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UNIQUENESS OF INFINITE DELOOPINGS FOR
K-THEORETIC SPACES

A. K. BOUSFIELD

A functor @, is constructed from spaces to spectra such that, for
each spectrum X, QPSZ”X is the p-adic completion of the K-theoretic
localization of X. This functor is used to obtain uniqueness results for
infinite deloopings of K-theoretic spaces and maps, thereby generalizing
results of Adams-Priddy and Madsen-Snaith-Tornehave. Non-unique
deloopings of K-theoretic maps are shown to involve phantom maps of
spectra, and such maps are analyzed.

Introduction. Let K be the spectrum of nonconnective complex
K-theory and recall that the associated homology theory K, determines a
localization functor (-); on the homotopy category of spaces and of
spectra by [9], [10], and [12]. In this paper we establish a natural
equivalence ®,Q*X = (Xy), for each prime p and spectrum X, where
Q2*X is the Oth space of the associated 2-spectrum of X, where (-)," is
the p-adic completion functor, and where @, is a new functor from spaces
to p-adically complete K,-local spectra. Thus ® Q°X = X when X is a
p-adically complete K,-local spectrum and Q% therefore embeds the
homotopy category of such spectra faithfully into the ordinary pointed
homotopy of spaces.

In [7], Adams and Priddy showed by specific calculations that BSO,"
and BSU," have unique infinite deloopings, i.e., that there are unique
homotopy types of connective spectra X and Y such that X = BSO,"
and QY = BSU,". Using ®, we show that this uniqueness phenomenon
occurs much more generally: for instance, if E is the (n — 1)-connected
section of a p-adically complete K,-local spectrum, then the space Q*E
has a unique infinite delooping when n > 3 or when n = 2 and m,E is
torsion. We obtain unique infinite deloopability results for p-adic comple-
tions of various infinite classical groups, their classifying spaces, their
homogeneous spaces, and their J-spaces. We likewise generalize the p-lo-
cal version of the Adams-Priddy theorem by proving unique infinite
deloopability for localizations of these spaces at arbitrary finite sets of
primes. We also generalize results of Madsen-Snaith-Tornehave [19] on
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the uniqueness of infinite deloopings of maps between various K-theoretic
infinite loop spaces and find, under general conditions, that an infinite
delooping of the zero map is a phantom map of spectra. We analyze such
phantom maps and extend results of Anderson [8] and Meier [22] on their
non-existence. Finally, although non-deloopable maps abound, we show
that maps between p-adically complete K-theoretic infinite loop spaces
have canonical approximations by infinite loop maps. Some of our main
results were announced in [13].

The basic idea for constructing the spectrum ®,Y for a space Y is
quite simple. For each j and sufficiently large n, the pointed mapping
complex from the Moore space M(Z/p’, n) to Yy is an infinite loop space
with periodicity derived from a K,-equivalence ZIM(Z/p’, n) -
M(Z/p’,n) of Adams. The spectrum ®,Y is given by the homotopy
inverse limit of an associated tower of {2-spectra indexed by j. However,
the details are somewhat complicated since one must cope with various
compatibility problems.

This paper is organized as follows. In §2 we state our main result,
Theorem 2.1, on the functor @, and derive our general unique deloopabil-
ity theorems. In §3 we apply the results of §2 to familiar K-theoretic
infinite loop spaces and explicitly extend results of Adams-Priddy, Mad-
sen-Snaith-Tornehave, and Anderson. In §4 and §5 we prepare for the
proof of Theorem 2.1 by studying K,-localized Moore spectra and con-
structing systems of cospectra associated with Moore spaces. Then in §6
we prove Theorem 2.1.

The following notation and terminology are used. Ho denotes the
pointed homotopy category of CW-complexes, and HS denotes the homo-
topy category of CW-spectra (see [3]). A space Y € Ho or spectrum
Y € HS is called E,-local for E € HS if each E,-equivalence f: A - B
in Ho or HS induces a bijection f*: [B,Y] = [A4, Y]. Each space X € Ho
or spectrum X € HS has an E,-localization u: X — X, which is an
E,-equivalence such that X is E,-local, and these E,-localizations are
functorial. The full subcategories of E,-local spaces and spectra are
denoted by Hoy C Ho and HS; C HS.

The p-adic completion X, of a space or spectrum X is defined to be
the MZ/p4-localization X, ,, using the Moore spectrum MZ/p (see [9],
[10]). This equals the H,(-; Z/p)-localization when X is a space or
connective spectrum, and equals the p-completion of [17] when X is a
nilpotent space. Of course, if X is a simple space or spectrum with 7, X of
finite type, then m, X, = Z ® m, X where Z denotes the p-adic in-
tegers. Properties of p-adic completions and cocompletions of spaces and
spectra will be discussed in [15].
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2. The main results. For p prime, let Hop’\, Hog, and Hoy ,, denote
the full subcategories of Ho given respectively by the p-adically complete,
the K,-local, and the K/p,-local spaces where K/p = K A MZ/p. Also
let HS,, HSy, and HSy,, denote the full subcategories of HS given
respectively by the p-adically complete, the K,-local, and the K/p,-local
spectra (see [10], [11], [24]). The K,-local spectra include all KO-module
spectra together with all spectra built from these by taking homotopy
inverse limits or homotopy direct limits. The K/p,-local spectra are
precisely the p-adically complete K,-local spectra, and thus HSy,, =
HSy N HS,". The following theorem will imply our main results and will
be proved in §6.

'THEOREM 2.1. For each prime p there exists a functor ®,: Hoy — HSy ,,

such that:
(1) There is a natural equivalence ®,Q°X = X for X € HSy.

(i) If f: V — W is a map in Hog inducing mod-p homotopy isomor-
phisms above some dimension, then ®,f: ® V = ® W.

(iii) The functor ®, preserves homotopy fibre squares. )

(iv) If M is a pointed finite CW-complex with p-torsion Hy(M; Z) and
with a K.-equivalence a: 2'M — M for some t > 0, then there is a natural
equivalence Q*(® W)™ = W™ for each W € Hoy.

2.2. The functor. ®,: Ho —> HSy,,. For p prime and X € Ho, let
®,X = @, X, where ®, X is as above. One may assume that the K-lo-
calization functor acts as the identity on Hoy, and thus the resulting
functor ®,: Ho — HSy,, extends the above functor ®,. Now 2.1(i)
generalizes to give

THEOREM 2.3. For p prime and X € HS there are natural equivalences
Q%X = (Xg), = Xk /)

Proof. By [11, §2] the map A: (2%X)x = Q*° X, induces 7,(2°X) x =
7,00° Xy for i > 3. Thus there are natural equivalences

?,0°X = @,(2°X) g = ®,9°X; = (Xy), = Xg,,

by 2.1 and [10, §2].
Theorem 2.3 immediately implies the following faithfulness and
uniqueness result for @*: HS — Ho.

COROLLARY 2.4. If f and g are maps of spectra with Q”f = Q*g in Ho,
then fx ,, = 8x ,, for each prime p. If X and Y are spectra with QX = QY
in Ho, then Xy ,, = Y, for each prime p.
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Let HSg,,[n, o) denote the full subcategory of HS given by the
(n — 1)-connected sections of p-adically complete K,-local spectra for an
integer n. Then ( )g,,: HSk,,[n,00) > HSy,, is a categorical equiva-
lence since Eilenberg-MacLane spectra are K/p,-acyclic, and Theorem
2.3 implies

COROLLARY 2.5. Up to natural equivalence, the functor Q%:
HSy ,,[n,00) = Ho has a left inverse. Consequently, it is faithful and
carries distinct homotopy types of spectra to distinct homotopy types of
spaces.

We now give our main faithfulness theorem for 2%. For a spectrum
XeHS, let u: X - X, denote the rationalization map with Xo=XA
MQ.

THEOREM 2.6. For an integer n, let X, Y € HS be (n — 1)-connected
spectra such that Y = L[n, ) for some K,-local spectrum L € HSy.
Suppose that f: X — Y is a map such that Q°f = 0 in Ho. Then f," = 0 in
HS for each prime p, and consequently f factors as a composition

X5 X, 5 Y for some map v in HS.

REMARK 2.7. This theorem and its proof remain valid when the
hypothesis Y = L[n, ©) for some K,-local spectrum L € HSy is replaced
by Y, is in HSg ,,[n, o) for each prime p.

