a Q.A.P.C. bordism (over Z(^B)) of
Qf to zero.

The definition of a QT map when Mm has a boundary is a bit more
complicated. We begin by observing that if /ι-dimensional Q.A.P.C.'s with
boundary Qv Q2 have common boundary dQλ = dQ2 then we may form
the "union" Qλ U 3 Q2, which turns out to be a "closed" /i-dimensional
Q.A.P.C. (i.e., without boundary).

Now if /: Mm -> T(η) is an NT map, then we obtain a Q.A.P.C.-
with-boundary Qf such that dQf = <2//9M, as might be expected. Thus we
may define a QT map of Mm to T(η) as a triple (f,K,J) where /:
Mm -> T(η) is an NT map, K is a bordism of <2/|ΘM to zero, and / is a
bordism of Qf U 8 K to zero.

When we try to define a QT singular simplex of T(Ί]) the situation
becomes still more involved. We base our definition on the observation
that if Ql9 Q2 are Q.A.P.C.'s with boundary, θζ^ = Rλ U θ 5, dQ2 = R2

U θ S, then we may form Q = Qx U s Q2 having dQ = Rλ U d R2. With
this in mind, we may specify what is meant by an m-dimensional QT
simplex. We start off with an m-dimensional NT simplex σ: Δm -» T(η).
For each /-dimensional face T of σ, we have the i — k — 1-dimensional
Q.A.P.C. Qτ, such that dQτ = U p β p where p ranges along the (/ - 1)-
dimensional faces of r and the union identifies a "piece" of dQPi with the
"piece" of dQPi piece corresponding to pλ Π ρ2.

The additional data on σ which makes it into a QT simplex has the
following form:

First, for dimr = k we have a O-dimensional bordism Kr of β τ (i.e.
the null Q.A.P.C.) to zero.

This means that, for dimτ = k + 1 we have a "closed" 0-dim Q.A.P.C.
Kf

r = <2T U U p < τ ; d ί m p = =£ i£p. We then choose a 1-dimensional bordism Kτ

of Γ̂̂  to zero.
Now, for dimτ = k + 2, we obtain a closed 1-dimensional Q.A.P.C.

K'Ύ = β τ U 3 U p < τ ; d i m p = λ : + 1 J^p. So we choose a 2-dimensional bordism AΓT

of .SΓ' to zero.
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We continue in this way up to τ = σ. Thus, a QT m-simplex is an NT
simplex σ, together with the lattice of data {KT} modeled on the combi-
natorial structure of the standard m-simplex Δm.

The set of QT simplices from an s.s. complex &(η) which maps,
forgetfully, into T(η).

Consider, moreover, a PT map Mm -> T(η). As was observed previ-
ously, Qf is the null Q.A.P.C. so by choosing the null bordism, of Qf to
zero one obtains, in a trivially canonical way, a QT map of M to T(η).

By the same token, there is a canonical way of assigning to each PT
singular simplex of T(η) a corresponding QT singular simplex thus giving
rise to: W(η) -> &(η).

There remains one more notion of transversality to explore which is,
as we shall see, the weakest yet the most significant for our purpose. First,
consider the fact that, given a homomorphism of G -» H, one obtains a
covariant functor from Q.A.P.C.'s over Z(G) to Q.A.P.C.'s over Z(H). In
particular, if /: Mm -> T(η) is NT, we may consider Rf, the Q.A.P.C.
over Z = Z(l) which is the image of Qf under the functor induced by
77*! 2? -> {1}. We may readily define

1.8. DEFINITION. An RT map is a pair (/, /) where /: Mm -> T(η) is
NT and / is a Q.A.P.C. bordism (over Z) of Rf to zero.

The notion of an RT-singular simplex is readily obtained by a
straightforward modification of the definition of QT-simplex, and we thus
obtain an s.s. complex ^(η) of RT-simplices and a forgetful map

We remark that Rf has a certain geometric significance. If /: Mm ->
T(η) is ST, it is seen that Rf is the null Q.A.P.C. over Z. Again, a
converse of sorts holds: assuming m - k > 5, if Rf is bordant to zero,
then / deforms to an ST map. Thus, an ST map /: Mm -» T(η) gives rise
to an RT map (by taking, as additional data, the null bordisms of Rf to
zero) and we thereby obtain a map 2£{τ\) -> ^(η). Putting all these
constructions together we have a diagram

4
r(η) -*

reflecting the fact that PT is a stronger than ST or QT, both of which are
stronger than RT.
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We may now relate the &(η) -> T(η) (resp., Φ(η) -> T(η)) to a
certain map Γ(τj) -* L ^ ^ T ^ J B ) (resp. Γ(η) -> L_^_1({1})) where
h_k_1(G) is a certain space, depending only on the group G, such that

(1) L_k_ι(G) is ^-connected,
(2) πk+r(L.k^(G)) = L,_X(G) for r > 1, with ΩL_,_2(G) = L_,(G).
In particular, we may specify the space h_k_ι(G) as an s.s. complex,

having one r-simplex for 0 < r < k, and, for r > k, r-simplices are as
follows: A H 1-simplex is simply a O-dimensional Q.A.P.C. over Z(G);
a k + 2-simplex σ is a collection {Qr} of O-dimensional Q.P.C.'s, one for
each (k + 1) face T of the standard (A: 4- 2)-simplex, together with a
1-dimensional Q.A.P.C. β σ with dQσ = Uβ τ.

Continuing in this way suppose we have defined an (r — l)-skeleton
of h_k_ι(G) so that for each simplicial map / of Sr~ι to the (r — 1)-
skeleton we obtain an (r — k — l)-dimensional Q.A.P.C. (without
boundary) Qf. We then may define a typical /--simplex σ of L_k_ι(G) to
be a simplicial map /: Δr -» (r — l)-skeleton together with a bordism Qσ

of βy to zero.
Now clearly, if we have simplicial map / of Sr to the newly-defined

r-skeleton, we may define Qf as U p β p , where p ranges over the simplicies
of Sr, Qp = Qimp and appropriate identifications (in the world of
Q.A.P.C's) are made under this union.

It is not hard to see that πk+r(L_k_ι(G)) = the bordism classes of
(r - l)-dimensional Q.A.P.C.'s over Z[G] = Lr_λ(G) (r > 1).

Now when G = πxB, B = base η we easily see how the map T(η) ->
L_k_1(πιB) is constructed. First of all, we think of T(η) as the s.s.
complex of NT singular simplices. On the Λ>skeleton of T(η) the defini-
tion is the unique possible simplicial map. Now consider a (k + l)-simplex
σ of T(η). To it we assign the (k + l)-simplex p of L_k_1(πιB) given by
Qp = Qσ, where β σ is the Q.A.P.C. (bordant to 0) defined by the NT map
σ.

Continuing, to the (k 4- 2)-skeleton, for a typical (k 4- 2)-simplex σ,
we have Qσ a bordism to zero of U τ < σ ; d i m τ = ^ + 1 β τ . Moreover, the map
σ -> L_k_1(πιB) already defined is simplicial and the Q.A.P.C. it defines
is exactly U τ β τ . So specifying Qσ gives us a H 2-simplex p in
L_k_ι(πιB) which we take to be the image of σ.

Continuing in this way, suppose the map has been defined as the
(r - l)-skeleton of T(η) so that, for any r-simplex σ of Γ(rj), the
Q.A.P.C. induced by σ -* L . ^ ^ J B ) is exactly the Q.A.P.C. Qό. Then,
the Q.A.P.C.-with-boundary Qσ specifies an r-simplex p of L_k_1(π1B)
and wp let p be the image of σ. Henceforth, let us designate the natural
map &(η) -• T(η) by q and T(η) -> L . ^ ί ^ J B ) by 5.
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Moreover, we easily observe that a homomorphism Gλ -> G2 induces
a simplicial map h_k_1(G1) -> L_A:_1(G2). Thus, in particular, we have c:
L ^ . ^ J S ) -> L . ^ l } ) . Let s = c<>s: T(η) -» L . ^ l } ) . Finally let
r: Φ(η) -> Γ(τ}) denote the natural map.

1.9. THEOREM. The following sequences are fibrations

The proof is an easy exercise in standard s.s. techniques.
The next result seems to be the most elegant generalizations of [7], [1],

et al. First of all, we define a transυersality structure in the following way:

1.10. DEFINITION. A transυersality structure on an oriented spherical
fibration ηk is a fiber homotopy class of sections u of r

N.B. This is, a priori, a weaker notion than that used in [4] where a
transversality structure was a section of ^ ( η ) -> T(η). Here, we think of
a transversality structure on η as a systematic way of deforming an
arbitrary map K -> T(η) (K a simplicial complex) to a map which is RT
on all simplices (hence, RT on K if K is a manifold).

1.11. THEOREM. Transυersality structures on η are in 1-1 correspon-

dence with TOP reductions of η, i.e. fiber homotopy clases of liftings

BSΎOP

B Λ

The proof is essentially the same as that outlined in [7] and carried
through in [1]. One shows inductively that if there is a lifting of η to
BSTOP over the j skeleton of 5, there is a section of t: Φ(η) -> T(η)
over the j + fc-skeleton of Γ(η), and conversely. Then, one sees that the
primary obstruction to extending the lift to the (; + l)-skeleton of 2?,
(which lies in Hj+ι{B,tnj{G/ΎO¥)) and the primary obstruction to ex-
tending the section to the (j + k + l)-skeleton of T(η) (which lies in
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exactly correspond under the Thorn isomorphism. The result is thus an
easy exercise in elementary obstruction theory, provided one can see
precisely how TΓ^G/TOP is related to surgery obstructions. It is worth
noting, in passing, that the construction of ^(η) and the introduction of
the notion of an RT map are chiefly motivated as a means of understand-
ing in its most precise form the relation between " transversality" and
topological bundle structures on spherical fibrations. It will be re-
membered that what Brumfiel and Morgan show explicitly in [1] is that
for spherical fibrations η with simply connected base space, and for a
suitably chosen subcomplex ^(η) c i^(η), homotopy classes of sections
of i^(η) -> T(η) are in 1-1 correspondence with topological reductions
of η. It is further possible to show (though all the technical details have
not yet been written down) that i^(η) <z iΓ(η) is & homotopy equiva-
lence. We shall leave these arguments aside as not strictly relevant to the
results to be proved below. Suffice it to say however, that the role the
assumption of simple connectivity of the base B of η is merely to assure
that the obstructions arising in the problem of finding a section of
#"(η) -> T(η) are identifiable with elements in Hi+ι(B, ^(G/TOP)) (i.e.,
the relative homotopy group πl +Λ_1(Γ(ij), i^(η)) is identified with
^.((j/TOP), k = dimη). When ®J is substituted for ΪT (or TΓ), it is
virtually automatic that this identification may be made. Thus, under the
much weaker assumption that η merely be orientable, made throughout
this paper, the Thorn isomorphism argument outlined above connecting
the problems of finding on the one hand a lifting for

5STOP
1

B ^ BSG

and on the other, a section of i^(η) -> T(η) is easily made to go through.
To put it another way, the natural diagram

i i
Γ(η) -> Γ(γ)

is always a map of fibrations, irrespective of ^(Z?), with γ the universal
oriented (k — l)-spherical fibration over BSG(k).

It is important, moreover, to point out precisely how ths correspon-
dence between topological reductions of η and transversality structures on
η is induced. The point is that given a TOP structure on η (assume, now
that k > 5), we may then take the evaluation map from the singular
complex S(T(η)) onto T(η) and deform it to a map which is, in a
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sufficiently good sense, topologically transverse regular. The qualification
arises because of the possibility that, after deformation into the desired
map /, we may have, for some (k + 4)-simplices σ of S(T(η)), the space
f~ι(σ) c M a homology manifold, rather than a topological manifold (see
[17]). However, a map topologically transverse, even in this slightly
qualified sense, is obviously PT (hence QT, RT and ST). This deformation
of the canonical map S(T(η)) -» T(η) may, of course, be thought of as a
well-defined section of r: ^(η) -> T(η). Hence we see that a Top
reduction of η yields a transversality structure: The point of the theorem
is to demonstrate that the converse holds.

We now specialize to the case where B is replaced by X, an ft-dimen-
sional Poincare duality space (n > 5), and η by some ^-dimensional
representative v of the Spivak normal fibration of X (we assume k > n).

1.12. DEFINITION. An extrinsic transversality structure on X is a
transversality structure on v.

We shall shortly contrast this kind of structure on X with another (to
be called, naturally, an intrinsic transversality structure). The point of the
distinction to be made is in connection with the theory of topological
manifold structures on P.D. spaces. Obviously, by dint of Theorem 1.11,
extrinsic transversality structures on X are to be identified with TOP
reductions of v. From the point of view of classical surgery theory, then,
extrinsic transversality structures on X say a good deal, but certainly not
everything, about manifold structures on X. In particular, if X is 1-con-
nected, then an extrinsic transversality structure, i.e., a TOP reduction of
v gives rise to a surgery problem, but it is well known that X has a
topological manifold structure, when n is even, even if the resulting
surgery obstruction fails to vanish. In other words, an extrinsic transver-
sality structure guarantees at least one manifold structure, but there are
very possibly more extrinsic transversality structures than manifold struc-
tures when n is even.

In the non-simply-connected case, we cannot even say this much: We
may very well have an extrinsic transversality structure without any clear
way of obtaining a manifold structure, because there is in general no way
to get around the non-vanishing of the non-simply-connected surgery
obstruction that arises.

Moreover, given a single topological manifold structure on X, extrin-
sic transversality structures may be identified with [ X, G/TOP] and the
relation of extrinsic transversality structures to the set Sf{X) of manifold
structures on X is then the problematical one given by the Sullivan-Wall
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structure sequence

[ΣX,G/ΎO?\ -> La+λ{«xX) -+S?(X) -> [X,G/ΎOP] -> Ln(^X).

The notion of "intrinsic transversality structure" that we are going to
propound has the very desirable property that intrinsic transversality
structures on X are (exactly!) in 1-1 correspondence with manifold
structures on X. We begin with a philosophical apology for introducing
this notion. First of all, we take note of what Theorem 1.11 says about
fibrations η. If there is a "systematic" way of deforming an arbitrary map
/: Aί-^ Γ(η) ( M a P L manifold) to a map which is PT (or, even more
weakly, namely RT) then η is realizable as a TOP bundle and the
"system" is equivalent (in the world of RT maps) to the one which arises
by exploiting topological transversality theory. I.e., if η has a "transver-
sality property" in the Poincare-duality-space then η is a bundle, and that
property merely reflects the underlying bundle structure. However, there
is an additional "transversality property" for manifolds which is not
wholly detected merely by examining the "transversality properties" of
the normal bundle. To take a simple example, if ΘJ is, say, a vector bundle
over B, and we have a map /: M -> T(ΘJ), then, of course, we may
deform / to a transverse regular map g, so that g~ιB is a codimension j
submanifold of M with a normal bundle induced from ΘJ. (If M is merely
a TOP manifold, we may, of course, have to insist that dim M — j Φ 4 or
allow g~ιB to be a homology manifold if dimM — j = 4; but this is a
minor point.) It should be noted that how this is done reflects the
manifold structure on M and not merely the underlying homotopy type
(i.e. PD-space structure).

Thus, we might ask whether, given a PD-space Xn and map /:
X -> T(θ), we can "deform" / to a "transverse regular" map in the
following sense.

