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UNIQUENESS OF INFINITE DELOOPINGS FOR
^-THEORETIC SPACES

A. K. BOUSFIELD

A functor Φp is constructed from spaces to spectra such that, for
each spectrum X, ΦpQ?°X is the /?-adic completion of the ^-theoretic
localization of X. This functor is used to obtain uniqueness results for
infinite deloopings of ^-theoretic spaces and maps, thereby generalizing
results of Adams-Priddy and Madsen-Snaith-Tornehave. Non-unique
deloopings of ^-theoretic maps are shown to involve phantom maps of
spectra, and such maps are analyzed.

Introduction. Let K be the spectrum of nonconnective complex
^-theory and recall that the associated homology theory K+ determines a
localization functor {-)κ on the homotopy category of spaces and of
spectra by [9], [10], and [12]. In this paper we establish a natural
equivalence ΦpΏ°°X ~ (Xκ)p for each prime p and spectrum X, where
Q°°X is the Oth space of the associated Ω-spectrum of X, where (~)A is
the /7-adic completion functor, and where Φ^ is a new functor from spaces
to /7-adically complete ϋΓ -̂local spectra. Thus Φ^Ω00^ =* X when X is a
/?-adically complete X*-local spectrum and Ω00 therefore embeds the
homotopy category of such spectra faithfully into the ordinary pointed
homotopy of spaces.

In [7], Adams and Priddy showed by specific calculations that BSOp

A

and BSUp

A have unique infinite deloopings, i.e., that there are unique
homotopy types of connective spectra X and Y such that Ώ,°°X — BSOp

A

and Ω°°7 =* BSUp

A. Using Φ^ we show that this uniqueness phenomenon
occurs much more generally: for instance, if E is the (n — l)-connected
section of a /7-adically complete A^-local spectrum, then the space Ω°°E
has a unique infinite delooping when n > 3 or when n = 2 and π2E is
torsion. We obtain unique infinite deloopability results for /7-adic comple-
tions of various infinite classical groups, their classifying spaces, their
homogeneous spaces, and their /-spaces. We likewise generalize the /?-lo-
cal version of the Adams-Priddy theorem by proving unique infinite
deloopability for localizations of these spaces at arbitrary finite sets of
primes. We also generalize results of Madsen-Snaith-Tornehave [19] on
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the uniqueness of infinite deloopings of maps between various ΛΓ-theoretic
infinite loop spaces and find, under general conditions, that an infinite
delooping of the zero map is a phantom map of spectra. We analyze such
phantom maps and extend results of Anderson [8] and Meier [22] on their
non-existence. Finally, although non-deloopable maps abound, we show
that maps between /?-adically complete ϋΓ-theoretic infinite loop spaces
have canonical approximations by infinite loop maps. Some of our main
results were announced in [13].

The basic idea for constructing the spectrum ΦpY for a space Y is
quite simple. For each j and sufficiently large n, the pointed mapping
complex from the Moore space M(Z/pJ, n)toYκ is an infinite loop space
with periodicity derived from a ^-equivalence ΣqM(Z/pJ, n) ->
M(Z/pJ,n) of Adams. The spectrum ΦpY is given by the homotopy
inverse limit of an associated tower of Ω-spectra indexed by j . However,
the details are somewhat complicated since one must cope with various
compatibility problems.

This paper is organized as follows. In §2 we state our main result,
Theorem 2.1, on the functor Φp and derive our general unique deloopabil-
ity theorems. In §3 we apply the results of §2 to familiar X-theoretic
infinite loop spaces and explicitly extend results of Adams-Priddy, Mad-
sen-Snaith-Tornehave, and Anderson. In §4 and §5 we prepare for the
proof of Theorem 2.1 by studying ΛΓ*-localized Moore spectra and con-
structing systems of cospectra associated with Moore spaces. Then in §6
we prove Theorem 2.1.

The following notation and terminology are used. Ho denotes the
pointed homotopy category of CW-complexes, and HS denotes the homo-
topy category of CW-spectra (see [3]). A space Y G Ho or spectrum
Y e HS is called E^local for E G HS if each ^-equivalence /: A -> B
in Ho or HS induces a bijection /*: [B, Y] « [A, Y]. Each space X G Ho
or spectrum X G HS has an E^localization u: X -> XE which is an
^-equivalence such that XE is E*-local, and these ^-localizations are
functorial. The full subcategories of E*-local spaces and spectra are
denoted by HoE c Ho and HSE c HS.