Proof of 2.6. For each prime p, fK/p: Xx/p = Yxp is trivial by 2.4,
and thus the composition X - Y 5 Y,* - Yy ,, is trivial where a and B
are the canonical maps. Since B is equivalent to the canonical map
L[n,0), — L., it follows that B,: mY," — 7Yy, is an isomorphism
for i > n and is a monomorphism for i = n and has 7,Y," = 0 for i < n.
Thus the composition af: X — Y," is already trivial, and therefore
" =0: X' - Y,". The rest of the theorem follows from 2.8 below.

LEMMA 2.8. For a map g: V — W in HS, the following conditions are
equivalent:
(i) For each prime p, g," = 0 in HS. . ,
(i) The map g factors as a composition V = V, —> W for some map v
in HS.
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Proof. Clearly (ii) implies (i). Using the presentation of [, W," as the
function spectrum F(Z-'MQ/Z, W), we obtain a cofibre sequence

F(MQ,W)—- W [[w,
p

with the canonical maps in HS. Now (i) implies that g factors through the
rational spectrum F(MQ, W) and this implies (ii).

2.9. Phantom maps of spectra. For V, W € HS, there is a natural
short exact sequence

0 - [1Ext(m,_V ® Q,mW) = [V,, W]

- [[Hom(#,V ® Q,7n,W) - 0

which is easily derived using the splitability of V,, into a wedge of rational
Moore spectra. Thus it is usually straightforward to construct the possible
maps g: ¥V — W satisfying conditions (i) and (ii). Moreover, these maps
are usually the same as the phantom maps from V to W, i.e., the maps 6:
V' — W such that 8y = 0 for each map y from a finite CW-spectrum to V'
(see [22]). In more detail, suppose that W has finitely generated homotopy
groups, or more generally suppose that the groups Hom(Q, =) vanish
for all i and that the groups m,W," are finitely generated over the p-adic
integers for each prime p. Then conditions (i) and (ii) are equivalent to the
condition that g is a phantom map. This follows easily since each
phantom map into W," is zero, and since each element of

[T1Ext(7,_V®Q,7.W)

determines a phantom map from V, to W. Finally, we remark that
although the possible phantom maps between spectra are usually easy to
construct, they are also usually difficult to detect.

To show how Theorem 2.6 may be applied, we give

ExaMPLE 2.10. Let su € HS denote the section of =7'K, with Q®su
= SU € Ho.If X € HS is any 1-connected spectrum with Q ® m,, X = 0
for all i, then [ X, su] = 0 and thus Q%: [ X, su] — [Q*X, SU] is mono by
2.6. Next, following Anderson [8], we suppose that X is the Eilenberg-Mac
Lane spectrum H(Z,2i) for some i > 1. Since H(Z,2i), = H(Q,2i),
there are isomorphisms

[H(Z,2i),su] = [H(Q,2i),su] = Ext(Q, Z)
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and we let g: H(Z,2i) > su correspond to a nonzero element in
Ext(Q, Z). Then g is an essential phantom map satisfying the conditions
of 2.8, and Theorem 2.6 does not say whether g is essential or trivial.
However, on examination we find that g is essential for i > 1 and is
trivial for i = 1, because K(Z,2i)x = K(Q,2i) in Ho for i > 1 and
because [CP*, SU] =

We next give our main uniqueness theorem for infinite deloopings of
spaces.

THEOREM 2.11. For an integer n, let X, Y € HS be (n — 1)-connected
spectra such that Y = L[n, o0) for some K,-local spectrum L € HSy with
Hom(Q/Z,m, ,L) = 0. Suppose that Q°X = Q®Y in Ho. If n > 3 then
Xp Y for each prime p. If n < 2 then for each prime p there exists a ‘map
h: X 4 Y inducing isomorphisms h,: t 7r2X =t 7r2Y and hy: wX

for i > 3 where t, is the p-torsion subgroup functor

REMARK 2.12. This theorem and its proof remain valid when the
hypothesis Y = L[n, o0) for some K,-local spectrum L € HSy with
Hom(Q/Z,n,_,L) =0 is replaced by 17;, is in HSg,,[n,o0) for each
prime p.

Our proof will depend on the following lemma. Recall that for
E, X € HS the space Q®( X;) is E,-local and thus there is a natural map
A: (2°X) g = Q%°(Xg) in Ho. In the case E = K, the results of [11]
show that there are isomorphisms A,: 7,(2°X)g = tm,(2°Xy) and
Aw: m(Q°X) = mQ°(Xy) for i > 3 where ¢ is the torsion subgroup
functor. This easily implies

LeMMA 2.13. For each spectrum X € HS and prime p, there are
isomorphisms Ay: t,m,(Q°X) g, = t,m,Q%( Xy ,,) and Ay: m(Q°X) g,
= mQ°(Xg,,) fori= 3.

Proof of 2.11. For p prime, there is an equivalence Xy ,, > Y; ,, by
2.4, and we form the associated diagram

h
A . A
LA

\: LB
Xepp ™ YK/p
using the canonical maps B. Since B: Y," — Y, is equivalent to the

canonical map L[n, ), = L} and smce Hom(Q/Z, m,_,L) = 0, there
are isomorphisms f,: 7rY wYK/p fori>n and 7,Y," =0 fori <n.
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Thus, since X" is (n — 1)-connected, there is a map h: X" - Y*
making the above diagram commute. To prove the case n > 3 of 2.11, it
will now suffice to show that B,: 7, X" = 7, Xy, for i > n, and to prove
the case n < 2 it will suffice to show that B,: m X = m Xy, for i >3
and By: t,m X, = t,m, Xy ,,. Consider the canonical diagrams

7(@=X), - 79(X})  #(e7Y), - "Tiﬂw(};/\)

\) N \) )
ﬂi(QwX) K/p - Wiﬂoo(XK/p) WI(QOOY)K/I, - ﬂiﬂw(YK/p)

and note that the left maps of the diagrams are equivalent since Q*X =
Q*Y. Moreover, the upper maps are isomorphisms for i > 2 by [15], and
the lower maps are isomorphisms for i > 2 and induce isomorphisms of
p-torsion subgroups for i = 2 by 2.13. Now since B4: 7,Y," - 7Yy, is
an isomorphism for i > n, it easily follows that B,: =, X" — m, Xy, has
the required properties.

The following theorem generalizes Adams’ [1] result on the existence
of K-equivalences 2'MZ/p/ - MZ/p* and shows the generality of
2.1(3iv).

THEOREM 2.14. If Y € HS is a finite CW-spectrum with p-torsion
H(Y; Z), then there exists a K y-equivalence Z'Y — Y with t > Q.

Proof. By induction it suffices to construct a K,-equivalence 2'Y — Y
for t > 0 when 2"MZ/p —» X — Y is a cofibering of finite CW-spectra
with a K,-equivalence B: 2°X — X for s > 0. Let 6 be the automorphism
of the group [(Z"MZ/p) g, Xx] determined by the commutative diagram

r

=7
S(S'MZ/p) = 3Xg

L= L=

9(f)
(E"MZ/P)K - Xg

using an iteration of B and of an Adams map for some r > 0. Since Xy
has finite mod-p homotopy groups by [10], §¢ = 1 for some g > 0. Thus
there is an equivalence 27Y, = Yy, and there is a K,-equivalence 'Y —
Y for some ¢t > 0 since [Y, Y], = [Yk, Y], is onto for sufficiently large i
by [13, Proposition 1.4].

Let M be any pointed finite CW-complex with p-torsion H.(M; Z)
and with a K,-equivalence a: 3'M — M for some ¢ > 0. For a K,-local
space W € Hoy, the equivalence a¥*: WM = Q'W™M gives an Q-spectrum
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B2(WM) e HSy,, with Q*BX(WM) = WM, and 2.1(iv) gives WM =
Q=(o,W) M. Applying @, to these equivalences, we obtain

THEOREM 2.15. There are natural equivalences of spectra BX(W™) =
@, (WM) = (®,W)M for W € Hoy.

Thus, up to equivalence, the spectrum BX(W™) does not depend on
the choice of a. We conclude by introducing

2.16. Q*-approximations of maps. For an integer n and spectra
X € HS and Y € HSg ,,, each map f: @*X[n, 0c0) > €*Y[n, o) in Ho
has a Q®-approximation Af: Q%X[n, o0) = @*Y[n, 00) obtained by
applying £* to the composite of u[n, ©): X[n, ) = Xg,,[n, ) with
(®,f)[n, 0): Xg,,[n,0) = Y[n,o0). If f is already an infinite loop
map, then Af = f. If f’: Q°X[n, c0) = Q°Y[n, o0) and g: @°Y[n, 00) =
2*°Z[n, 00) are maps in Ho for Z € HSy ,,, then A(ff") = (Af)(Af’) and
A(gof) = (Ag)o(Af). If h: Q®W[n, 0) = Q*X[n,00) is an infinite
loop map with W € HS, then A(feoh)= (Af)eh. Two maps 0, ¢:
C — D in Ho are called p-adically related if for each j > 1 there exists n;
such that

0# = @y CM(Z/p’,n) 5 pM(Z/p/,n)

for n >n,.