1.13. DEFINITION. We say that /: Xn -> T(ΘJ) is strictly pT iff
f~\B) = Y»-J is a P.D. space, f~\D{ΘJ)) = D((f\Y)*θJ) with / being
a disc-bundle map on this subspace, and f~ιcS(θJ), f~ι(S(θJ)) an
^-dimensional P.D. pair.

Thus, if / is pT, Xn "splits" into two P.D. pairs f~\D(ΘJ)\
f-\S{θj)\f-ιcS{ΘJ)J-\S{θj)) where the first piece is a "regular
neighborhood" of the Poincare "subspace" Yn~J, mapping via a bundle
map into D(θj).

1.14. DEFINITION. We say that /: Xn -> T{θj) is deformable to a pT
map iff there is an n-άim P.D. space X£, a simply homotopy equivalence
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h: Xn -* Xζ, and a strictly pT map g: Xζ -+ T(ΘJ) so that

Xn L>

hi / g
yn

is homotopy commutative.
If we ask whether any map /: Xn -• T(θj) is deformable to a pT one,

in the above sense, the answer is "no". In particular, if ΘJ is merely the
trivial y-dimensional bundle over a point, a positive answer would imply
that the P.D.-bordism theory of a space is a homology theory, which is not
true; excision fails, and excision is no more than the deformability
property specified above.

The general principle which we are going to make quite precise,
shortly, is that if there is a way of deforming maps from Xn to Thorn
spaces, as well as more general stratified spaces, to "Poincare transverse"
maps, then Xn is in fact a manifold. In fact, there is one particular
stratified space and one particular map which tells the whole story, so far
as manifold structure theory on Xn is concerned.

Again, we are obliged to consider several different notions of
" transversality." Also, we modify somewhat the underlying geometric
situation in that, rather than considering maps from a P.D. space to the
Thorn space of a bundle, we consider maps to a triangulated manifold and
consider what it might mean for the map to be transverse to the triangula-
tion. Thus, let Xn be an n-dimensional orientable P.D. space and Wj a

j-dimensional, combinatorially-triangulated manifold.

1.15. DEFINITION. /: Xn -> Wj is said to be normally transverse (nT)
to the triangulation iff f^dW= 0 and, for each simplex σJ~k of WJ\
o % dW9 (f~~ισ,f~ισ) is a ^-normal pair of dimension n - k, where v is
the Spivak normal fibration of Xn.

1.16. DEFINITION. /: Xn -> Wj is said to be deformable to an nT
map iff there exists a P.D. space X", a homotopy equivalence h: Xn -> X£
and an nT map g: X" -> Wj such that the diagram

Xn 1* Wj

is homotopy commutative.
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We assert, omitting the proof, that any map /: Xn -> Wj is deforma-
ble to an nT map.

1.17. DEFINITION. The map /: Xn -» Wj is said to be
(a) pT iff f'\dW) = 0 and, for each oJ~k of W with σ £ dW,

(f~λσ, f~ιό) is an orientable P.D. pair of dimension n — k
(b) sT if f-\dW) = 0 and (f~ισj-ιό) is a pair satisfying (n - k)-

dimensional Poincare-Lefschetz duality for simple integral coefficients i.e.,
there is a class [Xσ] e Hn_k(f~ισ,f~ισ;Z) so that in the diagram (all
coefficients Z)

|Π[Jr α

all vertical arrows are isomorphism.
Now note that if /: Xn -> PΓy is an nT map, then, for each σj~k of

Wy, we obtain a Q.A.P.C.-with-boundary β σ of dimension n — k — \
over Z(τr1-Xr'1) (arising from the bundle map v \ f~ιo ~* v\

1.18. DEFINITION. A qT map of Xn -> Wj consists of a strictly nT
map /: Xn -> Ŵ y together with a set {/σ} of Q.A.P.C.'s-with-boundary
over Z(πλX) one for each σJ~k % dW, dim/σ = n - k, such that dJσ =

2 σ u U τ < Λ
If we have an nT map /: Xn -> ^ , let Qσ be the Q.A.P.C. over

Z({1}) which is the functorial image of Qσ. We then have

1.19. DEFINITION. An rT map of Xn to Wj is an nT map / :

Xn -> Ŵ 7 together with a set {/σ} of Q.A.P.C.'s-with-boundary over
Z{1}, one for each oj~k <£ dW, dim/σ = n - k such that dJσ = Qσ U

u τ<σ/ τ.
Clearly, if /: X" -> WJ is pT, it is nT, and, since Qσ identically the

null-Q.A.P.C. for all σ, we automatically obtain a qT map by taking Jσ to
be the null Q.A.P.C. Analogously, if /: Xn -> Wj is sT it is nT and we
then automatically obtain an rT map in the same fashion as above. It is
obvious that pT implies sT and that there is a canonical way of associating
an rT map to a qT map.

We take note of the fact that the notion of nT map makes sense when
Xn is not a P.D. space but merely an ^-dimensional normal space with
orientable normal fibration v. By the same token, let Xn now be a normal
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space with a normal map

v -> η

I i
Xn -* B

As we have seen in this situation, we obtain a Q.A.P.C. Qx over Z(πxB)
of dimension n — 1. Thus, if /: Xn -> Wj is an nT map, we obtain a
system {Qσ} of Q.A.P.C.'s-with-boundary over Z ^ l ? ) , one for each
simplex oj~k £ 3W, so that U σ β σ is canonically chain homotopy equiva-
lent to Qx. We may then define a qT map as an nT-map /: Xn -» Wy

together with a collection {/σ} of Q.A.P.C.'s-with-boundary over Z(πλB)
so that dJσ = β σ U U τ < σ / σ just as in the case when Xn is a P.D. space
and η = P. In the same manner, an rT map will have the Q.A.P.C.'s Jσ

with Z({1}) as ground ring and Qσ will replace Qσ in the definition.
Let X" once more denote a P.D. space:

1.20. DEFINITION. We say that /: Xn -> Wn is deformable to
(i) a pT map

(ii) an sT map
(iii) a qT map
(iv) an rT map

if and only if there is a P.D. space X", a homotopy equivalence h:
X? -* X£9 and a map g: X" -> JΓ making

homotopy commutative, such that
(i) g is pT

(ii) g is sT
(iii) g is nT and can be provided with a collection {Jσ) of Q.A.P.C.'s

over Z[πλX] (σ a simplex of W7) so that (g{ /σ}) is a qT map.
(iv) g is nT and can be provided with a collection {Jσ) of Q.A.P.C.'s

over Z({1}) making (g, {/σ}) an rT map.
Obviously, for a given map /, deformability to a pT map implies

deformability to an sT map and to a qT map, both of which imply
deformability to an rT map.

As we have hinted earlier, there is a special class of manifolds W and
maps /: Xn -> W for which deformability to a pT map, or even to an rT
map, takes on a special significance. We shall start with a fairly rough
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statement giving the general idea and subsequently refine it to give the
theorem in its stronger final form.

Rough Statement: Let Wn+k

9 (n > 5, k large) be a triangulated regu-
lar neighborhood of Xn in Rn+k. Xn admits a topological manifold
structure if and only if the inclusion i: Xn c Wn+k is deformable to a pT
map.

We shall work in the direction of strengthening this result by weaken-
ing the deformability condition to something weaker than pT and by
actually obtaining a classification theorem for manifold structures on Xn.

The key observation is the following: Let Wn+k be the triangulated
regular neighborhood of Xn in Rn+k.

1.21. LEMMA. Suppose i: Xn c Wn+k is deformable to an rT map.
Then the Spiυak normal fibration v{Xn) admits a TOP reduction.

Proof. Replace / by an rT map / and then, since k is large assume
that / is an embedding, i.e., / embeds f~ι(σ) in σ for every simplex σ of
Wn+k. Identify X with its embedded image, and let Xσ = X Π σ. Take a
smaller regular neighborhood U of X such that U Π σ is a regular
neighborhood of Xσ. Now the Λ>dimensional representative vk of the
Spivak normal fibration of Xn can be thought of as dU c U, and so T(vk)
may be thought of as U/dU. Now consider the collapsing map W ->
U/dU = T{vk) which is the identity on int U and takes everything else to
the base point. Obviously, if we take W U cdW = V we may extend to c:
T -> 7XP*). NOW, with the obvious extension of the triangulation of W
to one onM^U cdW = T, we see that the map c is RT on each simplex of
V. (In fact, if / is pT (resp. sT, qT), then / is a fortiori PT (resp. ST,
QT)). But then, if V is given a simplicial partial ordering (i.e. an ordering
of the vertices linear on simplices) we obtain a lifting γ: T -> ̂ (vk). But
note that T may also be thought of as T(vk) and c: T -» T(vk) may be
identified up to homotopy, with the identity. Thus γ is a section of
ty(vk) -> T{vk) and defines a TOP reduction of vk. Note that the class of
this reduction does not depend on the simplicial ordering.

Thus we are part of the way towards the proof of our Rough
Statement; if /: Xn c Wn+k is deformable to a pT (hence to an rT) map
vk{Xk) has a TOP reduction. The question, then, is one of seeing why the
surgery obstruction associated to such a reduction should vanish.

The idea, then, is to see at precisely what level the surgery obstruction
is defined. The standard way of proceeding, of course, is to take the TOP
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reduction into account by deforming the map /: Sn+k -» T{vk) (repre-
senting the generator of Hn+k(T(vk))) to a map topologically transverse
to Xn, using the specific topological structure on vk. If f~\Xn) = Mn,
the degree one normal map Mn -+ X" then defines a surgery element in
Ln(πxX) which does not depend on Mn per se, since Mn -> Xn is
well-defined up to a cobordism of normal maps into Xn. First, we make
note of a minor fact. If we think, as before, of T{vk) as having the
homotopy type, in a standard way, of the triangulated regular neighbor-
hood Wn+k with the cone on dW attached, we may think of Mn -> Xn as
having arisen from deforming the WU cdW -* T(vk) to a topologically
transverse map (remembering that W c cdW is a manifold away from the
cone point). In fact, this map may be made topologically transverse (in the
sense of Scharlemann [17]) on each simplex of W U cdW.

On the other hand, our major point is that if the natural homotopy
equivalence of W U cdW with T(vk) is represented by a map W U cdW
-> T{vk) which is merely RT on each simplex, there is a definition of the
surgery obstruction which avoids the necessity of going through the
procedure above, which, to outline it briefly once more, involved interpret-
ing the RT-map W U dW -» T(vk) as a section of <3f(vk) -> T(vk), yield-
ing a TOP reduction of vk, which, in turn, leads to a surgery problem via
the standard Browder-Novikov transversality construction, and thence to
an element of L^^X). Rather the following is true.

1.22. LEMMA. Let g: W U cdW -> T{vk) be an RT map consistent with
the usual homotopy identification of W U cdW with T(vk). Then there is a
well-defined {up to chain-homotopy) Q.A.P.C. Φg over Z[πλX]. Moreover,
if g is homotopic to the RT map g': W U cdW -> T(vk) via the RT-homo-
topy G: (WU cdW) -> T(vk\ then there is a well-defined QA.P.C.-with
boundary ΦG with dΦG = Φg U (-Φ g). Thus, there is a natural assignment
from RΎ-homotopy classes of such maps to Ln(^X).

Finally, [Φg] e Ln(πλX) identical to the surgery obstruction element
realized by taking the TOP reduction of vk induced by g and then taking
the obstruction for the associated surgery problem.

Details will be provided later, but we here make a brief plausibility
argument. First, by way of illustrating the basic idea in a slightly different
context, consider a degree one normal map of, say, PL manifolds /:
Mn -> Nn and a specific PL triangulation of Nk. Let σJ be a simplex of
Nk

9 and let MJ

σ=f~ιoj be its inverse image, which, clearly may be
assumed to be a manifold with boundary 3M^ = f~ιόj. Obviously, from
the fact that / is a normal map, we obtain a normal map MJ

σ, dM£ -> σy,
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όJ = DJ\ SJ~ι. Studying this normal map in isolation we find there is a
"kernel complex" which measures the failure of MJ

9 dMJ -> D\ Sj~ι to
be a homotopy equivalence i.e., a Q.A.P.C.-with boundary Φσ of dimen-
sion j . Note that Φσ is defined as a Q.A.P.C. over the ring Z = Z[{1}].
Now note that we may "assemble" the various Q.A.P.C.'s Φσ to form a
"global" Q.A.P.C. Φ(/). That is, for each face relation T < σ, there is a
way of identifying Φτ with a "piece" of Φσ, and we may let Φ(/) denote
the union of the Φσ over all simplices σ of N. Now, a priori Φ(/) is an
w-dimensional Q.A.P.C. (without boundary, assuming N9 M are
boundaryless) over Z[{1}]. But the crucial point is that in the course of
this assembly operation, a Z[πxN] action may be introduced to enrich the
structure of Φ(/) and thereby produce a Z{irιN]-QA.'P.C. Φ(/) I.e.,
Φ(/) measures the failure of / to be a Z^iVJ-module equivalence, while
Φ(/) only reflects integral, simple coefficient homology. Thus Φ(/) is the
natural image of Φ(/) under the forgetful functor form Z[τ71iV]-Q.A.P.C.'s
to Z-Q.A.P.C.'s. More importantly, [Φ(/)] e Ln(πxN) is precisely the
classical Wall surgery obstruction for the normal map Mn -> Nn and
[Φ(/)] the simply-connected obstruction associated to it.

Continuing our outline, we replace the triangulation of Nn by a
triangulation of Wn+k, where Wn+k is, as usual, a regular neighborhood
of Nn in Rn+k. Think of Mn -+ Nn as having arisen by deforming

id

W U cdW -> W U cdW (preserving the cone point) to some arbitrary self
map /: W U cdW *-* so that / is tranverse-regular to iV" on each simplex
σ of W U cdW. (We assume, without loss of generality, that f~ιNn Π σ =
0 for all σ containing the cone point.) Thus Mn = f'\Nn) -> Nn is a
degree one normal map. Now suppose MJ

σ = Mn Π σJ+k where σJ+k is
an arbitrary simplex of W. Then we still may think of Mj as having a
"framed" normal bundle by virtue of a well-defined normal map to Nn

which factors through the contractible space σ. Thus, for each MJ

σ we
have a y'-dimensional Q.A.P.C.-with boundary Φσ over the ring Z = Z{1},
and, as before, we may take Φ(/) as UσΦσ/(identifications). In this case
as well, Φ(/) pulls back to Φ(/) over Zf^iV], and [Φ(/)] is the surgery
obstruction for /.

Now, if we think of a P.D. space Xn in place of the manifold Nn, and
we imagine that the map /: W U cdW «-* is merely PT (rather than PL
transverse) on each simplex σ, the picture remains basically unaltered,
that is, for each σ, we obtain the Q.A.P.C.-with-boundary Φσ over Z
which measures the failure of MJ\ dMJ (now merely a P.D.-pair) to be Dj,
Sj~ι, and we may assemble to obtain Φ(/), and in fact Φ(/), over
Z ^ Z ] , which measures the failure of Mn = f-\Xn) -* Xn to be a
Z[πxX] equivalence. (Note that here Mn is merely a P.D.-space with a
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degree-one normal map to Xn.) Moreover, [Φ(/)] e Ln(πxX) is, again, to
be identified with the (well-defined) surgery obstruction element for the
degree-one normal map Mn -> Xn.