The p'Sidic completion Xp

A of a space or spectrum X is defined to be
the MZ//?*-localization XMZ/P using the Moore spectrum MZ/p (see [9],
[10]). This equals the //*(-; Z/p)-localization when X is a space or
connective spectrum, and equals the /^-completion of [17] when X is a
nilpotent space. Of course, if X is a simple space or spectrum with π* X of
finite type, then π+Xf ~ Zp % π*X where Zp denotes the /?-adic in-
tegers. Properties of /?-adic completions and cocompletions of spaces and
spectra will be discussed in [15].
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2. The main results. For p prime, let Ho*, Hoκ, and Hoκ/p denote
the full subcategories of Ho given respectively by the /7-adically complete,
the K*-local, and the K/p*-local spaces where K/p = K A MZ/p. Also
let HS*, HSK, and HSκ/p denote the full subcategories of HS given
respectively by the /?-adically complete, the ^-local, and the K/p*-locdl
spectra (see [10], [11], [24]). The AT*-local spectra include all ϋCO-module
spectra together with all spectra built from these by taking homotopy
inverse limits or homotopy direct limits. The K/p^Λocdλ spectra are
precisely the jp-adically complete #*-local spectra, and thus HSκ/p =
HSK Π HSp

A. The following theorem will imply our main results and will
be proved in §6.

THEOREM 2.1. For each prime p there exists a functor Φp: Hoκ -> HSκ/p

such that:
(i) There is a natural equivalence Φfl^X = Xp

A for X e HSK.
(ii) ///: V -» W is a map in Hoκ inducing mod-/? homotopy isomor-

phisms above some dimension, then Φpf: ΦpV ^ ΦpW.
(iii) The functor Φp preserves homotopy fibre squares.
(iv) If M is a pointed finite CW-complex with p-torsion H*(M; Z) and

with a K*-equivalence a: Σ'M -» M for some t > 0, then there is a natural
equivalence Ώco(ΦpW)M ~ WM for each W ̂  Hoκ.

2.2. The functor. Φp: Ho -* HSκ/p. For p prime and X e Ho, let
ΦpX = ΦpXκ where ΦpXκ is as above. One may assume that the #*-lo-
calization functor acts as the identity on Hoκ, and thus the resulting
functor Φ^: Ho -» HSκ/p extends the above functor Φ .̂ Now 2.1(i)
generalizes to give

THEOREM 2.3. For p prime and X e HS there are natural equivalences

Proof. By [11, §2] the map λ: (tt°°X)κ -* Ω°°A^ induces πi(20OX)κ «
tnβc°Xκ for / > 3. Thus there are natural equivalences

ΦpΏ™X = Φp(Q~X)κ - Φ ^ Ω - ^ - (Xκ)£ - Xκ/p

by 2.1 and [10, §2].
Theorem 2.3 immediately implies the following faithfulness and

uniqueness result for Ω00: HS -> Ho.

COROLLARY 2.4. If f and g are maps of spectra with Ω00/ ^ Ω°°g in Ho,
thenfκ/p ^ gκ/p for each prime p. If X and Y are spectra with Ω°°X — Ώ°°Y
in Ho, then XK/P ~ ^κ/P f

or each prime p.
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Let HSκ/p[n, oo) denote the full subcategory of HS given by the

(n — l)-connected sections of /7-adically complete #*-local spectra for an

integer n. Then ( ) K / P

: HSκ/p[n, oo) -> HSκ/p is a categorical equiva-

lence since Eilenberg-MacLane spectra are X/p^-acyclic, and Theorem

2.3 implies

)00.COROLLARY 2.5. Up to natural equivalence, the functor Ω°

HSκ/p[n, oo) -> Ho has a left inverse. Consequently, it is faithful and

carries distinct homotopy types of spectra to distinct homotopy types of

spaces.

We now give our main faithfulness theorem for Ω00. For a spectrum

X e HS, let u: X -> XQ denote the rationalization map with XQ =* X Λ

MQ.

THEOREM 2.6. For an integer n, let X, Y e HS be (n - 1)-connected

spectra such that Y ~ L[n, oo) for some K*-local spectrum L e HSK.

Suppose thatf: X-* Y is a map such that Ω00/ = 0 in Ho. Thenfp

A = 0 in

HS for each prime p, and consequently f factors as a composition
U V

X -> XQ -> Y for some map v in HS.