THEOREM 2.17. If f: Q°X|[n, 00) = Q°Y[n, 00) is a map in Ho with
X € HS and Y € HSg,,, then Af is an infinite loop map p-adically related
to f. Moreover, Af is the only such map when Y has finite mod-p homotopy
groups.

Proof. For M as in 2.1(iv), ((Af) )™ = (fx)" since ®,(Af) = ®,f,
and thus (Af) is p-adically related to f;. Hence Af is p-adically related
to f since u,: QY [n, o) = 7,(2*Y[n, ) for i > n by [11]. Now let
a, B: X[n, ) = Y[n, o) have @®a p-adically related to 2°B. Then for
each j > 1, a*, B¥*: X[n,0)™ - Y™ have Q%a* = Q8% when M =
M(Z/p’, n) for sufficiently large n. Thus a® = B* by 2.4 since Y™ €
HSg,,. Since Y is p-adically complete with finite mod-p homotopy
groups,

[X[n,),Y] = im[X[n, ), MZ/p/ A Y].
J

Hence a = B: X[n, 00) = Y, and the theorem follows.



UNIQUENESS OF INFINITE DELOOPINGS 9

3. Examples. Applying the main results of §2, we now derive examples
showing uniqueness of infinite deloopings, faithfulness of (*, and non-
existence of phantom maps. These examples include results of Adams-
Priddy [7], Madsen-Snaith-Tornehave [19], and Anderson [8] as special
cases.

As in [18], for an integer g with |g| > 1, let JU(q), JO(q), JSO(q),
J(g), and J(gq) be the spaces given respectively by the homotopy fibres of
the maps ¢?—1: BU - BU, y?—1: BO - BSO, ¢?—1: BSO —
BSO, Y% —1: BO — BSpin, and ¢?— 1: BSO — BSpin. Recall that
JU(q) = @%ju(q), JO(q) = @%jo(q), JSO(q) = Q@%jso(q), J(q) =
Q%j(q), and J(gq) = 2%j(q), where the indicated spectra are obtained as
homotopy fibres of the maps ¢7 — 1 on corresponding connective K-theo-
retic spectra localized away from g. For an (n — 1)-connected spectrum L
and endomorphism ¢: vr L-alL, 1et L, be the homotopy pull-back

spectrum of H(m,L,n) 5 H(m,L,n) bl L where A is the Postnikov map.

THEOREM 3.1. Let X € HS be a connected spectrum and q be an integer

with |q| > 1.
() If Q2X = JU(q), then X = ju(q),, where @: m ju(q) = m ju(q)

is multiplication by a divisor of q — 1.

(i) If Q*X =JO(q) with q odd, then X is equivalent to one of
the spectra jo(q), j(q) X H(Z/2,1), jso(q) X H(Z/2,1), and j(q) X
H(Z/2 ® Z/2,1).

(i) If Q*X = JSO(q) = J(q) with q odd, then X is equivalent to one
of the spectra jso(q), j(q), andj(q) X H(Z/2,1).

(iv) If Q°X = J(q), then X = j(q).

Proof. These follow from Theorem 2.11 which provides respective
maps X, = ju(q);}, X,) = jo(9);, X,) = jo(q);}, and X, = j(q);
inducing 7-isomorphisms for i > 2. Part (iii) also requires the equivalence
J1(q) = j,(q) from [18, p. 14].

Theorem 2.11 also implies the following generalization of Adams-
Priddy’s result on the uniqueness of infinite deloopings of bso," and
bsu, .

THEOREM 3.2. Let X € HS be a connected spectrum and let p be prime.

() If @*X = BU,", then X = (bu,), where ¢: mbu, — mbu, is

multiplication by 0 or p" for somer > 0. If @°X = BU[n, ), forn = 3,
then X = bu[n, o).
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(i) If QX =US, then X = (u)), where ¢: mu, — mu, is
multiplication by 0 or p” for some r > 0. If Q*X = U[n, ), forn =2,
then X = u[n, ).

(iii) If Q*X = BO,", then either X = bo;' or X = bsoy' X H(Z/2,1).
If @°X = BO[n, ©), withn > 2, then X = bo[n, )"

(iv) If QX = SO, then either X = so;" or X = spiny X H(Z/2,1).
If @°X = SO[n, ), withn > 2, then X = so[n, 0) .

(v) If 92X = (SO/U),', then X = ((so/u) '), where @: m,(s0/u),
— m,(so/u), is multiplication by 0 or p" for some r > 0. If Q*X =
(SO/U)[n, o0), withn > 3, then X = (so/u)[n, ©),".

(vi) If @*X = (U/Sp), , then X = ((u/sp),'), where @: m(u/sp),
— m(u/sp), is multiplication by O or p" for some r > 0. If QX =
(U/Sp)[n, ), withn > 2, X = (u/sp)[n, ),

(vii) If Q°X = BSp[n, o0), withn > 1, then X = bsp[n, ).

(viii) If Q%X = Sp[n, ), withn > 1, then X = sp[n, 0),".

(ix) If QX = (Sp/U), with p odd, then X = ((sp/u),'), where @:
m(sp/u), — m(sp/u), is O or p" for some r=0. If Q*X =
(Sp/U)[n, ), , withn >3 orn=2=p, then X = (sp/u)[n, ),

(x) If @°X = (U/0),, then X = ((u/0),'), where ¢: m(u/0), —
m(u/0), is multiplication by 0 or p" for some r>0. If Q*X =
(U/O)[n, 00),) withn > 2, then X = (u/o)[n, ).

Using this theorem we shall prove the following P-local generalization
of the Adams-Priddy uniqueness theorem where P is an arbitrary finite
set of primes. The original result [7] was for a single prime and applied to
BU, BSU, BO, and BSO. The P-localization of a nilpotent space Y € Ho
or spectrum Y € HS is denoted by Y.

THEOREM 3.3. Let X € HS be a connected spectrum and let P be a
finite set of primes.

() If Q°X = BU, and if the generator x € H,(Q*X; Z/p) has
xP # 0 for each p € P, then X = bupy. If Q*°X = BU[n, 00)p, with
n = 3, then X = bu[n, 00) p,.

(i) If @*X = U p, and if the generator x € H,(2*X; Z/p) has the
Dyer-Lashof Q*x # 0 for each odd p € P and Q*x + 0 when p =2 € P,
then X = u p). If @°X = U[n, ) p, withn > 2, then X = u[n, 0) p).

(iii) If QX = BOpy and if the generator x € H\(Q*X; Z/2) has
x> # 0 when 2 € P, then X = bop,. If QX = BO[n, ) p, with n > 2,
then X = bo[n, 00) p).
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(iv) If Q%X =S80, and if the generator x € H\(Q*X; Z/2)
has Q*x +#+0 when 2 € P (or the non-zero primitive element y €
H*(Q*X; Z/2) has Sq'y # 0 when 2 € P), then X = sop,. If QX =
SO[n, ) py withn > 2, then X = so[n, ) p,.

(v) If Q°X =(SO/U)p, and if the generator x € H,(Q°X; Z/p)
has x? + O for each odd p € P and Q*x + 0 when p =2 € P (or the
non-zero primitive element y € H8(Q*X; Z/2) has Sq*y + 0 whenp = 2
€ P), then X =(SO/U)py. If Q°X =(SO/U)[n, 0)p, with n = 3,
then X = (so/u)[n, ) p,.

(vi) If Q°X = (U/Sp)py and if the generator x € H,(2*X; Z/p)
has Q'x #+ 0 for each odd p € P and Q*x # 0 when p =2 € P, then
X = (u/sp)py- If Q°X = (U/Sp)ln, o) py with n =2, then X =
(u/5p)(n, %) (p)-

(vii) If Q*X = BSp[n, 0) p, withn > 1, then X = bsp[n, ) p).

(viii) If Q*°X = Sp[n, 0) p, withn > 1, then X = sp[n, o0) p).

(ix) If QX = (Sp/U)p, and if the generator x € H,(2°X; Z/p)
has x? #0 for each odd p € P, then X = (sp/u)py. If Q*X =
(Sp/U)[n, ) pywithn > 3, then X = (sp/u)[n, ) p,.