We carry our generalization one step further. Suppose /: W U cdW <^
is merely RT (rather than PT). Then (}'\oJ+k)J-\aJ+k)) is a v{X)
normal pair, its failure to satisfy simple coefficient Poincare duality is
measured by a (j — l)-dimensional Q.A.P.C.-with-boundary over Z, Ψσ,
but, as part of the RT structure on /, we have a specific Q.A.P.C. θσ with

9#σ = Ψσ U Pσ ( t h e U n i θ Π a l θ n S 9Pσ = 9Ψσ = Ψd) H e Γ e > Pσ = Uτ< A W e

may think, on the algebraic level, of θσ as an algebraic procedure for
connecting C(f~ι(σ)), C(f~ι(ό)) to a pair of chain complexes Cσ,8Cσ

with an algebraic Poincare duality structure and, even though geometric
"normal data" does not exist for such objects, we still obtain a "kernel
complex" measuring the failure of Cσ, 8Cσ to be homologous to Dj, SJ~ι,
i.e., a well-defined Q.A.P.C.-with boundary Φσ over Z. Now, since part of
the structure of an RT map is that the data {θσ} cohere to match the
combinatorial structure of W U cdW we may "assemble" a Poincare-du-
ality algebraic chain complex C(f) = UσCσ (mod identifications) and a
degree-one map C(f) -» C(Xn) whose kernel complex admits the struc-
ture of a Q.A.P.C. Φ(/) over Z. But, in fact, in assembling C(f) a Z[πλX]
action may be introduced to put a Z^XJ-module structure C(f) on
C(/), for which structure C(/) is a Poincare duality chain complex over
Z[tf1A

r]. Simultaneously Φ(/) becomes equipped with a Z[ττ1X] structure
Φ(/), measuring the failure of C(f) -> C(X) to be a Zl^X] chain
equivalence. If we let the g of Lemma 1.22 be our /, then we have defined
Φ(g) by Λe procedure above. Our discussion implicitly sketches the
following corollary to 1.22.

1.23. COROLLARY. If the g of 1.22 is, in fact, simplex-wise PT and
γn = g~ιXn is the corresponding YΌ-space then Φ(g) is, up to chain
homotopy, in fact the well-defined kernel complex obstruction of the degree-
one normal map

Returning now to the proof of the Rough Statement, we stand in the
following position. Given a strictly pT embedding Xn -* Wn+k, as we
have seen, we obtain a map W U cdW -> Φ(v) (at least, if the triangula-
tion of W U cΰW is ordered), which may be interpreted as a section of
the natural map ^/(v) -> T(v). Now, given that homotopy classes of
sections of this map are in 1-1 correspondence with topological bundle
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structures on v, we note further that the correspondence in one direction
(from TOP bundle structure to sections) may be constructed by taking the
homotopy equivalence WU cdW-> T(v) and using the explicit bundle
structure on v to deform it to a map j simplex-wise topologically
transverse to the 0-section X. Assuming that h has been so deformed, it is
clear that, up to homotopy, a section of <&(v) -> T(v) has been con-
structed. Moreover, we note that if Mn denotes j'ιX (and we may assume
that Mn c W c WU cdW) then there is a degree-one normal map /:
Mn -> Xn which is, in fact, a representative of the classical surgery
problems which arises in connection with putting a topological manifold
structure on Xn corresponding to the given topological reduction of v.

Now suppose the TOP reduction of v has arisen via the hypothesis of
the Rough Statement, i.e, from the pT embedding Xn c Wn+k. Then the

simplex-wise topologically transverse (hence PT) map WU cdW-> T(v)

arising from this structure on v must be homotopic, through RT maps, to

the map WUcdW-> T(v), which was PT since it was constructed

directly from the pT-embedding Xn -> Wn+k. That is, we may find a

triangulated (W U cdW) X / and an RT map (W U cdW) X / -> T(v) so

that, on one end, we have j and on the other h. Now note that the surgery

obstruction corresponding to h is zero, since h merely extends the identity

id: Xn -* Xn. We wish to conclude that the same is true of the surgery

obstruction o(Mn -> Xn) corresponding to j , but by virtue of 1.21, and

1.22 we see that σ(Mn -> Xn) = σ(Xn 4 χ») = 0. Thus we may do

topological surgery on /: Mn -» Xn to convert it into a simple homotopy

equivalence.

We wish to strengthen this result, i.e., to convert it into a true
classification theorem. To that end we begin with a definition.

1.24. DEFINITION. A /^-structure of codimension k on Xn is an
equivalence class of pT embeddings e\ Xn -» W+k (Wn+k triangulated).

Equivalence of two such, say e, ef means the following:
(a) There is a ^-normal space Nn+1 with boundary dN = X" U (-Xn)

and an rT embedding f:N-+WXI9 where W is triangulated so that the
respective ends Wx {0}, Wx {1} are triangulated appropriate to e,er

respectively and so that / is e: X -> W X {0} in one copy of X and e'\
X -> W X {1} on the other.

(b) Noting that the embedding / defines an RT map f: (WU cdW)
X I -> T(v)\ that this produces an (n + l)-dimensional Q.A.P.C. Φ(/)
over Z[πλX] (see 1.21) and that the boundary 3Φ(/) is trivial (since
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9Φ(/) = Φ(e) U (-Φ(e')) and Φ(£), Φ(e') arise from the identity homo-

topy equivalence Xn -> Xn) we require that [Φ(/)] e Lπ+1(7r1-Xr) be in

the image of \ΣX, G/TOP].

We call an equivalence class of ^-structures an intrinsic transversality

structure.

1.25. Note. It will be seen that it is actually no strengthening of the

second condition to require that [Φ(/)] actually be trivial in Ln+ι(τrιX).

Let TTk(X) denote the set of codimension k intrinsic transversality

structures on X. It will be noted, without proof, that there is a suspension

map \Ύk(X) -> Πk+ι(X), so that we may speak, if we wish, of stable

intrinsic transversality structure, IT( X) = l imlT^X). However, it will be

seen that, for k large, YTk(X) = IT^+ 1(X) under suspension, so the

distinction is unimportant.

1.26. REMARK. Of course, the most obvious example of an intrinsic

transversality structure comes from considering a manifold Mn (say,

smooth or PL for the sake of argument) and a regular neighborhood

Wn+k of Mn in Rn+k. If we triangulate W, then we may embed Mn

transverse to the triangulation. Moreover, two such embeddings with

respect possibly to different triangulations may be connected by em-

bedding M X / in a suitably triangulated W X I. One point of the

classification theorem about to be stated is that the transversality struc-

ture thereby defined is, in fact, a complete invariant of the topological

structure which Mn imposes on the underlying simple homotopy type.

1.27. THEOREM. For large k, there is a bijection lΎk(Xn) -> SfΊOV(Xn)

{where ^ T O p denotes the usual set of equivalence classes of topological

manifold structures on X).

Proof. Our Rough Statement, already proved, gives part of this

theorem, i.e., if IT*( X) is non-void, at least one TOP structure must exist.

We sharpen this statement by showing how an element of lΎk(X)

determines precisely a single element in Sfτo?(X). Naturally, the /?-struc-

ture on X which comes from this manifold structure, as in Remark 1.26

above, will be seen to represent the original intrinsic transversality struc-

ture.

Therefore, let [a] e TTk(X) be represented by the pT map α: Xn ->

Wn+k. We have seen, in the proof of the Rough Statement that we can

find an rT map f:(WU cdW) X J -> T(v), realizing the natural homo-
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topy identification of W U cdW with T(v), so that / is simplex-wise
topologically transverse (in the sense of [17]) on one end (say, fλ on
(W U cdW) X {1}) and, on the other, is the natural PT map /0 directly
constructed from the pT embedding a. The n + 1-dimensional Q.A.P.C.
Φ(/), over Z[πλX] which exists by virtue of 1.21 has boundary 3Φ(/) =
Φ(/o) U Φ(/x) = Φ(/x) since by 1.22, Φ(/o) is the trivial Q.A.P.C. arising
from the identity map Xn -> Xn. Φ(/x), on the other hand, is the kernel
complex of the topological surgery problem Mn -> Xn, where Mn =

Now, we may, in fact, do surgery on Mn in a specific way, i.e., we
may do surgery, not merely to produce a simple homotopy equivalence,
but so as to control the trace of the surgery in the following sense: Let
Nn+1 be the trace of the surgery i.e., Nn+1 is an (n + l)-dimensional
topological manifold with boundary Mn U M£ and normal map g:
(Nn+1; M\ Mξ) -^ (XX I; XX {0}, X X {1}) extending fx: Mn -> X,
so that g0: g | M£ -> X is a simple homotopy equivalence. Now it is clear
that such a normal map g produces a Q.A.P.C. Φ(g) of dimension n + 1
over ZπλX9 with 3Φ(g) = Φ(g0 U -/x) = -Φ(Λ) (since g0 is a simple
homotopy equivalence). (Here -fλ is the underlying map fx with reversed
orientation Mn, X.)

1.28. LEMMA. The trace Nn+1, g may be chosen (i.e., the surgery onjλ\

M -> X may be performed) so that Φ(g) realizes any abstract Q.A.P.C. A

over Ί\tπ1X\ such that 3̂ 4 = Φ(Λ). In particular the trace may be chosen

so that Φ(g) = Φ(/).

An immediate consequence of 1.28 is the following picture. We
change scale so that g is now regarded as a map g: Nn+ι -» X X [\, 1]
with g~ι(\) = Mn, g~1(0) = M£. Moreover, it is easily seen that we may
actually embed Nn+1 inWX [\, 1] with N(W X \) = M, N Π (W X 1)
= Mo. (That is, we may consider the surgery of M to Mo through N as an
ambient surgery on a submanifold of W.) Thus we may extend g to a
map g: (W U cdW) X [^,1] -^ Γ(Ϊ/). AS for /, we change scale and
orientation, so that / is now to be regarded as a map on (W U cdW) X
[0, \] with f'\X) Π [(ΪFU c3PΓ) X 0] = X: f~\X) Π [(W U cdW) X \]
= M. In this view of things, we note that Φ(g) is well-defined and is the
same as Φ(g). Moreover, we may define h = / U g: (W U cdW) X I -*
T(v) and have Φ(h) well defined; In particular Φ(h) is merely Φ(/) U
Φ(g)mod identifications and may be identified with the "double" of
Φ(/) = Φ(/) U θ (-Φ(/)) = 3Φ(/) X /. [We remind the reader that
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these constructions i.e., the double A U a - A of Q.A.P.C.-with-boundary
over I{πxX] and the "suspension" A X I may be defined purely algebrai-
cally, and, of course 3(̂ 4 X /) = A U a - A.]

It is clear now that we wish to define the map TTk(X) -> ^ΎOp(X)
via the assignment [a] -> (g0: Mo -> X), where Λf0, g0 are constructed
precisely as above.

It now remains to show that this construction has the standard
properties i.e., that it is well-defined, and that it, in fact, induces a
bijection of sets.

The first of these properties must be established in two stages. We
must show first of all that for a given a we obtain a unique Nθ9 gQ up to
equivalence within the structure set ό?τoF(X). Then it must be demon-
strated that no indeterminacy is introduced by varying the choices of the
representative α.

Let us examine then the ambiguity which occurs in the construction
once a is fixed. Basically, this involves the choice of /, and the trace.
Recall that / is a map (W U cdW) X / -> T{v) which is RT on each
simplex of the homotopy cylinder, and which is the PT map f0 (de-
termined by α) on one end and simplex-wise topologically transverse on
the other.

First, fix / and let us examine how the choice of N affects things. Let
Na, ga, Nb, gb indicate two such choices. If / is indicated schematically
thus

/o / A
•̂ΛΛΛΛΛΛΛ/

then the two choices of N, g may be indicated thus

/o

Here, the circumflex denotes the map on (W U cdW) X interval dictated
by the actual normal bordism. Wavy lines indicate simplex-wise " R e -
maps and straight lines topologically transverse maps. If we allow a minus
sign to indicate a change of orientations, we obtain a topologically
transverse homotopy

go -1° Λ L gbo
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which produces a topological normal bordism -ga U fιg
b between g% and

go- It is clear from the construction that Φ(-ga U gb) = double of Φ(/).
But the clear interpretation of this is that the two structures g£: M£ -» X,
g$: M$ -> X obtained via ga, gb respectively differ by the action of an
element of Ln+1(πλX) i.e. they are normally cobordant. However, this
element is represented by Φ(-g f l Ug*) and since the latter, being a
double, is clearly bordant to zero, it must represent the trivial element.
Thus by standard surgery theory the two structures are equivalent. Hence
we have shown that, give /, the particular choice of N and g is im-
material.

Now let fa, fb be two choices of the homotopy /, and Mλ Mf, Mb,
fi> f\ e t c ^ e resulting manifolds and maps per the construction outlined
above.

Step 1. Suppose fa differs from fb in the following respect: fb is
obtained by taking fa and concatenating it with a further homotopy fx

from /* to fb so that fx is simplex-wise topologically transverse. Sche-
matically, we indicate things thus:

/o r n /o fa Aa r ft
•ΛΛ/WWW* •Λ̂ Λ̂/WV\Λ̂ •

/*
Here, as before, wavy lines stand for the part of the homotopy which is
merely RT and straight lines for topologically transverse maps. The choice
fa produces a trace Na connecting ff to a homotopy g£ equivalence via
gα, and we obtain, schematically

/θ fa fΐ £" gθ
«̂ Λ/wvwws•

It is clear, however, that Nb, gb can be chosen as the concatenation of ga

with -ix where gx = fx \(fx)~ιX is the obvious topological normal
bordism between Mf, /^ and Mb, fb. Thus, schematically

/
/a fa fx jrx fa &a &b

0 / Jl J 'I J2 So ~ So
•λΛΛΛΛΛΛΛΛ^

i.e. M«, g« = Ml gl

Step 2. Now let /α, fb be arbitrary. First observe that, using ordinary
topological transversality (via [17]) it is clear that /^ is homo topic to fb

via f8 where f8 is topologically transverse. Therefore, in view of Step 1
above, we may as well assume that /f = fb. Thus schematically, the
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construction of the two possible structures is indicated thus

/

The following diagram illustrates a normal bordism h between two
topological manifold structures g$: M£ -> X, g£: Mfi - ^ l o n l :

So ~ga / ί = fί Sb So
Φ #

h
The closed Q.A.P.C. Φ(h) over Z[πλX] determines an element of

Ln+ι(ττιX) measuring the difference between the two topological mani-
fold structures g£: M£ -> X, g^: M$ -> X. The problem, then is to show
that this element is inertial, i.e., [Φ(h)] is in the image of [ΣX, G/TOP].
We note, on the algebraic level that Φ(h) = ~(Φ(fa) U 8 - Φ(fb)) by
construction of gα, gb. It follows that if we can show (Φ(fa) U 8 - Φ(fb))
represents an inertial element in Ln+ι(iτιX) we will have completed the
necessary verification. There are several ways of seeing this of which the
following is an example.