REMARK 2.7. This theorem and its proof remain valid when the

hypothesis Y — L[n, oo) for some K^-local spectrum L e HSK is replaced

by Yp

A is in HSκ/p[n, oo) for each prime p.

Proof of 2.6. For each prime p, fκ/ : Xκ/ -> Yκ/p is trivial by 2.4,
fa β

and thus the composition X -> Y -> 1^Λ -> ϊ ^ / / ? is trivial where a and /?

are the canonical maps. Since β is equivalent to the canonical map

L[n, oo)p -> Lp , it follows that /?*: ^ ^ -> ^K/P

 λ% a n isomoφhism

for i > n and is a monomorphism for ι = n and has τrίί^
Λ = 0 for / < n.

Thus the composition af: X -> Yp

A is already trivial, and therefore

/ / = 0: Xp

A -* Yp

A. The rest of the theorem follows from 2.8 below.

LEMMA 2.8. For a map g: V -> W in HS, the following conditions are

equivalent:

(i) For each prime p, gA = 0 in HS.

(ii) The map g factors as a composition V -> VQ -» W /̂or 5<9m̂  m ψ y
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Proof. Clearly (ii) implies (i). Using the presentation of Π^ Wp

A as the
function spectrum F(Σ~ιMQ/Z, W)9 we obtain a cofibre sequence

F(MQ,W) -» W^ Y\Wp
A

with the canonical maps in HS. Now (i) implies that g factors through the
rational spectrum F(MQ, W) and this implies (ii).

2.9. Phantom maps of spectra. For V, W G HS, there is a natural

short exact sequence

0 -> Π E x t K - i ^ ® Q,τrnW) -> [VQ9W]
n

-» Π ϋom(τrnV® Q,irnW) -* 0
n

which is easily derived using the splitability of VQ into a wedge of rational
Moore spectra. Thus it is usually straightforward to construct the possible
maps g: V -> W satisfying conditions (i) and (ii). Moreover, these maps
are usually the same as the phantom maps from V to W9 i.e., the maps θ:
V -> W such that θy = 0 for each map γ from a finite CW-spectrum to V
(see [22]). In more detail, suppose that W has finitely generated homotopy
groups, or more generally suppose that the groups Hom(β, trτiW) vanish
for all i and that the groups TTJWP

A are finitely generated over the /?-adic
integers for each prime p. Then conditions (i) and (ii) are equivalent to the
condition that g is a phantom map. This follows easily since each
phantom map into Wp

A is zero, and since each element of

determines a phantom map from VQ to W. Finally, we remark that
although the possible phantom maps between spectra are usually easy to
construct, they are also usually difficult to detect.

To show how Theorem 2.6 may be applied, we give

EXAMPLE 2.10. Let su G HS denote the section of Σ" 1 ^, with Ω°°sw
— SU G Ho. If X G HS is any 1-connected spectrum with Q ® π2iX = 0
for all i, then [XQ9 su] = 0 and thus Ω00: [X, su] -> [Ω°°X, SU] is mono by
2.6. Next, following Anderson [8], we suppose that X is the Eilenberg-Mac
Lane spectrum H(Z92i) for some / > 1. Since H(Z,2i)κ^ H(Q92i)9

there are isomorphisms

[H(Z92i)9su] * [H(Q92i)9su] * Ext(β,Z)
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and we let g: H(Z,2i) -> su correspond to a nonzero element in

Ext(<2, Z). Then g is an essential phantom map satisfying the conditions

of 2.8, and Theorem 2.6 does not say whether Ω°°g is essential or trivial.

However, on examination we find that Ω°°g is essential for i > 1 and is

trivial for i = 1, because K(Z,2i)κ^ K(Q,2i) in Ho for i > 1 and

because [CP 0 0, SU] » 0.

We next give our main uniqueness theorem for infinite deloopings of

spaces.

THEOREM 2.11. For an integer n, let X, Y e HS be (n - Vj-connected

spectra such that Y — L[n, oo) for some K^-local spectrum L e HSK with

Hom(ζ)/Z, πn^L) = 0. Suppose that Ω°°X = Ω°°7 in Ho. Ifn>3 then

XD — Ϋ for each prime p. Ifn<2 then for each prime p there exists a map
" Λ " Λ A A. A

h: Xp -> Yp inducing isomorphisms h*: tpπ2Xp « tpπ2Yp and h*: ^Xp «

π Ϋpfor i > 3, vvΛere ^ w thep-torsion subgroup functor.