(x) If Q°X = (U/O) py and if the generator x € H\(2°X; Z/p) has
Q' # 0 for each odd p € P and x*+ 0 when p=2 € P, then X =
(u/0)py. If QX = (U/O)[n, ©)ppy with n > 2, then X =
(u/0)[n, 00) (py.

Proof. In part (i), the condition Q*X = BU,,, implies %X =
BU," for each p € P. Thus X, = bu, by 3.2(i) and the hypothesis on
H(Q°X; Z/p). Hence X = bup, by the following theorem. The other
parts follow similarly.

THEOREM 3.4. Let L be one of the spectra KO[n, ) or K[n, o) for an
integer n. For an (n — 1)-connected spectrum X and set P of primes,
suppose that X" = L} for each p € P and that meX = myLp,. If P is
finite, then X = L p,. If P is infinite, then there are maps X — L p) and
L py = X whose homotopy fibres have finite homotopy groups.

This will be proved in 3.14.

ReMARK 3.5. Applying Theorem 3.3 to the spectrum bsog, which
satisfies 2%bsog= BSO, we deduce that bsog py = bso,p, for any finite set
P of primes, generalizing the result of Adams-Priddy for a single prime.
However, bsog,+* bso by [4, p. 146], so our finiteness assumption on P
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cannot be omitted. Theorem 3.3 clearly remains valid when the P-localiza-
tion ¥, is replaced by the P-adic completion Y," =TI, ,Y;", and the
finiteness assumption on P can then be omitted.

Let C and D be among the spaces considered in 3.3, but with P
possibly infinite. Then C is equivalent to Q*(Z'K)[m, ©), or
Q*(Z'KO)[m, 0)p), and D is equivalent to Q<(2/K)[n,00) ) or
Q*(Z/K0)[n, ) py. We call C out of phase to D if C or D involves K
and i — j is odd, or if C and D involve KO and i — j = 3, 5, 6, or 7 mod
8. We call C in weak phase to D if C and D involve KO andi —j=1or
2 mod 8. The following theorem generalizes faithfulness results of
Madsen-Snaith-Tornehave [19] for £* and non-existence results of
Anderson [8] for phantom maps.

THEOREM 3.6. For an arbitrary set P of primes and n > 1, let X,
Y € HS be connected spectra such that, up to equivalence, Q*X and Q*Y
are among the spaces: BU[n, ), Uln, ©0) ), BO[n, ©)p),
SO[n, ) py, (SO/U)[n, ©)py, (U/Sp)ln, ©)p), BSpln, o)),
Spln, ©) p), (Sp/U)ln, ©) ), and (U/O)[n, o) p. Suppose that the
mod-p (co)homology of Q°X and Q®Y satisfies the conditions in 3.3 for
each prime p € P. Then:

(1) °: [X,Y] = [Q°X, Q°Y] is mono.

(i) If Q=X is out of phase to Q*°Y, then [ X,Y] = 0.

(i) If Q°X is not in weak phase to Q°Y, then m: [X,Y]—
[O ® 7 X,0 ® 7, Y] is mono.

(iv) There are no non-zero phantom maps in [ X, Y ).

This will be proved in 3.11.

REMARK 3.7. Theorem 3.6 remains valid when the P-localization is
replaced by the P-adic completion, or when 2*X is allowed to have
higher connectivity than Q*Y. However, parts (i)—(iii) can fail under the
reverse connectivity assumption. For instance, consider the standard
fibration of spectra

for 2 € P and let (so/u) p) > H(Z_p),2) be the Postnikov map. Then the
composite map f: (so/u) py) = u[5, 00)p) is essential although Qf = 0,
Q*(so/u)p, is out of phase to 2<u[S, ) py, and f is not detected by
homotopy groups.
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To prove 3.6 we need the following result, due largely to Adams [4]
but covering additional cases. Let XG = X A MG for a spectrum X and
abelian group G.

THEOREM 3.8. For a torsion free abelian group A and integers n and i,
the groups [K[n, o), KA];, [KO[n, ©), KA);, and [K[n, o), KOA], are
naturally isomorphic to countable products of A’s for even i and to O for odd
i. The group [KO|[n, ), KOA); is naturally isomorphic to a countable
product of N’s for i =0 or 4 mod 8, to a countable product of A/2\’s for
i =1or 2mod 8, and to 0 otherwise.

Proof. For any X € HS there are natural exact sequences
0 — Ext(K; ,X,A) - (KA)’X - Hom(K,X,A) > 0
0 — Ext(KO;,;X, A) » (KOA)’X > Hom(KO,,,X,A) > 0

of Anderson which may be obtained from the universal coefficient theo-
rem of [3] using the 7, K-injectivity of 7, KG and the 7, KO-injectivity of
mKOG when G is divisible. Since the K,-localizations (= KO-
localizations) of K(-oo,n — 1] and KO(-oc0,n — 1] are given by
K(-o0,n — 1], and KO(-o0,n — 1],, the canonical map r: K - KO
induces epimorphisms K,K(-o0,n — 1] » K,KO(-c0, n — 1],
KyK(-o0,n — 1] » KOy,K(-o0,n — 1], and KO4K(-o0,n — 1] —
KO4KO(-o0,n — 1]. By [4, p. 162], the map K,K[n,o0) = K K is
mono, so KyK — K,(-oco,n — 1] is epi. Hence the maps
K KO[n, ) > K,KO, KO,K[n, o) = KOyK, and KO,KO[n, ) —
KO,KO are all mono with rational cokernels. By [5], K,K is countably
free over m,K on generators of degree 0, and thus KO,KO is countably
free over m,KO on generators of degree 0, since KO,KO C K,K and
KO.KO = m,KO ® KO,KO by [6]. This gives sufficient information on
the groups K,K[n, o), K,KO[n, ), KO,K[n, ), and KO,KO[n, )
to deduce the theorem from Anderson’s exact sequences.

This proof also shows for any n that KO,KO[n, ) is countably free
over 1, KO on generators of degree 0, since KO, KO has this property and
KO,KO[n, o) - KO, KO is mono with rational cokernel.

If A/2A # 0 and i = 1 or 2 mod 8, then there are uncountably many
f € [KO[n,»), KOA], with f,: 7, KO[n, 0) = m,,,KOA zero. This
follows when A = Z by Theorem 3.8 since there is only one non-zero fy
compatible with the action of n and the [MZ/2, -],-periodicity, and it
follows in general by naturality under Z — A. However, the other homo-
topy classes in 3.8 are detected by homotopy groups.
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COROLLARY 3.9. If X equals K[n, ) or KO[n, o) and Y equals K or
KO, then

7e: [ X,YA]; > Hom(me X,Q ® m, ., YA)

is mono, except in the above-mentioned case.

Proof. By Theorem 3.8 the map [ X, YA];, = [ X, YAQ], is mono in the
required cases.

Theorem 3.8 also permits a very short proof of Anderson’s result [8]
on the non-existence of phantom cohomology operations in connective
K-theory.

COROLLARY 3.10. Let X equal 'K or Z'KO for some i and let Y equal
Kor KO. If f: X[m, ©)py = Y[n, o0) p, is a phantom map for a set P of
primes and integers m, n, then f = 0.

Proof. Let k = min{m, n} and consider the exact sequence

- [=X[m, )y, Y[k,n=1lp] = [X[m, ), Y[n,00)n)
- [ X[m, 0)p), Y[k, 0) )] -

Since the first group is finitely generated over Z , and the third group is
a product of Zp)’s or Z/2’s, the second group is reduced, i.e., has no
non-zero divisible subgroup. Thus it contains no non-trivial phantom map
by 2.9.

3.11. Proof of Theorem 3.6. Let L and M be the spectra of form
(2'K)[n, 00) or (2'KO)[n, ) such that Q%X = Q<L , and QY =
2°Mp). Then for each p € P, QX" = Q¥L} and Q*Y," = Q*M",
and thus X" = L, and Y," = M, by 34. Let f: X > Y be a map
satisfying one of the conditions: (i) Q*f = 0; (il) 2*X is out of phase to
Q*Y; (iii) 2*X is not in weak phase to 2*Y and f,: Q ® m, X —» Q ® =, Y
is zero; (iv) f is phantom. Then f,*: X — Y, is zero for each p € P
by 2.5, 3.8 with ﬁ& = Zp’\, 39 with A = Z", and 2.9. Thus f factors as a
composition X = X, = Y by 2.8. There are maps X — L, and M ,,
— Y whose homotopy fibres have finite homotopy groups by 3.4, and
there is an associated factorization X = L — X, > M, = Y of f.
The resulting map L ) = M, is phantom by 2.9 and thus zero by 3.10.
Hence f = 0.