Consider the homotopy e of g£ to itself schematically described by
the following diagram

gao - r - r /* §a go• φ φ 9
ê

It is clear that Φ(e) is defined as a closed (n + l)-dimensional Q.A.P.C.
and may be evaluated by the formula

Φ(e) = (-Φ(r)U8Φ(Γ)) u(Φ(gβ)Ua*(/*))

but we claim that the right side of this equation is clearly bordant, in the
world of Q.A.P.C.'s to -Φ(fa) U a Φ ( / 6 ) . [This is perfectly analogous
(and, given the technical preliminaries as perfectly straightforward) as the
following obvious fact about oriented manifolds: Given manifolds A,B,C
with boundary and dA = -dB = dC then (A U 8 - C) U (J5 U a C) is
bordant to (A U dB) U ( C U a - C ) which in turn is bordant to A U a B
(since C U a - C is a double).] Therefore, we need only show that [Φ(e)]
is inertial. Note, however, that the trace Na of the surgery form Ma = Mb
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to MQ may be viewed as a submanifold of a copy of (W U cdW) X /
away from the cone point and in general position with respect to a
triangulation (Ma is already in general position with respect to the
triangulation of the copy of W U cdW in which it lies). This being so, we
may derive from the simplex-wise topologically transverse map g$: W U
cdW -> T{v) a section of s: <2/(v) -> T(v) and from the self-homotopy e
(which is simplex-wise at least RT) a self-homotopy S of s0 in the world
of sections. An immediate corollary of 1.11 reveals that if a section, e.g.,
s0 arises from explicitly using a topological stucture on v and Scharle-
mann topological transversality then a self-homotopy of the section is
homo topic (through self-homotopy's of the same fixed section) to a
self-homotopy which is (simplex-wise) topologically transverse. [Alterna-
tively, we may present this fact by saying that homotopy classes of
self-homotopies of s0 are in 1-1 correspondence with homotopy classes of
topological self-equivalences v -> v which are fiber homotopically the
identity.]

In consequence, we have the following diagram representing a homo-
topy E of erel( W U cdW) X / to e'

ef

e

Here e' is simplex-wise topologically transverse while E is RT. It follows
that [Φ(e')] = [Φ(*)l but Φ(e') is the surgery obstruction of the normal
bordism d X 1/. Nd\ Mξ, Mξ -* Xxl, X X 0, X X 1 where Nd =
{e')~ιX and d = e'\Ne. Thus, clearly, Φ(e') is inertial. (Alternatively, one
can argue that [Φ(e')] arises from a topological self-equivalence v -> v
and thus, by definition, is in the image of [Σ^C G/TOP].) This completes
Step 2, and we have thus far shown that, for a given /?-structure α, there is
a well-defined topological manifold structure on X. It remains to show
that altering a within its equivalence class in \Ύk{X) does not affect the
equivalence class of the induced manifold structure on X. Therefore, let
α*, ay be two equivalent /^-structures on X and /0*, /0* the two simplex-
wise PT maps WUcdW-^T(v) arising from aa, ab via the usual
construction. Now, the topological manifold structure gζ: MQ -> X aris-
ing from ax is obtained, schematically thus

fox f A r go
•ΛΛΛΛΛ/WW

where g$: MQ -> X is a simple homotopy equivalence, and gx\ Nx ->
X X / a normal bordism. It is immediate from the definition of equiva-



114 NORMAN LEVITT AND ANDREW RANICKI

lence among /?-structures that there is a homotopy F from /0* to ftf,
simplex-wise RT, such that [Φ(F)) e im[ΣX, G/TOP] c Ln + ι{ΊτλX).
Therefore, by the preceding arguments, we may describe the topological
manifold structure induced by ay as having been constructed as follows:

u F f0* f Λ r go gF u
Λ̂ΛMMAΛΛ/W\ΛΛΛ/V

Here the concatenation of / and F is the homotopy we choose to deform
f£ through an RT map to a topologically-transverse map. Moreover, gF

arises from a normal bordism gF: NF-+ X X I where NF is the trace of a
topological surgery chosen so that the surgery obstruction Q.A.P.C. of gF,
i.e. Φ(gF) is -Φ(F). Clearly, Φ(gx u gF) = -Φ(F U / ) , so that the
choice of NF, gF (which converts the simple homotopy equivalence gj:
M£ -> X to another simple homotopy equivalence g$\ M$ -> X) to be
concatenated with Nx, gx yields a trace Nx U NF which meets the
requirements of the original construction. But then Mfi, gζ and Mξ, g$
are normally bordant through a bordism whose surgery obstruction is
-[Φ(^)] and is thus in im[Σ^, G/TOP], hence inertial, so A/o*, g£ and
M^, g^ are equivalent manifold structures on X.

So we may finally conclude that \Ύk(X) -> S^TOF(X) has been well
defined.

We have already described the inverse map yTOF(X) -> YTk(X) and
it is the work of a moment to see that it is in fact an equivalence. Thus
1.27 is proved.

We now turn to the question of putting a topological manifold
structure on a P-pair, i.e., given a P-pair (Xn,dXn) (n > 6 dX Φ 0), we
investigate conditions equivalent to the existence of a manifold-with-
boundary Mn and a simple homotopy equivalence of pairs /: Mn

9

dMn -> Xn

9 dXn. The results are analogous to those for P-spaces, i.e.,
1.27.

Given (Xn, dXn) consider a relative regular neighborhood
(Wn+\Vn+k-1), i.e., Wn+k is a regular neighborhood of Xn in Rn+k;
moreover, jfn+k~ι is a codimension-0 submanifold of dW, and there is a
simple homotopy equivalence S: Xn, dXn -> Wn+k, Vn+k~\ Hereafter,
when we speak of (wn+k,Vn+k~l) as a "regular neighborhood" of X\
dXn we shall implicitly have in mind a particular simple homotopy
equivalence S (well-defined up to homotopy).

First, we extend some definitions slightly. Let γn+k be a combina-
torially triangulated manifold and zn+k~ι a codimension-0 submanifold
of 37 which is a subcomplex of the given triangulation. Let (Xn

9dXn)
be a P-pair; /: (X9dX) -> (7,Z) is said to be pT iff f~\Z) = dX,
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f~ι(dY — Z) = 0, and {f~ιo,f~ιό) is a P-pair of dimension j — k for
each y-dimensional simplex σ of Y.

1.28. DEFINITION. A ^-structure (Xn,dXn) consists of a regular
neighborhood (Wn+k,Vn+k~ι) ot(X,dX) in R"+* (with 5: (X,3X)~->
(PF, F)), a P-pair (Xf,dX?)9 a triangulation of PF with V as a subcom-
plex, a simple homotopy equivalence of pairs h: (X, dX) -> (Xl5 ΘJŜ ) and
a pT map g: (X1? 3^) -> (W, V) such that

j *

is homotopy commutative.
We shall defer for a while the definition of a suitable equivalence

relation among /^-structures. We shall, however, note that the "Rough
Statement" approximating Theorem 1.27, carries over well enough to the
case of a P-pair i.e.

1.29. THEOREM. A P-pair (Xn

9dXn) (n > 6) has the simple homotopy
type of a topological manifold, mod its boundary, if and only if (X, dX)
admits a p-structure {for one codimension k > n). In fact, a p-structure
determines a particular topological structure {up to concordance).

Proof. That a topological manifold with boundary admits a /7-struc-
ture is as obvious as in the case of a closed manifold.

The proof of the converse is modeled, to a great extent, on that of
1.27, as one would expect. However, some additional subtlety is needed.
As in 1.27, we may as well assume that there is a pT-map /: (X, dW) ->
{W,V) with respect to some "triangulation of W, and that / is an
embedding. As before, we obtain a specific topological reduction of
v{X,dX), since the pT map {X,dX) -> (F,dV) leads to a specific trans-
versality structure on v. The problem now, is to do surgery of the
following sort: we shall have a manifold (Mn,dλfn) which admits a
degree one normal map to (X, dX) and we shall want to perform surgery
on dM -> dX to make it into a homotopy equivalence; this will leave us
with a degree one normal map M, dM -> X, dX already a simple
homotopy equivalence on the boundary, and we shall need to see that
surgery in int M may be done to make this a simple homotopy equiva-
lence. Finally, we shall observe our procedure produces an essentially
unique manifold structure on {X, dX).
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The first point essentially replicates the argument of 1.27. That is,
using the given pT structure on (X,3J), we obtain one on dX by
restriction, and hence a manifold structure on 3X More specifically, the
pT structure a on (X, dX) determines a specific homotopy equivalence
(homotopic to the standard one).

f0: (W U cdW, V U cdV) -> {T(v)9 T(v0)).

Here dW = cl(dW - V), and v0 = v\dX. f0 is, of course, simplex-wise
PT. Now, in the spirit of 1.27, we deform /0, via /, a simplex-wise RT
map to fl9 a simplex-wise topologically transverse map. Schematically

/o* /* Λ*

/o A

Here, the notation * in superscript denotes restriction to V U c3K Let
M = /f1^ with 3M = f{ιdX. Again, wavy lines connote RT, straight
topological transversality. We do surgery on 3M, /* 13M via TV*, g* as in
the proof of 1.27 to produce

Jo 8 So

where g$: Mo* -> 3X is a simple homotopy equivalence. We then do
surgery on M U N* rel Mo* to produce the following situation

/ * A* A*
y 6 60

yvwwwVf
/o Λ So

where g has trace N with boundary (Λf U ΛΓ*) U Mg Mo, ΘM0 = Mo* and
moreover, g0 is a Λί0* simple homotopy equivalence. The algebraic
requirement which we insist on in characterizing Λf and g is the following.
If Φ(/*), Φ(g*) etc. are QAP.C.'s over Z^dX], let Φ,(/*), Φτ(g*) etc.
denote their respective images under the functor from Q.A.P.C.'s over
Z[ m-fi X] to those over Zl^Z] induced by the obvious homomorphism
πfiX -> itxX. We then have two triads of Q.A.P.C.'s over Ί\τtγX\

(i) (Φ(/); Φ(Λ); Φw(/*); Φ,(Λ*))and
(ii) (Φ(g), -Φ(Λ), %/(g*), -Φ,(Λ ))
Here 3Φ(/) = Φ(Λ)U3 Φπ(f*) where the union is along the common

boundary 9Φ(Λ) = -9Φπ(/*) = Φπ(f*) A like formula holds for the
second triad.
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Our requirement on the surgery then is that (ii) = -(i), i.e., the second
triad is isomoφhic to the first with change of orientation, the isomoφhsm
preserving the identity on -Φ(Λ).

We claim that the surgery may be done so that this will hold.
This completes the proof of 1.29 as stated.

As an addendum we shaφen 1.29 slightly by specifying the correct
notion of equivalence among ^-structures. Let G, H be groups and φ:
G -» H a fixed homomoφhism. Consider triples (A,B,h) where A is an
^-dimensional Q.A.P.C.-with-boundary over Z[/f], B is an (n — 1)-
dimensional closed Q.A.P.C. over Z[G], and h is a particular equivalence
of φ#B with dA, where φ # denotes the function from Q.A.P.C.'s over
Z[G] to Q.A.P.C.'s over Z[H] induced by φ. It is possible to define
bordism between two such objects straightforwardly, and we denote the
group of bordism classes by Ln(φ: G -> H) or, more briefly, Ln(φ) [16,
§2.2].

Let (X, dX) be a P-pair and let φ denote the homomorphism
πλdX -> πλX induced by inclusions. Let e, e'\ X, dX -> W,V be two
^-structures on X, dX. Just as in the closed case we have maps έ, e'o:
(WU cdW, V U cdV) -> {T(v\ T(vd)) which are PT simplex-wise.

1.30. DEFINITION, a and β are said to be equivalent if and only if
there is an RT homotopy f: (WU cdW,VU cdV) X I -> (T(v), T(vd))
connecting ea, e'β so that [Φ(/)] e Ln(φ) is the trivial element.

1.31. DEFINITION. ITk(X,dX) is the set of equivalence classes of
^-structures on (X, dX).

1.32. COROLLARY. For n > 6 (or n > 5 if dX = 0). There is a natural
bijection \Ίk( X, dX) -> ^TOP(X,

1.31. REMARK. In comparing Definition 1.30 with Definition 1.24, it
will be noted that there is a discrepancy between the two in that, in the
case of a P-space, X, i.e. dX = 0, 1.24 and 1.30 give definitions of
equivalence oϊ /^-structures which are not clearly equivalent a priori. That
is, if we apply 1.30 to a closed P-space X, we find that it specifies that
$ / = 0 in Ln(wxX)9 whereas 1.24 merely asserts that [Φ(/)] e

, G/TOP]. However, it is easily seen that the proof of 1.27 goes
through virtually without modification if the stronger equivalence relation
be substituted for the weaker in the definition of YTk(X). This of itself
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shows that the two notions of equivalence are the same (at least for
dim X > 5). In fact, without reference to 1.27 or the dimension of X it is
possible to show directly that the weaker equivalence implies the stronger.
Thus the apparent disparity disappears.

Finally, we remark that as before, there is a natural suspension
lΎk(X, dX) -* IΎk+\X, dX) which is bijective for large k hence we may
speak of stable intrinsic transversality structures, i.e. IT(X, dX)

2. Applications.

2.1. Manifolds as covering spaces. In this application we consider the
following problem: Let Mn be a closed manifold having the simple
homotopy type of a (finite) covering space. Under what conditions is it
then the case that Mn itself is a covering space?

Throughout the following section assume that Mn ^ X (simply) and
that p: X -* X is a covering finite map, with X a finite CW complex. It is
easily seen that, under such an assumption X is a PD space of formal
dimension «. For the sake of simplicity, we shall further assume that X is
orientable (hence Mn is orientable as a manifold).

Moreover, we may make the assumption that X is in fact a high-di-
mensional parallelizable manifold—with boundary (i.e., as a manifold X
has dimension n + k, k > n).

This follows since we may replace X by its regular neighborhood in
Rn+k. If X is such a manifold, then X is of course a manifold as well.

With these assumptions understood, the problem, then, is to find a
manifold Vn

9 simply homotopy equivalent to X, so that Mn is the
covering of Vn induced by the homotopy equivalence. We shall state a
sufficient condition that this can be done which is, almost trivially, a
necessary condition.

Suppose that Mn does, in fact, cover Vn so that Mn ^ Vn is,

homotopically, p: X -» X.
We may then embed Vn in X (since X is a high-dimensional

manifold) via a simple homotopy so that p~ιVn = Mn c X.
Suppose X is combinatorially triangulated (which may be done since

X is a codimension zero submanifold of Euclidean space).
We may assume that Vn c X is in general position with respect to the

triangulation. Therefore, Mn c X is in general position with respect to
the triangulation of X induced by p from that on X.

Moreover, Vn obviously has a small regular neighborhood U in X
(i.e., a smaller copy of X) so that U Π σ is a regular neighborhood of
V Π σ for every simplex σ of X. Therefore p~ιU = U is a regular
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neighborhood of Mn having the same property, viz. U Π σ is a regular
neighborhood o f M Π σ for every simplex σ of X.

We wish to prove the converse of the remark above when n > 5. Let
M n, X, X, p be as above.

2.1.1. Suppose Mn can be embedded (via a simple homotopy equiva-
lence) in X, in topological general position with respect to the triangula-
tion, so that M has a regular neighborhood U satisfying

(1) U Π σ is a regular neighborhood of Mn Π σ,
(2) U is the covering space p~ι{pΐl).
Then there is a manifold Vn and a simple homotopy equivalence φ:

F" -» X so that the covering space of V induced by φ is homeomorphic
to M". Moreover, this homeomorphism is consistent with the original
simple homotopy equivalence Mn -» X.