REMARK 2.12. This theorem and its proof remain valid when the

hypothesis Y — L[n,oo) for some K*-local spectrum L e HSK with

Hom(<2/Z, πn_λL) = 0 is replaced by Ϋp is in HSκ/p[n,oo) for each

prime p.

Our proof will depend on the following lemma. Recall that for

E, X G HS the space Ώ°°(XE) is E*-local and thus there is a natural map

λ: (ti°°X)E -> Ω°°(X£) in # 0 . In the case £ = K, the results of [11]

show that there are isomorphisms λ*: t7r2(il°°X)K » / ^ ( Ω 0 0 ^ ) and

λ+ : πi(Ω0OX)κ& 77/Ω
00(Λr

A:) for / > 3 where t is the torsion subgroup

functor. This easily implies

LEMMA 2.13. For each spectrum X e HS and prime p, there are

isomorphisms λ*: tpπ2(Q">X)κ/p * tpir2Q">(Xκ/p) and λ*: τri(^X)κ/p

Proof of 2.11. For p prime, there is an equivalence Xκ/p -> Yκ/p by

2.4, and we form the associated diagram

XA Λ 7 Λ

/> />
I β iβ

ΛK/p ^ JK/p

using the canonical maps β. Since β: Yp

A -* Y^^ is equivalent to the

canonical map L[«, 00)^ -> L^Λ and since Hom(Q/Z,πn_ιL) = 0, there

are isomorphisms /?*: 77,1^ « πiYκ/P f°Γ ' ^ w a n c * ^, 1^Λ = 0 for i < n.
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Thus, since Xp

A is (n - l)-connected, there is a map h: XA -> Yp

A

pp

making the above diagram commute. To prove the case n > 3 of 2.11, it
will now suffice to show that /?*: πέXp

Λ » tniXκ/p for i>n, and to prove
the case n < 2 it will suffice to show that β*\ πtX^ « ^Ϊ^K/P f°Γ * ̂  3
and β*: tpπ2Xp

A « tp7τ2Xκ/p. Consider the canonical diagrams

and note that the left maps of the diagrams are equivalent since Ώ^X ~
Ω°°7. Moreover, the upper maps are isomorphisms for i > 2 by [15], and
the lower maps are isomorphisms for / > 2 and induce isomorphisms of
/7-torsion subgroups for / = 2 by 2.13. Now since /?*: τr/l^

Λ -> τTiYκ/p is
an isomorphism for / > n, it easily follows that /?*: iΓ Xf -> ̂ iXκ/p has
the required properties.

The following theorem generalizes Adams' [1] result on the existence
of ^-equivalences ΣιMZ/pj -» MZ/pu and shows the generality of

THEOREM 2.14. // 7 e HS is a finite CW-spectrum with p-torsion
H*(Y; Z), then there exists a K^-equivalence ΣΎ -> Ywith t > 0.

Proof. By induction it suffices to construct a ^-equivalence ΣΎ -> 7
for / > 0 when ΣnMZ/p -> Jί -> 7 is a cofibering of finite CPF-spectra
with a A^-equivalence /?: ΣSX -> X for 5 > 0. Let θ be the automorphism
of the group [(ΣnMZ/p)κ, Xκ] determined by the commutative diagram

Σr{Σ"MZ/p)κ % ΣrXκ

4 - 4 =

(Σ"MZ/p)κ '$ Xκ

using an iteration of β and of an Adams map for some r > 0. Since Xκ

has finite mod-/? homotopy groups by [10], θq = 1 for some # > 0. Thus
there is an equivalence ΣqΎκ ~ Yκ, and there is a ^-equivalence ΣΎ ->
7 for some / > 0 since [7, Y]. -» [7^, 7^]^ is onto for sufficiently large i
by [13, Proposition 1.4].

Let M be any pointed finite CW-complex with /7-torsion H*(M; Z)
and with a ^-equivalence a: Σ*M -> M for some / > 0. For a AΓ̂ -local
space W e //b^, the equivalence α # : W^M ^ ΩWM gives an Ω-spectrum
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with Ω°°£^(WM) = WM, and 2.1(iv) gives WM =
ά. Applying Φ^ to these equivalences, we obtain

THEOREM 2.15. There are natural equivalences of spectra B™(WM) =*
Φp{WM) = (ΦpW)Mfor W e Hoκ.