To prove Theorem 3.4, we need results on the self-equivalences of
L/p* = LZ/p* for p prime where L is one of the spectra K[n, c0) or
KOI[n, o) and where Z/p> is the p-torsion subgroup of Q/Z. Consider
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the set of degrees d such that =,L/p® = Z/p> and let d(i) denote the
ith such degree in increasing order. A set {@,};_; ., of endomorphisms
®;: Ty L/p* = 7y, L/p* is called realizable if there exists a map f:
L/p® — L/p* inducing ¢, for 1 < i < k. An endomorphism ¢, is called
compatible with {¢,},_; ., if the set {¢;},_,_, is realizable. The follow-
ing lemma will give sufficient control over the self-maps of L/p® or L.
Some related results are given by Adams in [4].

LEMMA 3.12. There is a sequence of finite subgroups S; C m ., L/p*
such that each realizable set { @,}, _, ., determines an endomorphism &, of
S, whose extensions to m,,,L/p* are precisely the endomorphisms compati-
ble with { @}, < - If {9, }1 < < » 1 a set of endormphisms with { @, }, _; <,
realizable for each k < oo, then there exists a unique map f: L/p* — L/p®
inducing @, for1 <i < oo.

Proof. We suppose that L = KO[n, o), but our proof can be adapted
to K[n, o0). The canonical map L/p* — KO /p* induces isomorphisms

[L/p=, L/p*] = [L/p*, KO/p~] = [KO/p™, KO/p™],
and there is a universal coefficient isomorphism
[KO/p®, KO/p®] =~ Hom(KO,KO/p>,n,KO/p>)

as in the proof of 3.8. For each i > 1, let g, €m,_,,KO =Z be a
generator and note that g: KO,,KO/p® = KO,KO/p® since the
7+ KO-module KO,KO/p* is a direct sum of copies of 7,KO/p*. For
each map b: KO/p® — KO/p® the diagram

h
7 K0/p* 5 KOKO/p*
| bs | b
gl
7, KO/p™ : 7,KO/p~

commutes where 4 is the Hurewicz monomorphism and b, corresponds
to b via the universal coefficient isomorphism. Let G, € KO,KO/p*
denote the image of g;h. It suffices to show that G, N (G, + -+ +G,_,)
is finite for each k and to let S, correspond to its counterimage under g, 4.
Choose r > 1 relatively prime to p. Then ¢'w = r¢Pw for each w € G,
where e(i) = (4 — d(i))/2, and we let §, € Z ,,[x] be a polynomial with
£,(re@y=0forl <i<kand & (r*®) = p/ for some j > 0. Using the
operator £,(y"), one shows that G, N (G; + --- +G,_,) is annihilated
by p’/ and is therefore finite since G, = Z/p®. Next, the existence of f
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follows easily since 7, KO /p>® = Z/p™ is divisible. For uniqueness of f it
suffices to show b = 0 when b: KO/p* — KO/p* is a map with b, =0
on m,;,KO/p* for each i > 1. For 1 <j < oo, there is a K,-equivalence
A: 2IMZ/p’ - MZ/p’ of Adams [1] with ¢ > 0, and there is an induced
isomorphism

A*: [MZ/p/, KO/p*]s = [MZp’, KO/p*]+.,.

Thus b, = 0 on 7, KO/p*® for all ¢, and b,: KO,KO/p* — 7,KO/p*®
vanishes on the image of the canonical map &, , KO/p* — KO,KO/p*.
This map is onto since it is a quotient of the isomorphism & 7, KO, —
KO,KO,. Thus b, = 0and b = 0.

Using the notation of 3.12, we have

LemMA 3.13. If d(j)—d(1) <2p — 2 then S§;=0. If f: L/p* —
L/p® induces an automorphism fy: m,, L/p* = m, . L/p® for each j with
d(j)—d1)<2p—2, thenf: L/p® = L/p®. If {@,},;<y is a realiz-
able set of automorphisms, then ¢,: S, — S, is an automorphism.

Proof. The first part follows since L/p® splits as in [2] for p odd and
since j = 1 for p = 2. The second part follows using the Adams periodic-
ity of mod-p homotopy groups of L/p® and knowledge of its k-in-
variants for p = 2. The third part follows from the preceding parts.

3.14. Proof of Theorem 3.4. For each p € P, X/p® = L/p> since
XPA = LPA, and X, = L, since m X = mL ;. Thus there are cofibre
sequences

X 5 L, - L/P®
Ja ob Je

v
L,, - L, = L/P”

inducing short exact sequences
0 - m7uX - myly, - my,L/P* - 0
vy v B MR
0 - w=uyLly - mwyly - Ty L/P? - 0
for each i > 1. Assuming that P is finite, we construct isomorphisms
(a,,B;,v;,) for i > 1 such that the above diagram commutes and the

p-components of {v,},_;., are realizable for each p € P. Let a; be an
arbitrary isomorphism and let B, y, be induced by «,. Given («;, 8;, ;)
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forl <i <k,let S, € my,L/P> be the sum of the S, C m,,L/P> for
p € P, and let ¥, be the isomorphism induced by {v,}, ., .,. It induces
an isomorphism @,: 7, X ® Z/n = 7, L py® Z/n where n = 1S,
Since P is finite, the quotient map Z p, — Z/n restricts to an epimor-
phism Z%, — Z¥ for units. Thus we can choose a;: 7\ X = 7, L,
inducing @, and then let B,, v, be induced by «,. Then y, extends ¥, and
is compatible with {y,},_, ., on p-components for p € P. After complet-
ing this inductive construction, let b: L, = L, and ¢: L/P® = L/P* be
the equivalences induced by { 8;},., and {v;},.;- Now ¢t = vb by 2.9 and
we obtain a: X = L. When P is infinite, similar methods give the
required maps X — L, and L, > X.

4. K,-Localized Moore spectra. Recall that Adams constructed K,-
equivalences A: 2YMZ/p’ - MZ/p’ in HS for p prime and j > 1,
where g, = Max{8,2/7'} for p=2 and ¢q,=2(p — 1)p’/~! for p odd
(see [1]). These A’s induce equivalences Ag: Z49(MZ/p*)x = (MZ/p’) g
demonstrating the periodicity of the spectra (MZ/p/). However, these
A’s are not canonically determined, and the A’s need not be compatible
for successive j’s. In this section we construct a compatible sequence of
equivalences a: ZU( MZ/p’) = (MZ/p’) together with an associated
system of Adams-like maps which will be used to prove Theorem 2.1.

LEMMA 4.1. For p prime, j > 1, and n = 0 mod q,, there are isomor-
phisms m, (MZ/p’)x =0, m, (MZ/p’)x = Z/p’, and m,(MZ/p*)g
= Z/p’ & Gwhere G =0 forpoddand G = Z/2 forp = 2.

Proof. By [10, §4] there is a fibre sequence
. V-1 .
(MZ/p’) x ~ KO/p’ > KO/p’

in HS where r = 3 for p = 2 and where r is a positive integer generating
the group of units of Z/p? for p odd. The homomorphism (Y — 1)4:
7,KO/p’ — m,KO/p’ is zero for n — 2 < i < n + 2. Thus m(MZ/p’) g
has the desired properties for p odd, while 7,( MZ/2/) ; is isomorphic to
Ofori=n—-2,t0Z/2/fori=n—-1,and to Z/2'’ ® Z/2 or Z/2/*!
for i = n. Since 5? acts nontrivially on 7, KO /2/, 9* also acts nontrivially
on m,_(MZ/27). Thus 7,(MZ/2/)y contains an element of order 2
which is not divisible by 2, and consequently m,(MZ/2’), = Z/2/ &
Z/2.
Choose a sequence of maps

MZ/p>MZ/p* ~ -+ > MZ/p) > MZ/p/** — -
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in HS which is carried by H, to the canonical sequence of injections of
Z/p’’s.

LEMMA 4.2. For p prime, j > 1, and n = 0 mod g, ,, the image of the
homomorphism eyy: m (MZ/p/)x = m (MZ/p’* ") is pm (MZ/p’* V).

Proof. This follows by inspecting the homotopy exact sequence of the
cofibering

(MZ/p7) ¢ 5 (MZ/p) ¢ » (MZ/p) &

using the groups calculated in 4.1.