Before proving this, let us observe what the theorem is saying: if Mn

could be embedded in X so as to cover its image under p, finding V*1

would be vacuously simple. What the theorem says is that if Mn be
replaced by an equivalent PD space (i.e. ϋ) and the embedding Mn -» X
by a pT embedding of II "homotopy equivalent" to the original, (in the
sense that (ϋ Π σ) ~ (Mn Π σ) so that [/covers its image under />), then
we can arrange to have Mn itself cover its image under p.

The proof is a straightforward application of the results of §1. Let
U = plJ, Obviously U is an orientable PD space of dimension n. Clearly,
U c X is a pT embedding, since, for each σj+k, U n σJ+k s { / n σJ+k

where σJ+k is a component of p~1σJ+k. But U D σ - Mn Π σ which,
since Mn is in general position with respect to the triangulation, is at least
a homology manifold with boundary Mn Π 3σ ~ U Π 3σ.

Thus, we may assert that U admits the structure of a topological
manifold F n , by virtue of 1.27. In fact, we may assert that, if we embed
Vn in X in general position with respect to the triangulation then there is
a normal space NnJrl (with normal fibration induced from v(X), i.e.
v(V))9 rT embedded in X X /, so that dNn+ι = P u ί 7 , with Vn c X x
{0}, U c X x {1} the original embeddings, and such that the surgery
problem (N"+1; V\ U) -> ( * X /; X X {0}, X X {1}) has vanishing ob-
struction in Ln+ι(πιX). We now look at the induced cover p X id = q:
X X / -> X X /, and at ^ ( ^ Λ + 1 ) = ]V«+1, which is an rT-embedded
normal space connecting U and Mf = ί"1]^", where Mf is embedded in
ί x { 0 } topologically transverse to the triangulation. Obviously, this
gives a surgery problem (Nn+\ Λf, U) -+ (X X /, X X {0}, X X {1})
which has surgery obstruction zero in Ln+ι(πλX) = Z ^ + ^ T ^ M " ) . But
then the /^-structure on the homotopy type of Mf given by the general
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position embedding of M' in X X {0} is equivalent to that given by the

pT embedding U c X x {1}, which is clearly the same as the /^-structure

coming from the original general position embedding of M" in X. Thus

the topological manifold structure of Mf on the underlying simple homo-

topy type is the same as that of Mn

9 and the proof is complete.

2.1.2. REMARK. Suppose the covering X -> X comes from a free

action of the finite group G on X, i.e., X = X/G. Then the condition (2)

on U in the statement of Theorem 2.2.1 may be paraphrased by saying

that U is a G-invariant tubular neighborhood; moreover, the conclusion

of 2.2.1 may be taken to say that Mn admits a certain free topological

G-action.

2.2. Decomposing a manifold as a product. In this section we ask a

question similar to that of 2.1: If Mn is a manifold having the homotopy

type of Xn~d X W\ where Wd is a (PL) manifold and Xn~d a P.D.

space, when can we find a topological manifold structure Vn~d on X so

that Mn = Vn~d X WdΊ.

Again, we rephrase this slightly: Let χn+k~d be a parallelizable

manifold (i.e., a codimension 0 submanifold of Rn+k~d), let Y = X X Wd,

and let X, Y be triangulated so that the projection p: Y -> X is simplicial,

i.e., triangulate W and take the product triangulation on Y. Suppose /:

M -> γn+k is a simple homotopy equivalence: When may we decompose

Mn appropriately as Vn~d X Wd, i.e., when may we find a topological

manifold Vn~d a X, with the inclusion a simple homotopy equivalence, so

that p~ιV= Vn~d X Wd is homeomorphic to M" (consistent, up to

homotopy with the map /)? The initial result is similar to 2.1.1. Let

n ~ d> 5.

2.2.1. THEOREM. Suppose f is an embedding Mn ^> y«+^? and suppose

that the embedding is in topological general position with respect to the

triangulation of Y. Suppose further that the embedded Mn has a regular

neighborhood T such that

(1) T Π σ is a regular neighobrhood of Mn n σ for all simplices oofY

(2) T = p'\pT) i.e. T = p{T) X Wd.

Then there is a topological submanifold Vn~d c χn+k~d^ embedded via

a simple homotopy equivalence, so that p~ι{V) = V X W is homeomorphic

toMn.

Proof. The proof follows the general outlines of 2.1.1. Let U = p(T).

Since U X Wd = T s M", ί/ must be a P.D. space of dimension n - d.

Furthermore, let Kσ = /^σ, for each simplex σJ of ^ί, A^ = p'ιό. Let ί/σ,
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Uό denote ί / Π σ , ί / Π σ . Then (T Π Kσ,T Π K6) ~ (M ΠKσ,M Π Kό)
and is thus a P.D. pair. But (T Π Kσ,T n Kό) = Uσ X W, Uό X W and

thus Uσ, Uό is a P.D. pair. Thus ί/ c I is a pT-embedding, i.e. a

/^-structure on U. Since « - d > 5, by 1.27 we may find a manifold Vn~d

of the simple homotopy type of U. In fact, consistent with this simple

homotopy equivalence, we may embed Vn~d in X, topologically trans-

verse to the triangulation so that there exists a vk{U) = vk(V) normal

space R, with dR = U U K, so that R is rT embedded in X X I (with

respect to some triangulation), extending the given embeddings Vn~d c X,

U c X on either end.

But then (p X d)~ιR = RX Wd U 7 X / is a ^(Λfw) normal space

with boundary 9(7? X W) = (K n " r f X ί f j U Γ embedded in 7 X / , ex-

tending the pT embeddings VxW cY, Γ c Γ o n each end. But the

/^-structure on the underlying homotopy type of T ~ Mn is essentially

that which comes from embedding M in general position; thus Mn =

Vn~d X Wd, the homeomorphism realizing the obvious homotopy equiva-

lence. This completes the proof.

More generally, we may concern ourselves with the problem of

fibering Mn by Wd, i.e. find a topological fibration

Wd -> Mn

i
yn-d

given that the homotopy type of Mn is realized by the total space of some

such fibration. Unfortunately, it is rather difficult to see what the precise

statement should be; that is, assume that there is a fibering

Wd-*Y
i
X

where Y has the simple homotopy type of Mn. It then follows ([11]), that

X is an (n — d)-dimensional PD-space and, replacing X by a Euclidean

regular neighborhood in R"+/c~^, k large, we see that γn+k can be taken

to be a manifold. Unfortunately, it is not then clear that Y itself is

triangulable. Moreover, even if Y is triangulable there is no way, in

general, of making the projection map strictly simplicial onto some

triangulation of X.

These difficulties disappear if we assume that the structure group of

the fibering

W -» Y

ΪP

X
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is the (finite) group of simplicial symmetries of W, (for some trangulation

of W). In this case, we may assume that Y is triangulated so that the

projection map is simplicial, and the proof of 2.2.1 is immediately seen to

entail the following result.

2.2.2. COROLLARY. Let

Wd -> Yn+k

i
Λsn + k-d

be as above, (n — d > 5) and let Mn c γn+k be embedded via a simple

homotopy equivalence and topologically transverse to the triangulation. Let

Mn have a regular neighborhood T so that

(1) T Π σ is a regular neighborhood of M Π σ for all simplices σ of Y

Then there is a manifold Vn~d c X, the embedding a simple homotopy

equivalence, so that Mn is homeomorphic, consistent with the obvious

homotopy equivalence, to the fiber space p~ι(Vn~d).

Of course, the assumption that p: Y -> X is simplicial is special. We

may weaken this merely to the assumption that Y is triangulated so that

p~ιo is a subcomplex of Y for each simplex σ of X. A result is still

obtainable under these weakened conditions. We carry over the hypothe-

ses of 2.2.1 and 2.2.2, namely that the simple homotopy equivalence

Mn c γn+k is in topological general position with respect to the triangu-

lation, that Mn has a regular neighborhood T in Y with Γ ί l σ a regular

neighborhood of M Π σ for all simplices σ of Y and that / ^ ( p T ) = Γ.

Following the proof of 2.2.1, we see that U = p(T) is an (n - d)-

dimensional PD space and that its embedding in X is, in fact, pT. We

conclude, therefore that there is a well-defined topological manifold

structure Vn~d on the homotopy type of U. However, we may no longer

argue that p~1(Vn~d) is Mn, up to homeomorphism. For we have a v(V)

normal space Rn~d+ι, with dR = V U U, rT embedded in X X / so as to

connect the pT embedding U c X and as embedding Vn~d c X topologi-

cally transverse to the triangulation. However, we cannot conclude that

p~ιR is rT embedded in Y X / or even that p~ι = XW is pT embedded

in Y. The difficulty is that p is not simplicial. However, by the simplicial

approximation theorem, we may assume (possibly having to subdivide the

triangulation on Y) that p deforms to a simplicial map q: (Y,dY) ->

(X, dX) via a deformation Φ,, Φo = p, Φx = q. Moreover, by the covering

homotopy property for locally-trivial fibrings, it follows that Φ, may be

covered by a deformation Ψ,; Y -> Y withΨ0 = id y .
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2.2.3. DEFINITION. Let Z r be a manifold and g: Zr -> 7 a map. Say
that g is transverse to Mn respecting T if and only if it is topologically
transverse to Mn (in the sense of Scharlemann [17]) and, moreover,
g~ιT -> Γ is a topological bundle map covering g~ιM -> M.

We may then state our result

2.2.4. COROLLARY. Lei M", 7, X, F, p,T and the various triangulations
be as above. Suppose Φ, and its covering Ψt can be chosen so that Ψt is
transverse to M respecting T on each simplex σ of 7.

Then Mn differs from p~ι(V) at most by an action ofLn+1(
ιrr1M

n).

Proof. Recall that U is in X via a pT embedding. By the usual
construction, one obtains a map XU dX -> T{v(U)) which is PT (and
therefore RT) on each simplex; i.e. we obtain a transversality structure on
v(U), viz. a lifting s: T(v(U)) -» Φ(v(U)). Let q = Φλ; q is also PT on
each simplex of 7, and thus we obtain a section

T(vγ(M)) - T(p(U))

which corresponds to a section

T(pγ(M)) - »(py(M))

However, by obvious geometric considerations, this is the same sec-
tion induced by the fact that %: (7,37) -> (Y,dY) is transverse to M,
respecting Γ, and thus, via % it is equivalent to the section determined by
the original embedding of Mn in 7. On the other hand, the section of
<&(v(U)) -> T(v(U)) determined by the pT embedding of U is'equivalent,
via 2?, to that determined by an embedding Vn~d c X topologically
transverse with respect to the triangulation; that is to say, we have two
equivalent transversality structures on vγ(M)\ the first is determined by
the given topological manifold structure on M, the second by taking the
natural map vγ(M) -> v(U) and putting a transversality structure on
v(U) by putting the topologicaί manifold structure Fon U. However, the
latter structure on vγ{M) is easily seen to be equivalent to that obtained
by identifying Λf, in the sense of simple homotopy type, with p~\V). I.e.
the corresponding TOP reductions of vY(M) are identical. To summarize,
then we may find a topological manifold Qn+1 c 7 X / with Q Π
( 7 X {1}) = Z,QΠ(YX {0}) = M, Z U M = θρ, so that there is a
topological normal map vγxτ(Q) -> vγ(Mn) covering the degree one map
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(<2; M,Z) -* (M X I M X {0}, M X {1}). This says, essentially, that the

difference between M and Z in the structure set is at worst in the image

2.2.5. COROLLARY. // πλM = 0, then under the hypothesis of 2.2.4, M
is the total space of afibration over a manifold with fiber Wd.

2.2.6. REMARK. A similar result to 2.2.4 was proved in [5]. However,
because of an incomplete understanding of the difference between intrin-
sic and extrinsic transversality structures, as well as inability to handle the
difficulties of the non-simply connected case, inconvenient restrictions
were made on Mn and Wd, i.e. both were assumed to be 4-connected, and
(n — d) was assumed to be odd. Though the general idea of the present
proof is the same, the present result is much stronger.

2.2.7. REMARK. The converse of 2.3.1 and Corollary 2.2.2 is obviously
true: If Mn is Vn~d X Wd (or a twisted product with a group of simplicial
automorphisms as structure group) we may easily find X, F, T and the
requisite triangulations with the stated properties. As for 2.2.4, the con-
verse is at least true in essence; that is, if Mn is strictly fibered by Wd,
over Vn~d, and if the pullback Y of the fibering to a Euclidean neighbor-
hood X of V is triangulable as a manifold, then we may find Γ, and the
deformations Φ,, % of the hypothesis of 2.2.4.

3. The algebraic surgery space and the assembly map.

3.1. The algebraic surgery space. In this chapter we study the algebraic
surgery space with a view to understanding how a surgery obstruction may
be seen to arise from a section <&(v) £J T{v) where v is the Spivak normal
fibration of a Poincare duality space Xn, and s is envisioned more
geometrically as a simplicial map from a triangulated W/dW to Φ(v), W
being the regular neighborhood of Xn in Rn+k. It is seen, since such a
section specifies a topological reduction of v, that there is a well-defined
surgery obstruction in Ln(7r1(A

Γ)) defined via the classical procedure of
constructing a degree-one normal map Mn -> Xn

9 Mn a topological
manifold. But we wish to establish that this obstruction arises naturally on
the "chain level", i.e. that the specific map W/dW -> <Bf(v) defines a
specific Q.A.P.C. over 2{^(X)] whose bordism class, in the Q.A.P.C.
category, is an element of Ln(^(X)) (and, in particular, the surgery
obstruction obtained classically via the corresponding topological reduc-
tion of v). This is, in essence, the content of Lemma 1.2.1 whose proof
will be given in 3.2 below.
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The most important ingredient in our understanding of surgery theory
from an algebraic and combinatorial point of view is the surgery space
L,k(A) where A is an associative ring with unit and involution ": A -> A;
a •-> a with a = a, (a + b) = a + Ί>, ab = Ί> a. Typically, A will be

either Z = Z[{1}], with trivial involution, or the group ring Z[τrx( X)]9 X a
fixed P.D. space, and ~ arising from the group inverse on πι(X).

We consider left A -modules M over A. The dual M* of M is

Hom^M, A) where the A -module structure is specified by

A X M* -> M*; (a,f) -> (x^f(x)a).

If TV is another A -module we have dual A -module morphisms defined by

*: H o m ^ M , ^ ) -> HomA(N*9 M*); f* (/*: g -> g(f(x))).

If we have a chain complex of A -modules

C: ••• ΪCr+1ίcAcr-A ••• ( r€Z, i 2 = 0)
we have the usual homology and cohomologyΛ -modules

H,(C) = ker(d: Cr -» C ^ J / i m ί J : C r + 1 - CΓ) and

ί f ( C ) = ker^*: Cr* -* C*+1)/im(ί/ : Cr x - Cr*).

It will be convenient to have a dimension shifting operator on chain
complexes, i.e. given a chain complex C and K Z w e obtain a formally
distinct chain complex SkC with (S^C),. = Cr_Λ and d: (SkC)r-+
(SkC)r_1 identified with d: Cr_k -> Cr_fc_le Trivially H*(SkC) =
H*_k(C), H*(SkC) = H*~k(C). An Λ-module chain complex C is said
to be m-dimensional, m > 0, iff Cr is a free f.g. A -module for each r, with
Cr = 0 for r > m and r < 0.