Thus, up to equivalence, the spectrum B™(WM) does not depend on
the choice of a. We conclude by introducing

2.16. Ω00-approximations of maps. For an integer n and spectra
X e i/S and 7 e HSκ/p, each map /: Ω°°X[«, oo) -» Ω°°7[w, oo) in Ho
has a Ω°°-approximation Af: Ώ°°X[n, oo) -> 2°°Y[n, oo) obtained by
applying Ω00 to the composite of u[n, oo): ^Γ[π, oo) -» Xκ/p[n, oo) with
(Φ^/XH, oo): Xκ/p[n, oo) -> 7[«, oo). If / is already an infinite loop
map, then Af = /. If /': Ω°°X[«, oo) -> Ω°°7[w, oo) and g: Ω°°7[«, oo) ->
Ω°°Z[H, oo) are maps in Ho for Z e #£*//» then Λ( ff) = (Af)(Aff) and
A(g°f) = (^4g)°(^4/). If A: Ω°°ίΓ[«, oo) -> Ω°°X[/ί, oo) is an infinite
loop map with W e i/S, then A(f ° h) = (Af)° h. Two maps 0, <p:
C -> /) in //o are called p-adically related if for each j > 1 there exists «y

such that

/9 ~ CD ' CM(Z/pJ,n) _^ r\M(Z/pJ,n)

for n > πj.

THEOREM 2.17. ///: Ω 0 0 ^^, oo) -* Ω°°7[«, oo) w β map in Ho with
X e ifS απd 7 G HSK/p, then Af is an infinite loop map p-adically related
to f. Moreover, Af is the only such map when 7 has finite mod-p homotopy
groups.

Proof. For M as in 2.1(iv), ((Af)κ)
M = (fκ)

M since Φp(Af) = Φpf,
and thus (Af)κ is /?-adically related to fκ. Hence Af is />-adically related
to / since w*: 7r^°°7[«, oo) « TΓ/(Ω007[A2, OO))^ for ι > /i by [11]. Now let
a, β: X[n, oo) -» 7[«, oo) have Ω°°α ^-adically related to Ω°°)β. Then for
each j > 1, <x#, β#\ X[n, oo)M -> 7 M have Ω°°α# = Ω00^* when M =
M(Z/pJ, n) for sufficiently large «. Thus a# = β# by 2.4 since 7 M e
HSκ/p. Since 7 is /7-adically complete with finite mod-p homotopy
groups,

AY}.

Hence a = β: X[n, oo) -> 7, and the theorem follows.
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3. Examples. Applying the main results of §2, we now derive examples
showing uniqueness of infinite deloopings, faithfulness of Ω00, and non-
existence of phantom maps. These examples include results of Adams-
Priddy [7], Madsen-Snaith-Tornehave [19], and Anderson [8] as special
cases.

As in [18], for an integer q with \q\ > 1, let JU(q), JO(q\ JSO{q\
J(q), and J(q) be the spaces given respectively by the homotopy fibres of
the maps ψ« - 1: BU -> BU, ψ* - 1: BO -> BSO, ψ« - 1: BSO -*
BSO, \pq - 1: BO -> 5Sρin, and ψ* - 1: BSO -> BSpin. Recall that
JU(q) - Q">Mq), JO(q) - Q~Mq), JSO(q) - ^jso(q), J(q) -
Ώ,°°j(q), and J(q) =* Ω°7(<jr), where the indicated spectra are obtained as
homotopy fibres of the maps \pq — 1 on corresponding connective jSΓ-theo-
retic spectra localized away from q. For an (n — l)-connected spectrum L
and endomorphism φ: πnL -+ πnL, let Lε be the homotopy pull-back

φ λ

spectrum of H(πnL, n) -» H(πnL, n) *- L where λ is the Postnikov map.

THEOREM 3.1. Le/ Jί e ^ 5 6^ α connected spectrum and q be an integer
with \q\ > 1.

(i) // Ώ^X = /[/( 9 ) 5 /Λe/2 X~ju(q)φ where φ: irju(q) -> wjiiίςf)
is multiplication by a divisor ofq—1.

(ii) // Ω0 0^ — JO(q) with q odd, then X is equivalent to one of
the spectra jo{q\ j(q) X i/(Z/2,l), jso(q) X H(Z/29l), and ]{q) X

(iii) // Ω°°X s JSO(q) = /(<?) w//A ήr 6>JJ, /Λ^ X ^ equivalent to one
of the spectra jso(q), j(q), andj(q) X i/(Z/2,l).