PROPOSITION 4.3. For p prime, there exists a sequence of equivalences
a: SUMZ/p!)x = (MZ/p’)x forj > 1 such that the diagrams

Sua(MzZ/pl) e C o (MZ/pY)k

izqf”ex JreK
S (MZ/pY) e > (MZ/pitY),

commute in HS.

Proof. Let a: 2%(MZ/p)x = (MZ/p)x be induced by an Adams
map, and suppose inductively that the K,-equivalence a: ZU(MZ/p’)
— (MZ/p’) g has been constructed. Letting n = g i+1> consider the dia-
gram

sMzpl ST (MZ/p)

l e ], ex
MZp (M2
and apply 4.1 and 4.2 to construct a map f such that the associated
diagram of =,-groups commutes. Hence €¢o6 = 0 where ¢ = fo 3" —
exo(ao -+ oa)is the commutation error and o is the indicated map in
the cofibering

SnS 5 STMZ/p! > SIS,
Thus there exists 8: ="*1S - (MZ/p/*')x such that e = § o 7, and there

clearly exists p: X"MZ/p/*! - 2"*1§ such that 7= poZ". Conse-
quently the diagram commutes when f is replaced by f = f — 8 o, and f
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is a K,-equivalence since a° --- o« is. The inductive step is completed
by letting a: ="(MZ/p’*)x = (MZ/p’*1) correspond to f.

Using our results on the surjectivity of the K,-localization map
[X,Y], = [ Xy, Y], for sufficiently large i when X and Y are finite
CW-spectra (see [13]) we can deduce that each of the equivalences a:
S9(MZ/p’)x = (MZ/p’)g in 4.3 is induced by some K,-equivalence
A: Z9MZ/p’ - MZ/p’. However, to achieve the required compatibility,
we shall instead use the following lemma to construct our system of
Adams-like maps.

LEMMA 4.4. For each finite CW-spectrum Y, there exists a sequence of
K -equivalences of finite CW-spectra Y =Y, > Y, > Y, > --- whose
homotopy direct limit is the K ,-localization of Y in HS. Thus colim [ X, Y, ]«
= [ X, Y1« for each finite CW-spectrum X.

Proof. Let L,, L,, L,,... be a sequential listing of the homotopy
cofibres of the Adams maps Z'4: S*9MZ/p - Z'MZ/p for p prime
and i € Z. By [10], a spectrum E € HS is K,-local if and only if
[L,E]=0 for each i € Z. Let Y, = Y and suppose inductively that the
finite CW-spectrum Y, is given. Let F, denote the K,-acylic finite
CW-spectrum V, /L, . for 0 <i<n, f€[L,Y,], and L,,= L,. Then
construct Y, = Y, ., as the homotopy cofibre of a map F, — Y, acting by
f on each L, ;. The homotopy colimit of the resulting sequence ¥ = Y, —
Y, » Y, » --- is K,-local by the above criterion, and the lemma follows
easily.

The following proposition will provide our system of Adams-like
maps of finite CW-spectra. For notational convenience, we take j > b
where b = 1 for p odd and b = 4 for p = 2.

PrROPOSITION 4.5. For each prime p, there exists an array of finite
CW-spectra W} for j = b and 0 < i < p, together with K-equivalences u:
Wi — W/*! and a: 29W} > W' and maps \: WP — W | in HS such
that W) = MZ/p’ and the diagrams

. a . uP\ aP

qun/}z - I,Vjt+1 W{I_O Vi 2"!+1Wj° - I/Vjp

X lu | ev Zu+ie A
uVa

a .
q i+1 i+2 0 q 0 1
Z9W; - W WiV 29w, Wi

commute.
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Proof. Let a: 2U(MZ/p’)x = (MZ/p’) for j > b be a compatible
sequence of equivalences, and for each j let

. t t t .
MZ/p! =V >V} > Vi o = (MZ/p!)
be a sequence of K,-equivalences of finite CW-spectra as in 4.4. For
J = b construct a finite subsequence
MZ/p"= W)= Wy = - = W - (MZ/p*)

together with maps a: %W/ —» W/*! for 0 < i < p such that the dia-
gram

SHWe - ZBW > .. oS SeppTl - 2%( MZ/p”) X
la la la la
We — W o o /W > (MZp)y

commutes. Next for sufficiently large i, choose a map ¢ such that the
diagram

SeaMZ/pt*t S Vi

l l
o0 (MZ/p* ), > (MZ/p"Y)

commutes. Now the solid arrow diagram

uf v a?f

MZ/p® v 2% MZ/p" > wg - (MZ/p)
) UBY !
Lve
MZ/p**t v ZeaMZ/p**t S Vi, > Ve, o (MZ/PbH)K

commutes, and for sufficiently large k there is a map A such that the two
subdiagrams commute. Let u: W2, - W}, , denote the map X
MZ/p**' - V. |, and define \: W) —» W, and a: Z#Wp,, - W},
from the diagram. Continuing in the obvious way, one inductively con-
structs the required array.

5. Cospectra associated with Moore spaces. Continuing toward a proof
of Theorem 2.1, we now obtain a system of cospectra associated with
Z /p’-Moore spaces where p is a fixed prime. We work simplicially and
assume familiarity with the elementary theory of simplicial sets (see [20],
[17]). Let s.sets, denote the category of pointed simplicial sets and recall
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that each L € s.sets, has a geometric realization |L| which is a pointed
CW-complex. Let

M(Z/p,1) > M(Z/p*1) > M(Z/p*1) > -+

be a sequence of cofibrations in s.sets, such that each |M(Z/p’,1)|is a
Moore space of type (Z/p’,1) and such that the sequence is carried by H;
to the canonical sequence of injections Z/p —» Z/p* —> Z/p> - ---
Let S' € s.sets, be the standard 1-sphere whose only non-degenerate
simplicies are a vertex and 1l-simplex, and for n > 2 let S" € s.sets,
denote the n-fold smash product S* A --- ASY. For m > 1 and j > 1,
let M(Z/p’,m)=M(Z/p’,1) A S™ 1 and let e: M(Z/p’/, m) -
M(Z/p’*!, m) denote e A 1. An augmented cospectrum X consists of
sequence of objects X" € s.sets, and maps o: S' A X"*! > X" for
n > 0, together with an object X“ € s.sets, and map &: X* > X° A map
f: X — Y of augmented cospectra consists of a sequence of maps "
X" — Y" such that f"6 = o(1 A f"*!) for each n > 0, together with a
map f“ X — Y such that ¢f* = f%. For an augmented cospectrum X
and object L € s.sets,, let X A L denote the augmented cospectrum with
(XALY=XALand (XAL)*=X*AL.Asin451let b=1 for p
odd and let b = 4 for p = 2. Also let ¢, = 2(p — 1)p’/~" for p odd and
let ¢, = Max{8,2/ ~1} for p = 2. Our goal in this section is to prove

PROPOSITION 5.1. For each prime p, there exists an increasing sequence
of positive integers m; for j > b together with a sequence of augmented
cospectra P(j) and maps p: P(j) A 8% = P(j + 1) withd,=m;, , — m;
such that the following conditions hold: P(j)* = M(Z/p’, m,); the maps e:
P(j)¢ = P(j)? and o: S' A P(j)"*! - P(j)" are Ky-equivalences; the
maps p*: M(Z/p’,m)) A 8% » M(Z/p’*',m,, ) equal e; the maps p":
P(j)" A 8% — P(j + 1)" are cofibrations; and for each j > b and n > 0
there exists a K,-equivalence S' A M(Z/p’, m;) = P(j)" where i is the
integer with 0 < i < g, andn = ~i mod gq,.

The proof is completed in 5.5. We begin by obtaining a rigid simpli-
cial version of Proposition 4.5. A diagram

A - C
\ \
B - D

is called a pre-cofibration if it commutes and the induced map Bu,C — D
is a cofibration.
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LEMMA 5.2. For each prime p, there exists an increasing sequence of
positive integers m; for j > b together with an array of objects B} € s.setsy,
forj = band 0 <i < p, and an array of maps u: B! —> B/*', a: S% A B}
— B/*', and N\: BY A S% — B},, with d;=m;,, — m; such that the
following conditions hold: B} = M(Z/p’, m ); the maps u: B - Bi*! are
K «-equivalences and cofibrations; the maps a: S% A B; - B; 1 oare K,-
equivalences; the maps \: BF A S% — B}, are cofibrations; and the
diagrams

S“AB 5 B

],1 Au lu
qu A B;‘+1 _‘f) B}+2

(U A1)V (a? A1l
(B A 59) v(s9 A BO A s4) TIPS g sa
lev@ne) LA
uvVa
BJQ'F]. v(qu+1 A ij+l) - B}+l

are pre-cofibrations.