Given ^4-modules M, Λ̂  let M ®A N denote, for our purposes, the
Z-module M ® z N/{x ® ay — ax ® y). Extending to ^4-module chain
complexes we obtain from two such, C and D, the Z-module chain
complex C ®A D where (C β^ D) r = Σp+q=rCp ®A Dq and d: (C 0^ Z))r

-> (C ®A D)r_λ\ x®y>-*x®dy + {-)qdx ® y (x <Ξ Cp, y <E Dq, p + q
= r).

Given C, an A -module chain complex, define Qm(C) as the homol-
ogy group

Here, C ®A C is a Z[Z2]-module chain complex by letting the generator
T G Z 2 act on C ®^ C by transposition, i.e. Γ(JC 0j;) = (-)/'<7(7 ® Λ) G
C^ 0^ Ĉ  when x ^ C ,̂ j ; G C .̂ ίΓ is the Z[Z2]-module chain complex

W: - - ^ Z[Z2] ^ Γ Z [ Z 2 ] ^ Γ Z [ Z 2 ] -> 0

(i.e. all terms in non-negative dimensions are Z[Z2], all negative dimen-
sional terms vanish, the differential operator is alternately 1 + T and
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1 - Γ). A given element ψ e Qm(C) may be represented by a collection
of chains {ψ5 e (C Θ^ C)m_ J s > 0} satisfying the relations

</(Ψ,) = ( - Γ " ' ( ψ , + i + (-)'+ 1Γψ,+ 1) 6 (C β, C) x (s > 0).

Thus, in particular, (1 + Γ ) ψ o e ( C ^ C) m is a cycle representing a
homology class in Hm(C ®A C).

An m-dimensional quadratic complex over A is a pair (C, ψ), where C
is an m-dimensional A -module chain complex and ψ e β m (C). The
fundamental maps of (C, ψ) are the A -module morphisms (1 + T)ψ0:
Hr(C) -> Hm_r(C). On the level of cocycles and cycles, this map is
defined by [/] •-> Σ\f(x) - y] where / is a cocycle of Cr* and x e Cr,
^ e Cm_ r such that (1 + Γ)ψ0 = Σx ® 7.

We call the quadratic complex (C, ψ) Poincare iff the fundamental
maps are isomorphisms.

There are two fundamental ways in which quadratic Poincare com-
plexes arise in the context of this paper.

3.1.1. EXAMPLE. Let ξk be an oriented spherical fibration over a space
B and let A = Zlπ^B)]. Let X be a ^-normal space. Then we obtain a
quadratic Poincare complex Φ = (C, ψ) which measures the failure of X
to be a Poincare complex over A, with C = S~ιC([X] Π -) the algebraic
mapping cone with a dimension shift of the chain map [X] Π -: C(X)n~*
-> C(X) with X the pullback to X of the universal cover B of 5. See [16,
§7.3] for further details. D

3.1.2. EXAMPLE. Let /: X -> Y be a degree-one normal map between
oriented Poincare spaces. Then the classical "kernel complex" arises, in
fact, from an ^-dimensional quadratic Poincare complex (C, ψ) over
Z[τr1(lr)] = A9 with C the algebraic mapping cone of the Umkehr A-mod~
ule chain map

-1 ,„ [X]n-

fι:C(Ϋ) ^ C ( 7 ) " ~ * ^ C ( 1 ) " " * A C(X)

where Ϋ is the universal cover of Y and X is the pullback cover of X. See
[15, §4] for further details. D

Let us now consider pairs (C, D) of A -module chain complexes (i.e.
D a subcomplex of C) such that each Dr is a direct summand of Cr, We
obtain a pair of Z-module chain complexes

C ®A C),W ®ΆZ2](D ®A D)) = (WC,WD).
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Define the relative Q-groups of (C, D) to be the relative homology
groups

Qm(C,D) = Hm(Wc,WD)

which fit into an exact sequence

• - Qm(D) -» Qm(C) -> QJC, D) -> Qm.x{D) -> • • •

in the obvious way.
An element ψC Z ) of Qm{C, D) is represented by a collection

{(ψf,ψf) e (C ®, C ) m _ s θ(2) ®A D)m_s_λ\s > 0}

satisfying the compatibility conditions

Thus the connecting homomorphism Qm(C, D) -> <2w_i(£>) in the long
exact sequence for β-groups above is given simply by ψC Z ) = [{ψf,ψf}]
-» [{ψf}]. Also, (1 4- ΓJψg^ e i/m(C Θ^ C9D ®A D) is a homology
class representing a relative cycle of Hm(C <8>A C, D 0^ D).

An m-dimensional quadratic pair (C, D, ψC Z )) consists of a pair of
^4-module chain complexes (C,D), C m-dimensional, D (m — 1)-
dimensional, and ψ C D e β w (C, D). The fundamental maps of
( C , A Ψ C D ) are the Λ-module morphisms (1 + Γ)ψ^D : //r(C) -+

We shall say that the quadratic pair (C, 3C, ψ) is Poincare if the
fundamental maps are isomorphisms, in which case the boundary (3C, 9ψ)
is an (m — l)-dimensional quadratic Poincare complex.

If Φ = (C, ψ) is a quadratic Poincare complex then, by definition,
-Φ = (C, -ψ). We say that (C, ψ), (Cr, ψ') are bordant as m-dimensional
quadratic Poincare complexes over A if there is an (m 4- l)-dimensional
quadratic Poincare pair over A, (B, 95, φ) so that (35, 9φ) =
( C θ C ' , ψ θ - ψr)

3.1.3. PROPOSITION. Bordism is an equivalence relation among m-di-
mensional quadratic Poincare complexes. The set of bordism classes forms an
abelian group Lh

m{A) with addition by

[(c,ψ)] +[(c,ψ')l =
Proo/. See [14, §3]. D

We shall now expand the notion of quadratic Poincare pair to
encompass objects with a more elaborate combinatorial decomposition.
As a heuristic aid, imagine a manifold Mm embedded in the standard
^-simplex Δw (n > m) with Mm Π Δ" = 3Mm, and 3Mm intersecting all
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faces α of Δ" transversally, so that if n - m = j and a is an r-dimensional
face, then Ma = Mm Π a is an (r - j)-manifold (possibly void) with
dMa = Uβ<aMβ. The idea is to replace "manifold" with "quadratic
Poincare complex" while keeping intact the combinatorial pattern of the
decomposition.

Accordingly, we say, formally that an «-ad of A -module chain
complexes is an A -module chain complex X= C(Δ") together with a
collection of subcomplexes C(α) (α < Δn) such that C(a Π β) = C(a) Π
C(β). We say that the w-ad C = {C(a) \a < Δ"} is m-dimensional iff
each C(a) is a (dimα — n + m)-dimensional f.g. free A -module chain
complex, with C(β) a direct summand of C(a) whenever β < a.

We adopt the notation C(ά) = φ αC(/?)/ — where the equivalence
relation identifies x e C(γ) with its image in C( jβ) whenever γ < β. Thus
C(α) is a (dimα — m + n — l)-dimensional f.g. free A -module chain
complex.

Thus, a quadratic m-dimensional «-ad is a pair {C, ψ}, where ψ is a
collection of the form {ψα}, α < Δ" with ψα e β d i m α _ w + w (C(α),C(ά)),
with each ψa being represented by a pair of collection of cycles

{(Ψί.ψ?) e (C(β) ®, C(α)) m _, Θ(C(ά) ®, C ί ά ) ) ^ ^ ! , > 0}

such that ψ j1 is the image of

Θ Ψfe φ C(i8) inC(ά),
β<a β<a

dim )8 = dim a — I dim β — dim a — I

with each (C(α), C(ά), ψα) a quadratic pair.
We say that (C, ψ) is Poincare iff each (C(a), C(ά), ψα) is a Poincare

pair.
Note that if a is an (n — r)-dimensional face of Δπ, then, given an

m-dimensional Poincare «-ad over A (C, ψ) we obtain a derived (m — r)-
dimensional (AZ — r)-ad da(C, ψ), by identifying α with the standard
simplex Δ"~r in the canonical way, and letting C(β') = C(β), whenever
β' is a face of Δ"~r corresponding to the face β < a under this identifica-
tion. This leads naturally to a semi-simplicial construction, viz. an s.s.
complex L^(^4) ( H Z ) with m-simplexes the (m + A:)-dimensional
Poincare m-ads over A (C, ψ). From this point of view 3.1.3 translates to:

3.1.4. PROPOSITION. Up to natural isomorphism

Given 3.1.3, the proof of 3.1.4 is a completely routine s.s. argument
provided one knows the following fact:
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3.1.5. PROPOSITION. The s.s. complex hh

k(A) satisfies the Kan exten-
sion condition. D

(The original geometric L-spaces of Quinn [9] satisfied the Kan
extension condition on account of a formal procedure which adjoins
enough simplices to a s.s. complex to make it Kan. The algebraic L-spaces
were first defined in [12], using forms and formations, and the Kan
extension condition was verified using an algebraic glueing operation (cf.
[16, §1.8]). These L-spaces are deformation retracts of hh

k(A)9 since
highly-connected quadratic Poincare complexes are the same as forms and
formations, and it is always possible to perform quadratic Poincare
surgery below the middle dimension.)

The essential meaning of 3.1.5 is as follows: suppose we have an open
box in Lk, i.e. a subcomplex K of Lk(A) consisting of m + 1 m-simplices
of l*k(A) which is abstractly isomorphic to Am+1 with the leading face
deleted. Then the Kan condition specifies that there is an (m + l)-simplex
of hk(A) m + 1 of whose faces constitute K. This, in turn, means
essentially that we may form an (m + /c)-dimensional m-ad (C(K), ψ(K))
where C(K) is a quotient of the direct sum Θ τ c ^ C τ , modulo the obvious
identifications. This "assembly" construction generalizes a bit further, and
this is the heart of the matter in proving 3.1.4. Given a map /: Sm -> Lk(A)
we may assume it is simplicial with respect to some triangulation of Sm.
Thus for each π-simplex T of Sm we obtain an (n + λ;)-dimensional
quadratic Poincare fi-ad over A f(τ) = (C(τ, ψ(τ)). The quotient of the
direct sum φ ,. C modulo the obvious identifications is an

τ,αimτ = w τ

(m + /c)-dimensional A -module chain complex C(f) with an (m + k)-
dimensional quadratic Poincare duality structure ψ(/). The relative ver-
sion of this assembly argument shows that the bordism class of
(C(/), ψ(/)) depends only on the homotopy class of /. It is in fact easily
seen that the bordism class of (C(/), ψ(/)) completely determines the
homotopy class of /. This, together with the additional fact that every
bordism class is realized by such a map, gives the isomorphism of
Theorem 3.1.4.

It should be noted that the gist of the argument works as well if Sm is
replaced by any oriented PL manifold Mm i.e. given a simplicial map /:
Mm -> Lh

k(A) the images of the m-simplices of M may be assembled
together to define a closed (m + &)-dimensional quadratic Poincare com-
plex over A. Thus, in particular, we have a splitting Ω^L (Lh

k(A)) ->
πm(Lh

k(A)) of the forgetful map, which for A = Z is essentially the
well-known splitting Ω£L(G/TOP) -> ττm(G/TOP) = LJZ) (since L0(Z)
= L0(Z) X G/TOP, cf. [8]).
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The above discussion would suffice had we merely been interested (in

§1) in recognizing when a PD-space X is a manifold up to homotopy type

rather than simple homotopy type, and in classifying such structures up to

Λ-cobordism rather than s-cobordism. To deal with such finer questions

we must use the simple quadratic L-groups L%(A) instead of L%(A).

Accordingly, we make the following modifications. Rather than deal-

ing with finite dimensional A -module chain complexes we consider such

complexes together with a preferred class of A -bases in each dimension,

and in dealing with quadratic Poincare complexes (C, ψ) we require the

Poincare duality chain equivalence (1 + T)ψ0: Cn~* -> C to be simple,

i.e. to have zero torsion in the Whitehead group Wh(7r) iί A = Z[τr]. N.B.

We reserve the terminology Q.A.P.C. for such objects.

3.1.6. REMARK. We shall elaborate Examples 3.1.1 and 3.1.2 to the

based case. In 3.1.1 we pointed out that given a ξ-normal space Xm there

is a well-defined (unbased) (m — l)-dimensional quadratic Poincare com-

plex Φ over Z[πx(B)] (B = base of £). We claim that in fact Φ is

naturally endowed with the structure of a (based) QAPC, since the

underlying chain complex C = 5"1C([X] Π -) is the algebraic mapping

cone with a dimension shift of the chain map [ X] Π - : C( X)m ~ * -> C( 1 )

of based Z[7r1(5)]-module chain complexes with respect to which

(1 4- T)ψ0 has the simple ( + ? £ ) . If /: X -> Y is a normal map

between oriented Poincare duality spaces such that the Poincare duality

chain equivalences [X] Π - : C(X) m ~* -> C(X)9 [Y] Π - : C ( 7 ) m ~ * ->

C( Ϋ) are simple then the kernel complex is a (based) QAPC. D

We may carry over the other elaborations of the idea of unbased

quadratic complex to the world of (based) QAPC's. For example, a QAPC

pair may be defined as a quadratic pair (C, 9C, ψ) where there are chosen

bases for C and 3C, with the base of C extending that of 3C, with the

Poincare duality chain equivalence (1 + Γ)ψ 0 : ( C / 3 C ) m ~ * -> C simple.

It follows that we may speak of the bordism group of QAPC's. By analogy

with the ZΛcase (Proposition 3.1.3) we have:

3.1.7. PROPOSITION. The group of bordism classes of m-dimensional

QAPC's over A is isomorphic to the Wall group Ls

m(A).

Proof. See [14]. D

By the same token, we may speak of m-dimensional «-ads of QAPC's

over A, i.e. «-ads (C, ψ) so that the chosen basis for C(a) is a subset of

that for C(β) whenever a < β < Δ", and such that the Poincare duality
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chain equivalences are simple. We may therefore construct s.s. complexes
hs

k(A) (k e Z) (satisfying the Kan condition) such that:

3.1.8. PROPOSITION. Up to natural isomorphism

The outline of the proof of 3.1.4 will serve as well for 3.1.8 above. The
problem of keeping track of a preferred class of A -bases adds only slight
technical complications. Note that, as in the case of unbased quadratic
complexes, we may, given a simplicial map /: Mm -> L%(A)9 Mm a PL
manifold, assemble an (m + &)-dimensional QAPC (C(/), ψ(/)) over A.

This assembly procedure may be elaborated still further and it is this
elaboration which is the core of the following §3.2.

3.2. The assembly map. Recall the situation posited in 1.21: we have
an orientable PD-space Z, a regular neighbourhood W of X in RΛ+* (so
that dW c W represents the Spivak normal fibration ξk of X) and a
triangulation of W. We also have a map g: W U cdW -> T(ξk), homo-
topically the natural homotopy equivalence of these spaces, which is in
fact RT on each simplex of W U cdW. We wish to obtain from these data
an explicit «-dimensinoal QAPC over Z[7rx(X)] Φ(g). This procedure is
the assembly map. (The motivation for this nomenclature will shortly
become evident.)