Proof. First construct a system of finite CW-spectra W, and associ-
ated maps in HS satisfying the conditions of Proposition 4.5. Then
desuspend to give a system of pointed CW-complexes X/ and associated
maps in the pointed homotopy category Ho satisfying conditions like
those in the present lemma, but without cofibration properties. Then
inductively rigidify, using 5.3 below, to give the required system in s.sets,.

LEMMA 5.3. Leti: A = B and f: A — C be maps in s.sets, and let f3:
|B| = X and vy: |C| = X be homotopy classes to some X € Ho such that
Y|f| = Bli| in Ho. If i is a cofibration, then there exists an equivalence §:
|D| = X in Ho for some D € s.sets, together with maps g: B — D and j:
C — D in s.sets, such that the diagram

4 5 ¢
i lJ
B 5 b

is a pre-cofibration with 8|g| = B and 8| j| = v in Ho.

The proof is straightforward.
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5.4. Periodic systems of simplicial sets. Suppose henceforth that we are
given a system of objects B} and associated maps in s.sets, satisfying the
conditions of 5.2. For j > b consider the infinite diagram

¢ o o o v

v a
0 u 1
e d .
Bj Bj
ya
0 u 1
. - .
BJ BJ

where a vertical map X --» Y denotes a map S% A X — Y. Now extend
the diagram infinitely to the right by inserting successive push-out squares,
and let C; € s.sets, denote the colimit of each row. Let &2 M(Z/p/, m))
— C and a: S% A C; > C; denote the induced maps, and note that they
are K,-equivalences. Next, for j > b consider the infinite diagram

0 p—2 p—1
B, B; B;

v v v

0 1 p—1 »
B ~ B - B B

and extend the diagram infinitely to the right by inserting successive
pushout squares. Then for 0 < k < p let Dj" € s.sets, denote the direct
limit of the (k + 1)st row from the bottom. Let &: M(Z/p/,m;) — D},
a: S% A D) - D?~! and a: S% A Df — Dj"‘1 for1 < k <p — 1bethe
induced maps, and note that they are all K,-equivalences. Next observe
that our first extended diagram maps injectively to the present extended
diagram, and for 0 <k <p let d: C,— Dj" be the induced map.
Note that d is a cofibration and K,-equivalence. Moreover,a(1 A d) = da
and de = e. Finally, observe that the objects Dj0 and the maps a”:
S%+1 A D) - D and &: M(Z/p’,m;) > D can also be constructed by
starting with the diagram

par
uP
B.l0 - BJP
v ap
0 u?
B - B?
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where a vertical map X -» Y now represents a map S%+* A X = Y. Thus
there is an induced map ¢: D) A §% — C,,,. Moreover, c is a cofibration
such that a(1 A¢c)=c(a? A1l)and c(e A 1) =&

5.5. Proof of 5.1. For j > b, let C(j) be the augmented cospectrum
such that C(j)* = M(Z/p’,m;) and C(j)" = S' A C, for n = —i mod g,
with 0 < i < g;; let D(j) be the augmented cospectrum such that D(j)*
= M(Z/p’,m;) and D(j)" = S'A Df for n=kq,— i modg,,, with
O<k<p and 0<i<g; and let D( J) be the augmented cospectrum
such that D(j)*=M(Z/p/,m;) and D(j)"=S'A D’ for n=-i
modg;,,; with 0 <i<gq,,. Let d: C(j)—»D(]), c: D(])/\S
C(j+ 1), and ¢: D(j)— D(j) be the obvious maps of augmented
cospectra, and note that 4 and ¢ are termwise cofibrations while d and ¢
are termwise K,-equivalences. Consider the infinite diagram

pr+1) 5
Vo
Py 5 DB+
Vo
D(b)

where dc: D(j) -» D(j + 1) denotes the termwise cofibration dc: D( )
A 8% — D(j + 1). Now extend the diagram infinitely to the right by
inserting successive pushout squares, and let

P(b) > P(b+1) > P(b+2)

denote the bottom row of the extended diagram. One easily checks that
this sequence has the required properties. In particular, for each j > b

there are termwise K,-equivalences C(j) = D(j) — P(j), and thus there
are K,-equivalences

S'AM(Z/p',m) ST A G = C(j)" = P(j)"
for0 <i<gqg;and n=-imodg,.

6. Proof of Theorem 2.1. Our proof of Theorem 2.1 will depend on
certain natural constructions involving s.s. spectra and topological spec-
tra. As noted in [16, §2], these two types of spectra have equivalent
homotopy theories in the sense of Quillen [23], and their homotopy
categories are equivalent to HS.
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6.1. Preliminaries on spectra. An s.s. spectrum M consists of a
sequence of objects M, € s.sets, together with maps a: M, A S* > M,
for n > 0, and a map of s.s. spectra f: M — N consists of a sequence of
maps f,: M, — N, in s.sets, such that o(f, A1)=f,, 0 for n > 0.
Similarly, a topological spectrum X consists of a sequence of pointed
spaces X, together with pointed continuous maps o: X, A S' > X, for
n > 0, and a map of topological spectra f: X — Y consists of a sequence
of pointed continuous maps f,: X, — Y, such that o(f, A 1) = f, 0 for
n > 0. The singular functor A(-) and the geometric realization functor |-|
apply to spectra in the obvious way and provide adjoint functors between
the categories of s.s. spectra and topological spectra. If M is an s.s.
spectrum, then | M| is a topological spectrum but need not be a CW-spec-
trum since o: |M,| A S' > |M,_,| need not be an isomorphism from
IM,| A S* to a subcomplex of |M,, ,|. However, tel| M| is a CW-spectrum
where tel is the telescope functor of Adams [3, p. 171]. A topological
spectrum X is called an Q-spectrum, or fibrant, if the structural maps o”:
X, » QX,., (adjoint to o: X, A S' > X,,,) are weak equivalences for
n > 0. An s.s. spectrum M is called fibrant if each M, is a Kan complex
and the structural maps o’: M, —» QM, , are weak equivalences for
n > 0, where @M, , denotes the pointed simplicial function complex
map4(S?, M,,,). Homotopy groups are defined by 7, X = colimm, . , X,
for a topological spectrum X, and by 7, M = m,|M| for an s.s. spectrum
M. A map of topological or s.s. spectra is a weak equivalence if it induces
an isomorphism of homotopy groups. If M is an s.s. spectrum such that
each M, is a Kan complex, then there is a natural weak equivalence
M — QM where QM is fibrant with (2M), = colim,Q’M, , . Thus if M
is any s.s. spectrum, there is a natural weak equivalence M — QA|M|
where QA|M| is fibrant. For an s.s. spectrum N and for J € s.sets,, let
map4(J, N) be the obvious s.s. spectrum with map,(J, N), =
map4(J, N,) for each n > 0. For a tower

Mt M M e
of fibrant s.s. spectra, we obtain a homotopy inverse limit telim; _, ., M J

by dualizing the mapping telescope construction. Specifically, we con-
struct telim; _, ., M/ by forming the pull-back diagram

teim M/ - map*(A;“, I Mf)

" Loy
MMy < (I] Mf) x(ﬂ Mf')

j=zb j=zb j=b
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where A, is the standard simplicial 1-simplex, A = A; U *, d, is the ith
face operator, and w(x,,X,,q,-..) = (TXy,q, TXp,0,...). Note that
telim, , , M/ is a fibrant s.s. spectrum. For a tower X* « X**!1 < ...
« X/« X/t « ... of topological spectra, we obtain a homotopy
inverse limit

L X = tel telim 2ax/|

which is an 2-CW-spectrum.