To construct Φ(g) we begin by recalling some facts about normal
spaces, their associated chain complexes, and the (simple) Poincare duality
obstruction of such spaces. Let /: Mn+k -> T(ξk) be an NT map where
Mn+k is an orientable manifold and ζk is an orientable Sk"^fibration
over a space B. In general f~ιJ?(ξk) = X is not even a simple (= integral)
coefficient Poincare duality space. But this deficiency may be precisely
measured.

Let [X] e Hn(X; Z) be the image of [M] e Hn+k(M; Z) under the
c o m p o s i t e Hn+k(M;Z) -> Hn+k(T(g*ξ);Z) ^ Hn(X;Z) ( g = / | : X-*
η(ξk)). The algebraic mapping cone with a dimension shift S~XC([X] Π -:
C(X)n~* -> C(X)) supports an (n — l)-dimensional quadratic structure
φ e Qn_x{S-ιC{[X] Π -)) ([16, Prop. 7.4.1]), such that

is an (n — l)-dimensional quadratic Poincare complex over Z. (Strictly
speaking, S~ιC([X] Π -) may fail to be (n - l)-dimensional, since [X] Π
-: Hn(X;Z) -> H0(X;Z) may fail to be onto. However, this can be
achieved either by normal space surgery on the 0-cells, or else by quadratic
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Poincare surgery.) We remark that Rf is well-defined up to equivalence

(i.e. chain homotopy equivalence preserving the quadratic structure) in the

world of quadratic Poincare complexes over Z.

Suppose, now, we are given a particular quadratic Poincare pair /

such that 3/ = Rf. Then / determines a sequence of quadratic Poincare

surgeries from Rf to 0 ([14, Prop. 4.1]), which in turn determine an

algebraic normal bordism from C(X) with its symmetric structure to an

^-dimensional symmetric Poincare complex Γ* over Z, together with a

chain map Γ* -> C*(B). We leave aside at this point the interesting (but

not directly relevant) question of whether / and this algebraic normal

bordism may be realized geometrically, i.e. whether there is a homotopy F

of / to / 0, which is NT, such that Rfo = 0, RF = J and Xo = fo~
ι(vUk))

is a simple coefficient Poincare duality space such that Γ* = C*(X0) up to

chain homotopy, although the theory of surgery on normal and Poincare

spaces announced by Quinn [11] implies that such is the case.

Now let us generalize this situation to poly-ads. Suppose / is now a

map Δ"+/c -> T(ξk) which is RT, as is the restriction of / to any face of

Δn+k, For each face a < Δn+k we have the normal space X of dimension

dimα — k, and we thus obtain an (n + &)-ad Rf = (i?σ}σ<Δ«+* of

quadratic Poincare complexes over Z, where dimi? σ = dim Xσ — 1. Sup-

pose that Rf is the boundary of an (n + λ;)-ad J = {Jσ} of quadratic

Poincare pairs over Z with dJσ = Rσ U U τ < d / T . Then / determines a

sequence of (n 4- A:)-ad quadratic Poincare surgeries from Rf to 0, which

in turn determine an (n + /c)-ad algebraic normal bordism from {C*( Xσ)}

to an (« + A:)-ad of symmetric Poincare complexes over Z, (Γs|e(Λr

σ)},

together with compatible chain maps T*(Xσ) -> C*(B).

Returning to the case where /: Mn+k -> Γ(£), assume also that Mn+k

is a combinatorially triangulated manifold and that / is simplex-wise RT.

We now have, for each y-simplex σ of Mn+k the y'-ad of normal spaces

{f~ι(^(ζk)) Π τ } τ < σ and j-ad of quadratic Poincare complexes over

Z{ i? τ } τ < σ where Rτ = i? / ) τ . Additionally, we have the y'-ad of quadratic

Poincare pairs over Z {/τ}τ<σ with boundary ( i? τ } T 5 Ξ σ . Finally, we

obtain the y'-ad of symmetric Poincare complexes over Z, {Γτ} τ < σ.

3.2.0. Assembly Lemma.

(i) U σ i ? σ is an (n — \)-dimensional quadratic Poincare complex over

Z which is canonically chain homotopy equivalent to Rf.

(ii) ΌσJσ = / is an n-dimensional quadratic Poincare pair over Z with

boundary dJ = R *

(iii) U σ Γ σ is an n-dimensional symmetric Poincare complex over Z

canonically homotopy equivalent to that produced from Rf by the algebraic
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normal surgery with trace /, and there is a chain map UσΓσ ->

C(B). D

We indicate the main conceptual ideas of the proof, concentrating on

part (i), but with equal applicability to (ii) and (iii) with some addenda.

(The assembly of symmetric Poincare «-ads over PL manifolds was

previously described by Mishchenko and Solov'ev [8].) The key point may

be rephrased thus:

Suppose Vr is a compact, orientable triangulated PL manifold (without

boundary), and that there is an assignment a: σ ^ α(σ) which to any

y-simplex σ of V associates a (j + #)-dimensional j-zά a(σ) °f quadratic

Poincare complexes over Z, the assignment being consistent with the face

relations. This might also be thought of as a simplicial map V -> L^(Z), or

else as a ^-dimensional algebraic mock bundle over V of quadratic

Poincare π-ads over Z. The assembly Lemma 3.2.0 is the algebraic

analogue of the result of Buoncristiano, Rourke and Sanderson [2, Lemma

II.1.2] that the total space of a ^-dimensional geometric mock bundle over

an r-dimensional PL manifold is a (q + r)-dimensional PL manifold. The

heart of our assembly lemma is that to each (V, a) we can glue all the

quadratic Poincare «-ads α(σ) together to define a closed (q + r)-

dimensional Q.A.P.C. Ta9 which is uniquely determined by to chain

homotopy equivalence.

(If we wish to consider manifolds V with boundary, the basic idea is

easily modified to produce a Q.A.P.C. Ta with boundary Γα|3κ.)

Our method of approach to the construction of Ta is this: we first

need:

3.2.1. LEMMA. Let A1 be a closed i-dimensional Q.A.P.C. over Z and let

KJ be a regular cell decomposition of a (closed) oriented j-dimensional PL

manifold. Then there is a well-defined (i 4- j)-dimensional Q.A.P.C. A X K

over Z whose underlying chain complex is A ® C(K), where C(K) denotes

the integral cellular chains on K.

Proof. This is a particular case of the products of [14, §8]. D

By a slight extension we can obtain:

3.2.2. LEMMA. Let A now denote a p-ad of Q.A.P.C.\s of dimension /,

and let Kj be as above. Then there is a well-defined p-ad A X K of

dimension (i + y ) . •
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Next, for conceptual reasons which are not, strictly speaking, formally
necessary, we view the manifold V as having associated to its triangulation
an additional decomposition, viz., a handlebody structure with one y-han-
dle H(oj) for each y-simplex σJ of V. We visualize H(σJ) as having for
core disc a shrunken copy σJ of σy, with σJ c intσ7. Moreover, it is
convenient to view the collection of handles {H(σJ)}j^rσJGV as a collec-
tion of subcomplexes of an even finer cell decomposition of V. In
particular, consider for each σJ the abstract simplicial complex

where Ik denotes the link of in F,' denotes the first barycentric subdivi-
sion, and c denotes the usual unreduced cone (unless j = r, when
lkσ = 0, in which case we understand D(oj) to consist of a single
point).

We claim that each HJ can be endowed with the product regular
structure σJ c D(σJ). The figure below illustrates the situation for a
triangulated 2-manifold by way of example:

FIGURE 3.1
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In this diagram, the cells enclosed by solid lines are the simplices σ;

cells enclosed by dotted lines are the handles H(σ).

We must also make use of the following lemma.

3.2.3. LEMMA. Let A, B be n-dimensional Q.A.P.C.'s over Z with

boundaries dA, dB, and let f: dA —> dB be an orientation-reversing chain

homotopy equivalence. Then there is a well-defined closed n-dimensional

Q.A.P.C AUfB over Z. If A, B are closed, with dA = dB = 0, then

A U rB = A Θ B is just the direct sum of A and B.

Moreover, Suppose Cι (i = 1,2) is an (n + l)-dimensional Q.A.P.C.

with boundary and that dCι takes the form At U f Bι as above. Suppose g

is an orientation reversing chain homotopy equivalence g: (A^dA^ ->

(A2,dA2). Then we may form an (n + l)-dimensional Q.A.P.C. with

boundary Cx U g C2 = C such that dC = Bx U g, 5 2 , where gr =
1

Proof. This is a particular case of the glueing operation of [14, §3]. D

We now proceed with the construction of Ta. Induction is involved

both on the dimension r of the manifold Vr and on the dimension of

handles. We may assume that QAPC Γj z ) has been defined over V{ι) =

U d i m σ <z H(σ)9 where Γα

ω has a boundary which may be constructed over

dV(ι\ Consider now an (/ 4- l)-handle H(σι + 1) with its stipulated cell

structure. We form the Q.A.P.C. with boundary

β(σ) = a(a)Xc(lko)\

a permissible construction in view of 3.2.1. Note that there is defined as

well an (/ + l)-ad of Q.A.P.C.'s with boundary, i.e, if we take σ as a

model of the standard simplex, we have for each face r < σ the Q.A.P.C.

j8(σ,τ) = α(τ) Xc( lkσ) ' c β(σ).

Clearly

3 β ( σ ) - α ( σ ) x ( l k σ ) ' c \J β(σ,τ).

As part of the inductive hypothesis we may assume that Uτ<σβ(σ, T) C

3Γj°, where the latter Q.A.P.C. is decomposed as U τ < σβ(σ, T) U Cσ, with

the components having common boundary U τ < σ α ( τ ) X (Ik σ)'.

Thus, by virtue of 3.2.3, we may form Γα

(/) U β(σ) along the identity

on U τ < σ i 8 ( σ , τ ) . In effect we have extended the algebraic mock bundle

over V(i) to one over V{i) U H(σi+ι).
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In fact, we may do this for all σi+ι simultaneously, and thereby
obtain Γα

(ί+1) over F ( I + 1 ) . [There still remain some technical points to
complete the inductive step, but these are routine and we omit them.]

Clearly, after the rth stage we achieve the construction of Γα

(r) = Ta

which is a closed Q.A.P.C., as desired.
This essentially completes the proof of the Assembly Lemma 3.2.0,

although the relation to the original statement must be clarified some-
what. That is, the Q.A.P.C. Ta just constructed appears with a natural
decomposition Uσ τ < σ α(τ) X c(lkσ') (modulo identifications) rather than
Uσα(σ). The latter would seem to fit more naturally with the statement of
3.2.0. Thus the two points of view must be reconciled. This may be
outlined as follows: for r < σ, set

K(σ,τ) = c( lkτ) 'Πσ.

(Here, we think of c(lk T)' as a subspace of st(τ) in the natural way; so, in
particular, K(σ, σ) consists of a single point.) Now set

γ(σ)= \Ja(r)xK(a,τ)

and γ(σ) = U τ < σ α ( τ ) X [K(σ,τ) Π σ]. We claim that (γ(σ),γ(σ)) is
canonically chain homotopy equivalent to (α(σ), 3α(σ)); in fact, for
j = dimσ, the y-ad (γ(σ), (γ(τ)} τ < σ ) is canonically chain homotopy
equivalent to («(σ), {«(τ)} τ < σ). Thus, allowing for consistent replace-
ment of components by chain homotopy equivalent ones, we have that
Uσα(σ) is chain equivalent to Uσγ(σ) = Ta.

Returning, finally, to the statement of the Assembly Lemma 3.2.0 per
se, we instate for the assignment σ >-> α(σ) on the manifold Vr the
specific assignment σ •-> Rσ on Mn+k as in the context of 3.2.0. We
thereby obtain part (i) of the lemma.

Routine relativization of the arguments above yield (ii) and (iii) as
well.

Returning now to the specific situation of Lemma 1.22 we have an
RT map g: W U cdW -> T(vk), where W is a regular neighborhood of the
PD-space Xn in Rn+k, and vk is the Spivak normal (k - l)-spherical
fibration for X We may assume that %~\J({vk)) c W - dW a WU
cdW. Thus on the triangulated W we have the RT map g0 = g\ w. For
each simplex σ we have the quadratic Poincare pair over Z Rσ with
dRσ = UτQdσRτ, and we also have quadratic Poincare pairs Jσ with
dJσ = Rσ U Uτc8σ Λ % the assembly lemma above we have a symmetric
Poincare complex over ZΓ* together with a chain map /: Γ* -> C*(X).
The quadratic construction of [15, §1] determines an ̂ -dimensional QAPC
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over Z (C(/ ! ), ψ) with C(/ !) the algebraic mapping cone of the Umkehr
chain map / ! : C(X) ^ C(X)n~* £ ΓΛ"* - Γ*. However, this alone will
not suffice to yield a "non-simply-connected" surgery obstruction element
in Ln(τ71(^Γ)) as required for 1.22. We therefore pass to the universal
covering space p: W -> W with the induced triangulation. Clearly, for
each simplex σ of W we have Rσ = Rpσ, Jσ = Jpσ with 3i?σ = U τ C ά i ? τ ,
3/σ = Rσ U U τcσΛ The fundamental group πλ(X) = TΓ^W) acts on
{Ro}> iJa] b y t h e obvious permutations α: Rσ->Raσ, a: Jσ-* Jaσ

(a e ^(JQ). Thus we have, by an easy modification of the assembly
lemma, an (n — l)-dimensional QAPC over Zfπ^X)] measuring the failure

S~l(y(pk))to satisfy Poincare duality over Z[7rx( X)]. Moreover U
σ Q w

is now a null-bordism of U σ c ^ ^ σ in the category of QAPCs over
Z[πλ(X)] and we thus obtain f = U σ c ^ Γ σ , an π-dimensional symmetric
Poincare complex over Z[7Γ1( X)] with a chain map /: Γ* -> C(X)> such
that there is defined a (based) ^-dimensional QAPC over Z ^ X ) ]
( C ( / ! ) , ψ) = Φ g . The bordism class [Φ g] is the surgery obstruction in

Clearly, if g: W-+ T{vk) is in fact PT then Rσ = 0, Jσ = 0 (σ e
and / = g | : Γ+ = C(7) -> C ( l ) with 7 = g 'H^i^*)) . Moreover Φg is
just the quadratic kernel of the normal map of P.D. spaces Y -> X. So, in
particular, if Y -» X is a simple homotopy equivalence then the quadratic
complex Φg is 0 (up to equivalence) and [Φg] = 0 e Ln(^(X)).

Thus we have proved that part of 1.22 which asserts that the RT map
g: (WU cdW,cdW) -> {T(vk), *) gives rise to a specific ^-dimensional
QAPC Φg. That a specific simplex-wise RT homotopy G of two such
m a P s £o> Sv WU cdW -> T{vk) gives rise to a Z[7rx(X)]-QAPC bordism
ΦG from Φg to Φg is a straightforward relativization of the construction
ofΦr

3.3. Appendix—The intrinsic transυersality obstruction map and struc-

ture theory. In this section, without giving full details, we shall rein-
terpret Theorem 1.27, expanding it somewhat.