6.2. Construction of the functor ®,: Hox — HS. For a K,-local
pointed CW-complex X and for a prime p, we shall construct a CW-spec-
trum ¢,(X) which will represent ®,(X) when we pass to homotopy
categories. First observe that the singular complex AX € s.sefs, is a
K,-Kan complex in the sense of [9, §12], so each K,-equivalence 4 — B
in s.sets, induces a weak equivalence map,(B, AX) — map(4, AX) of
pointed simplicial function complexes. Let { P(j)|j = b} be a system of
augmented cospectra and associated maps satisfying the conditions of
Proposition 5.1. For each j > b, let T/(X) denote the obvious s.s.
spectrum with 7/( X), = map,(P(j)", AX) for each n > 0, and note that
T/(X) is fibrant. Moreover, the given maps p: P(j) A S - P(j + 1)
induce maps p: S% A T/*}(X) - T/(X) of s.s. spectra for j > b. Con-
sider the tower {S™*! A T/(X)} j=b Of s.5. spectra with tower maps
1 A p. Let @,(X) be the Q-CW-spectrum

@, (X) =L, |S™*" A T/(X)]|.
If f: W— X is a weak equivalence of K,-local pointed CW-complexes,
then one easily checks that ¢,(f): ¢,(W) = ¢,(X) in HS. In particular,
®,(5): ¢,(I"A X) = ¢,(X) in HS where I"= T U * with I =[0,1] and
where s: I"A X — X is the projection map. Thus (pp(do), @,(d"):
P,(X) - qpp(I+A X) represent the same map in HS since sd° = sd!
where d° and d' are the bottom and top maps. Consequently, ¥, Tespects

the homotopy relation and induces a functor ®,: Hox — HS. To show
that ®,: Hoyx — HS takes values in HSy ,, we need

LEMMA 6.3. Let Y € HS be an Q-CW-spectrum. Then Y is K-local
< each Y, € Ho is K,-local. Moreover, Y is both K-local and p-adically
complete < Y is K/p,-local < eachY, is K/p,-local.

Proof. If Y is K,-loval and p-adically complete, then Y is K/p,-local
since Yy ,, = (Yx), by [10, Proposition 2.11]. The converse is immediate
since K/p = K A MZ/p and our p-adic completion is the MZ /p,-locali-
zation. Now suppose for a given E € HS that there exists a collection
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{W, € Ho} of E,-acyclic spaces such that a spectrum X € HS is E,-lo-
cal e [Z*W,, X], =0 for each W,. Then an easy formal argument
shows that an -CW-spectrum Y is E,-local < each Y, is E,-local. This
applies when E = K by [10, Theorem 4.8] and applies when E = K/p
since a spectrum X is p-adically complete < [MZ[1/p], X], = 0.

LEMMA 6.4. For each X € Hoy, the spectrum ®,(X) € HS is K/py-
local.

Proof. Since X is K,-local, AX € s.sets, is a K,-Kan complex. Thus
for each j > b and n > 0, map,(P(j)",AX) is a K,-Kan complex, and
there is a weak equivalence

T/(X), = map,(P(/)",AX) > map,(S' A M(Z/p’,m,), AX)
for some i by 5.1. Hence the Q-CW-spectrum tel|T/( X)| is K/p,-local by

6.3 since it has p-cotorsion homotopy groups and has K,-local terms
tel|7/( X)|,. The lemma now follows easily.

LEMMA 65. If f: V> W is a map in Hogx such that f:
[M(Z/p,m),V]=[M(Z/p,m),W] for all sufficiently large m, then
Q,(f): ©,(V)=0,W).

Proof. Let u: V — W be a pointed continuous map with [u] = f.
Using the above natural weak equivalences

T/(X), - map,(S' A M(Z/p’/,m)), AX),

we deduce that each T/(u): T/(V) —» T/(W) is a weak equivalence, and
thus @,(u): @,(V) = @,(W) is a weak equivalence.

LEMMA 6.6. The functor ®,: Hoyx — HS carries homotopy fibre squares
to homotopy fibre squares.

Proof. This follows because ¢, is a composition of functors which
preserve homotopy fibre squares.

We must show that ® QX = Xp for X € HSy, and for this we shall
use double spectra. An s.s. double spectrum M consists of objects M, , €
s.setsy for m, n > 0 together with maps o;: M, , A S* > M, .,  and o,:
M,  AS'— M, ., in s.sets, such that the diagram

o

1IAT
M, , NS AS 5 M, , ANS"'AS 3 M, ... AS
o | o
M

m+1,n

1
AS - M1 01



28 A. K. BOUSFIELD

commutes where 7: ST A ST —> S* A S is the twisting map. Similarly, a
topological double spectrum X consists of pointed spaces X, , for m,
n.> 0 together with pointed continuous maps o;: X, , A S' = X, .,
and o, X,,, A S' > X,,,,, such that the corresponding diagram com-

m

mutes. The double telescope construction of Adams [3, pp. 173-176]
produces a CW-spectrum tel®|M, ,| for each s.s. double spectrum M.
Moreover, there is a natural isomorphism

W*tel(2)|M*’*| = C(r)nhrlzn 77*+m+n|Mm,nl

where the colimit is for the infinite commutative diagram { 7y, ., ,|M,, |}
with homomorphisms

(—1)n°1*: '77*+m+n|Mm,n| - qT*+m+n+lIMm+1,n|’

02*: 77'=0t+m+n“‘4m,n| - 77*+m+n+1|Mm,n+1|'

Thus if |M, .| and |M, | are Q-spectra for all m, n > 0, then the
canonical edge maps of CW-spectra

tel| Mo x| = tel®| My | < tel| M,

are weak equivalences.
LEMMA 6.7. There is a natural equivalence ®,Q%X = X" for X € HSy.

Proof. Let X be a K,-local 2-CW-spectrum. For j > b, form
the obvious s.s. double spectrum D/(X) with D/(X),, =
map,(P(j)”,AX,). Since each X, is K,-local by 6.3, |D/(X),, « and
|D/( X)y,| are Q-spectra for all m, n > 0. Hence the canonical edge maps

tel| D/(X)y | = tel®|D/(X)y 4| < tel] D/(X)o 4|
are weak equivalences of CW-spectra, and thus their suspensions
tel| S A DI (X)yo| —  tel@[S™TUA DI(X)y 4
o tel| SV A DXl

are also weak equivalences. The map p: P(j) A S% — P(j + 1) induces a
map p: S% A D/*Y(X) - D/(X) of s.s. double spectra for j > b and
there is an associated tower {S™*! A DJ( X)) j= Of s.5. double spectra.
It is now straightforward to construct a chain of weak equivalences of
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CW-spectra
9,(Xo) = L, o|S™* A DI(X)up| & L tel|S™ 1 A DI(X)y ]

J

= L, tel®[S™ A DI(X)y | & L, el| S™1 A DI(X)o 4
= L[ S™*1 A DI(X)o]

- L.

o

S+l A map*(M(Z/pf, mj),AX)’
— L, |S* A map.(M(Z/p’,1),AX)|

<|S?| A L, ,|map.(M(Z/p’,1),AX)|

—|S?| A tel‘ telim map,(M(Z/p’,1),AX) \
j— o

82| A tellmap,(M(Z/p=,1),4X)|

where M(Z/p>,1) € s.sets, is the mapping telescope of the sequence of
M(Z/p’,1)’s from §5. The lemma now follows by passing to homotopy
categories. For this, suppose that X and Y are K,-local Q2-CW-spectra.
Since Y is an {-spectrum, the homotopy classes from X to Y in HS are
the ordinary homotopy classes of topological maps from X to Y, taken
without reference to the cofinal subspectra of X. Thus by the argument of
6.2, the preceding constructions on X determine successive functors
HS; — HS and successive natural transformations between them. We
thereby obtain a composite natural equivalence ® QX = X where
®,Q%X is represented by ¢,(X,) and X, is represented by |S 2| A
tellmap,(M(Z/p>,1), AX)|.
The proof of Theorem 2.1 is completed by

LemMA 6.8. If M is a pointed finite CW-complex with p-torsion
H,(M; Z) and with a K,-equivalence a: Z'M — M for some t > 0, then
there is a natural equivalence Q%( QPW)M = WM for W € Hoy.

Proof. Using the periodicity derived from e, it suffices to construct
Q2o WM = W™ when the given M is replaced by a suspension =°M.
Thus, letting p* be the stable annihilator of M, we may obtain, for m > 1
and j > k, maps

r: S"UAM-> M(Z/p/,m) A M
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compatible with suspension and with the maps e: M(Z/p’/,m)—
M(Z/p’*!, m), such that the diagram

ov1

(S"AM)V(S"™'AM) > (S"AM)V(S™'AM)
= lin = lin
k
M(z/p'm)AM S M(zpr e m) A M

homotopy commutes where i is the canonical injection, and such that
each i V r is a weak-equivalence. Using the equivalence

Q=[TA(W) ™| = W m 2

derived from the augmentation map of P(j), and using the periodicity
derived from a, we see that m,(®,W)" is mapped isomorphically to the
k-fold images in the tower

{m{smt alrw "))

jZk.

Consequently for n = m — m, — 1 with m sufficiently large, the com-
posite of the maps

QOO((DPW)S"‘AM N QoolTkW|S"/\M ~ WME/P 1) A M

pE WMEZ/PEm=)AM _, ST AM

is a weak equivalence. This implies the lemma.
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