Consider an (orientable) PD-space Xn, and a triangulated regular
neighborhood Wn+ι c Rn+k. By elementary general position considera-
tions we may assume that (Xσ9 Xό) = (X Γ\ σ, X Π σ) is an (n - j)-
dimensional ^(X)-normal pair (in fact, a normal pair for the trivial
spherical fibration) whenever σ is an (n + k — y)-dimensional simplex of
Wn+k. (Of course, Xσ Φ 0 if σ c dW.) Thus, for each simplex σ of
dimension i + k we obtain an (/ — l)-dimensional QAPC with boundary
Φ σ (over the ring Z), in fact an (/ 4- /c)-ad {Φ τ } τ c σ > measuring the failure
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of (Xσ, Xό) to be a simple-coefficient Poincare duality pair. In particular,
Φό = UTcd^T i s a closed (ι — 2)-dimensional QAPC measuring the failure
of Xό to be a simple Poincare duality space. If Φά = 0 then Φσ is a closed
QAPC. If X admits a codimension k intrinsic transversality structure, it
follows that Xσ can be chosen so that Φσ = 0.

Note that UσΦσ is a closed (n — l)-dimensional QAPC over Z which
measures the failure of Xn to satisfy simple coefficient Poincare duality,
hence, up to chain homotopy UσΦσ = 0. Moreover, by the assembly
procedure of 3.2, we may enrich the structure of UσΦσ to make it the
image of a Z[πλ(X)] QAPC, i.e. we may take U σ c ^ Φ σ , where Φo = Φ/7σ,
with p: W'-> W the universal cover. Of course U σ C ^ Φ 0 measures the
failure of Xn to satisfy Z[7Γ1( Jf)]-Poincare duality (i.e. to be a PD-space)
and hence this also vanishes up to chain homotopy equivalence over

We now view the assignment σ •-» Φσ as a simplicial map

^ L . ^ ^ l } ) . Where the normal pairs (Xσ9 Xό) are PD pairs (i.e.

X has an intrinsic transversality structure) the map is the trivial one to the

standard base point (if we think of the "base point" as the contractible

subcomplex ofh__k_l({l}) having one simplex in each dimension, corre-

sponding to the QAPC 0 of the appropriate formal dimension).
More generally, we see the extent to which the map N is an invariant

of the PD-space Xn

9 noting that N is well-defined up to homotopy, even
allowing for changes in the triangulation of W. In fact, the homotopy
class of N is precisely the obstruction to the reducibility of v{X) to a
topological bundle, i.e. N is homotopically trivial if and only if v{X)
admits a topological structure and, moreover, the topological reductions
of v{X) are in 1-1 correspondence with the homotopy classes of null-
homotopies of N.

Furthermore, we may read off, so to speak, the surgery obstruction
arising from a particular topological bundle reduction of v(X) as follows.
If we have N (as a specific simplicial map) and a null-homotopy L:
W/dWX I -> L.fc.Λfl}) defined up to homotopy τdW/dWxί, then
we may as well assume that L is simplicial with respect to some triangula-
tion of Wx I extending the given one on W X {0}. Thus for each
simplex σ j of W X I we have a QAPC over Z Φσ of dimension j - k - 1,
with Φσ = 0 i f σ c dW X I U W X {1}. Passing to the universal covering
p: W X I -> W X I we have Φσ = Φ^ and U σ c ^ Φ σ admits a πλ(^-ac-
tion and thus we may assemble a QAPC s(L) of dimension n over
Z K ( * ) ] . Note that ds(L) = 0 since ds(L) = U σ ς ^ x { o } Φ σ U UσQίyx{1]

- Φσ = 0. The first summand being the (vanishing) global obstruction to
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the Zfπ^ A')]-Poincare duality of X, and the second being trivially 0. Thus
s(L) is a closed QAPC over Zlπ^X)] and it is easily seen that the
bordism class [s(L)\ θ LJ^π^X)) is independent of the particular choice
of L within its homotopy class rolW/dW X /. In fact [s(L)] is precisely
the surgery obstruction associated to the topological bundle reduction of
v(X) corresponding to L.

We may further sharpen this observation by defining the following
set, having fixed N. Consider pairs consisting of specific simplicial null-
homotopies L of JV, together with specific (n 4- l)-dimensional quadratic
Poincare pairs over Zlπ^X)] S such that dS = s(L). Call two pairs
(L o, So), (Lv S2) equivalent whenever there is a homotopy H from Lo to
Lv in which case the assembly procedure applied to H gives an (n + 1)~
dimensional quadratic Poincare pair over Z[ττ1(X)] TH with boundary
dTH = s(LQ) U — s(Lx) (i.e. TH is a bordism from s(L$) to sζL-J). Thus
we obtain a closed QAPC by adjoining Sυ and S1 to TH, i.e. we get
UH = -So U _5(£0) Γ// U 5 ( L i ) Sv We now require, as part of the definition
of equivalence between (Lo, 50) and (Lv Sx), that Jϊ may be chosen so
that UH is null bordant as an (n 4- l)-dimensional QAPC over Z[πx{X)}
(i.e. [UH] = 0 E Lrt+1(τr1(Z))). This completes the definition of the equiv-
alence relation.

3.3.1. THEOREM. The structure set yTOP(X) of X is in 1-1 correspon-
dence with the set of equivalence classes (L, S). D

As a corollary we see that ^τOp(-Ό> if non-empty, is endowed with
an abelian group structure with respect to which the classical structure
sequence

[X.G/TOV] -> Ln{

becomes an exact sequence of abelian groups (cf. [10], [13]). First of all,
pick a base topological manifold structure on X, and so regard ^ T O p( X)
as the set of "difference elements". With reference to this specific topo-
logical structure on X we obtain an intrinsic transversality structure (of
codimension k) and hence we see that the map N: W/dW -> L_fc_1({l})
may be taken to be the trivial one. Thus the set ^ τ o p ( ^ ) is interpreted to
mean the set of equivalence classes of pairs (L,S) where L is a self-
homotopy of the trivial map N, viz. L: (W X /, W X / U dW X /) ->
L_*_i({l}),*) and S is a QAPC over Z^X)] with dS - s(L). We
define a group operation on this set, i.e. [(Lo, So)] 4- [(Ll9 Sx)] is defined
by the pair (L, S) where L is the concatenation of the homotopies Lθ9 L1
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(so that s(L) = s(L0) U siLJ) and S = So U Sv We are justified in
using additive notation because this group operation is commutative
(essentially because W/dW is a suspension). The existence of inverses and
the verification of the associative law are trivialities best left to the reader.

It remains to describe the maps

Ln+1Mx))-^yTOP(x), ^ T O P (x) - [X,G/ΎO?],

whereupon it will be observed that these are abelian group homomor-
phisms.

First of all, if a e Lπ+I(w1(-Y)) is represented by the closed QAPC S
over Z[πλ(X)] then the map Ln+1(^(X)) -> ̂ τo?(X) sends a to the pair
(*, S), where * is the trivial self-homotopy of N (thus s(*) = 0) and S is a
regarded as a null-bordism of s(*) = 0. Clearly, this map is independent
of the choice of representatives, and is a homomorphism.

The map yτoF(X) -» [X,G/TOP] has already been referred to at
least in passing, previously. The point is that maps Σ(W/dW) =
T{vk(X) Θ ε) -> L_Λ({1}) are in 1-1 correspondence with the homotopy
classes of maps X -» G/TOP in a way that makes the correspondence an
isomorphism with respect to the usual group structure on [ X, G/TOP]. In
other words we may think of [X, G/TOP] as the group of homotopy
equivalence classes of self-homotopies L of the trivial map N: W/dW ->

)' a n d s o t h e m a P ^ T O P ( ^ ) -* [XG/TOP] may be described

Exactness is easily seen. Clearly the composite Ln_irl{
tnι(X)) ->

^ ) ^ [χ> G/TOP] is trivial. Moreover, if [(L, S)] goes to 0, i.e. L is
homotopic to *, then we may choose a homotopy H of L to *, apply the
assembly procedure to obtain TH with dTH = -s(L), and find that
(L, 5) is equivalent to (*, TH U - 5), and thus [(L, S)] is the image of
[THU - S] G L ^

3.4. 7%e combinatorial intrinsic transυersality obstruction. In conclu-

sion, we relate the results above to the total surgery obstruction of Ranicki
[13], and further indicate a combinatorial construction of the same for
triangulated Poincare duality spaces.

Recall the homotopy functor <S?*(K) defined for any finite CW
complex K. S?* is a non-excisive homology theory, meaning that it
satisfies all the axioms for a homology theory, save dimension and
excision. Briefly, this theory is described as follows: The spaces L_.({1})
form a spectrum whose homology theory we denote by [L^l})]*. The
notion of assembly map extends so as to define a homomorphism
[L({l})],(iO -> L^K)). One way to see this is to replace
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by the S-dually isomorphic cohomology group [L({l})]*(fF,3W), where
W is a regular neighborhood of K in Ri+k, k large. Thus any element of
[IXfl})]^ JO may be represented by a map /: W/dW -> L_*({1}) which
may be taken to be simplicial. The assembly Lemma 3.2.0 now yields an
/-dimensional Q.A.P.C. Q(f) over Z[^(W)] = Z ^ J O ] whose bordism
class is thus an element of L^π^K)). By definition, £fj(K) is the
"cofiber" of this homomorphism, i.e. it fits into an exact sequence

More specifically, «5̂  (JO may be defined to be the group of equivalence
classes of pairs (/, U) where / is a simplicial map W/dW -> L_/+1({1})
and U is an /-dimensional Q.A.P.C. over Z f ^ J O ] with boundary Q(f).
The pairs (/1? t^), (f2,U2) are equivalent if there exists a homotopy F:
Λ ~ Λ SUQh that Uλ U Q(F) U — U2 bounds an (i + l)-dimensional

Consider the special case of a PD-space Xn with regular neighbor-
hood Wn+k in Rn+k. We have seen above that there is an assignment
σ -> φσ of Q.A.P.C.'s φσ to the simplices σ of W (once the inclusion
X c W is in general position) defining a simplicial map /: W/dW ->
L_^_1({1}). The union Uσφσ = β ( / ) is the obstruction to Xn being a
PD-space, 0 by hypothesis, and there is a canonical bordism U(f) of
β ( / ) to 0 (namely, the 0 bordism). The element s(X) = [(/,l/(/))] e

is independent of /.

3.4.0. THEOREM. 77*e element s{X) 6 ί ζ ( I ) ώ ίΛe ίo/α/ surgery ob-
struction of Ranicki [13], with s(X) = 0 // (α«J /or « > 5 ow/y //) Jf
admits a topological manifold structure.

In passing we note that the image of s(X) in [Lίll})]^,^X) is the
obstruction to putting a topological block-bundle structure on the Spivak
normal fibration vx: X -> BG(k), which was first obtained by Levitt [6]
(as an element of the S-dually isomorphic reduced cohomology group
[L({1})]Λ+1(Γ(^))).

We note the further fact that the characterization of the structure set
^τop(X) (when X admits at least one topological manifold structure)
given in 3.3.1 above may be similarly interpreted to identify

A further refinement is to be seen in the following "combinatorial
formula" for the total surgery obstruction of a triangulated PD-space Xn.
We assume provisionally that Xn is orientable and that the triangulation
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of X has the following property: given a simplex σ of the triangulation,
stσ is an ^-dimensional complex with H^stσ^ό *lkσ) = Z and the
collapsing map X -> st σ/σ * Ik σ is of degree 1.

We next remark that the homology theory [L({l})]z(^) has the
following characterization when the finite complex K has a specific
simplicial triangulation: An L({l})-cycle ψ of dimension / is an assign-
ment to each simplex σ of K of an /-dimensional Q.A.P.C. ψσ with
boundary 3ψσ = U τ > σ ψ τ . Bordism of cycles is defined in an obvious way,
based on the notion of bordism among Q.A.P.C.'s. It is, moreover, true
that given such a cycle ψ, β(Ψ) = U σ C^ψ σ is a closed /-dimensional
Q.A.P.C; in fact, by an extension of the Assembly Lemma, β(ψ) has, in
a natural way, the structure of a Q.A.P.C. over Z [π^K)].

We may thus characterize ^(K) as bordism classes of pairs (ψ,ί/)
where ψ is an (/ - l)-dimensional L({l})-cycle on K and U is an
/-dimensional Q.A.P.C. over Z [vλ(K)] with dU = β(ψ).

Given a triangulated P.D. space Xn

9 there is a natural (n - 1)-
dimensional L({l})-cycle ψ( X) as follows: Given σk

9 ψσ is the (n — k — 1)-
dimensional Q.A.P.C.-with-boundary measuring the failure of the pair
(clkσ,lkσ) to be a Poincare pair, which is, to all intents and purposes,
the failure of lkσ to be a homology (n — k — l)-sphere. We claim that
ψ(-Y) assembles to an (n - l)-dimensional Q.A.P.C. β(ψ(X)) = Q(X)
over Z(πλ(X)) which is chain-homotopy equivalent to 0 inasmuch Q(X)
measures the global failure of X to be Poincare, and is thus 0 by
hypothesis. Let T denote the trivial bordism between Q(X) and 0.

3.4.1. COROLLARY. The element [Q(X), T] e £fn(X) is the total surgery
obstruction s(X).

The proof may be sketched as follows: Note first that X may be
decomposed into "pseudo-cells" dual to the simplices of X. In this
decomposition we have, corresponding to each simplex σ, the subcomplex
eσ of X' canonically isomorphic to c(lkσ)'. (By way of example, if X is a
combinatorial manifold, e is the usual dual cell.)

Consider a regular neighborhood Wn+k (k large) of X in Rn+k. We
claim that Wn+k may be stratified so that, to each simplex σ7 of X there
corresponds a submanifold Wσ c W of dimension n + k — j so that
under the embedding X c W we have X Π Wa = eσ. We then triangulate
W so that each such Wσ is a subcomplex. Let, for each simplex T of W, φτ

denote the Q.A.P.C. over Z measuring the failure of X Π T, X Π f to
satisfy simple-coefficient Poincare duality, thus yielding a family {φτ} of
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Q.A.P.C.'s as in the beginning of this section. Then Q = Uτφτ, U = 0-
bordism is, by 3.4.0, a representative of the total surgery obstruction
s(X) e S?n(X). But note that U τ C ^ σ φ τ is canonically chain-homotopy
equivalent as a Z-Q.A.P.C. to ψσ. Thus, as a Z[τr1(Z)]-Q.A.P.C, Q may
be identified with Q(X) and U9 of course, with T. Hence [β(Z),Γ] =
s(X) as required.

By way of concluding remarks we note that the condition assumed on
the triangulation of X is not very restrictive. It will follow from L. Jones'
theory of patch structures on P.D. spaces [3] that P.D. spaces of dimen-
sion > 5 always admit triangulations of the type specified. On the other
hand, it can be shown that the "local combinatorial formula" for s(X) is
still applicable even for triangulations of a P.D. space not meeting this
condition. This extension, however, requires a more permissive definition
of the notion of "normal space" than has been used in this paper. We also
note that given a homotopy equivalence /: M -> N of two closed PL
manifolds (or, more generally, integral homology manifolds), a similar
construction on the geometric mapping cylinder of / yields an analogous
"local combinatorial formula" for [/] e Sfn+1(X) = ^ T O P ( Z ) .

More complete proofs of the results of this section will appear in
subsequent work of the second author where the algebraic and categorical
foundations necessary to supply the missing details will be established.
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