(iv) // Ώ°°X « J(^), /Λew X^j(q).

Proof, These follow from Theorem 2.11 which provides respective
maps Xf ~>ju(q)p\ Xf ->jo(q)p\ Xp

A ^jo(q)p\ and Xp

A ]
/p 9 "*p J^y^l/p > **p J^W/p 9 «*"*-* '*p

inducing Tr-isomorphisms for / > 2. Part (iii) also requires the equivalence
Λ(ί)-Λ(9)from[18,p.l4].

Theorem 2.11 also implies the following generalization of Adams-
Priddy's result on the uniqueness of infinite deloopings of bsoA and
bsup\

THEOREM 3.2. Let X Ξ HS be a connected spectrum and let p be prime.
(i) // Q°°X « BUp

A, then X = (buA)φ where φ: π2buA -> π2buA is
multiplication by 0 orpr for some r > 0. If Ώ°°X =* BU[n, cc)A for n > 3,

= bu[n, oo)A
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(ϋ) // Ω°°* = Up

A, then X=(up

Λ)φ where φ: irlUp

A -» πlUp

Λ is

multiplication by 0 or pr for some r > 0. If Ω°°X = U[n, oo)p

Λ for n > 2,

thenX^ u[n, oo)A.

(iii) // Ώ°°X = BO2

Λ, then either X = bo£ or X = bso£ X H(Z/2,1).

// Ω°°X = BO[n, oo) * with n > 2, then X = bo[n, oo) * .

(iv) // Ω 0 0 * = S 0 2

Λ , /A<?« either X = Λ?2

Λ or X = 5/>/«2

Λ X # ( Z / 2 , 1 ) .

«, co),Λ wίί/i n > 2, ί/ien Jf = so[n, oo)/.

(v) // Ω°°X = (SO/U)£, then X = ( ( w / « ) ; ) φ wΛere φ: τr2(

-^ ττ2{so/u)p is multiplication by 0 or /?' /or some r > 0. //

(SΌ/ί/)[/i, oo)/ wι/A n > 3, ώe/i ΛΓ « (so/u)[n, oo)/.

(vi) // Q">X=(U/Sp)£9 thenX~((u/sp)p

A)φ where φ: ^{

-» ^ι(u/sp)^ is multiplication by 0 or /?r /or 5ome r > 0. // Ω°°Jf =

( ί / / 5 » [ « , o o ) ; with n>2,X~ (u/sp)[n9 o o ) ; .

(vii) // Ω°°X = 55p[π ? oo),Λ with n > 1? ^eπ X = fap[π, oo)/.

(viii) // Ώ°°X = 5p[>2, oo)p

Λ wi/A /i > 1, /Ae« X « ψ [ w ? oo)/.

(ix) // Ω°°X « (Sp/U)£ with p odd, then X = ({sp/u)£)ψ where φ:

£ is 0 or ^ r /or ίome r > 0. // Ω°°X =

(x) // Ω-Jr - ( ϋ / 0 > ; , /A«ι X - ( ( t //o) ; ) φ vvÂ re φ: mx{u/o)$ -+

*πx(u/o)p is multiplication by 0 or pr for some r > 0. If Ώ^X ^

(U/O)[n, oo) ; with n>2, then X = (w/o)[w, oo) ; .

Using this theorem we shall prove the following P-local generalization

of the Adams-Priddy uniqueness theorem where P is an arbitrary finite

set of primes. The original result [7] was for a single prime and applied to

BU, BSU, BO, and BSO. The P-localization of a nilpotent space Y e Ho

or spectrum Y Ξ HS is denoted by 7 ( P ) .

THEOREM 3.3. Let X G HS be a connected spectrum and let P be a

finite set of primes.

(i) // tt°°X = BU(P) and if the generator x e #2(Ω°°X; Z//>)

x^7 # 0 for each p e P, /Â w Jί = 6iι ( P ). // Ω°°X^ 5ί/[w, oo) ( P )

π > 3, then X — bu[n, oo) ( P ) .

(ii) // Ω°°X = £/(P) and if the generator x e ^ ( Ω 0 0 ^ ; Z/p) Aαs /Ae

Dyer-Lashof Qιx Φ 0 /or each odd p e P αnrf β 2 x ^ 0 wAe« /? = 2 G P,

^ = w ( P ). // Ώ^X - U[n, oo) ( P ) w/ίA n > 2, then X - u[n, oo) ( P ) .

(iii) // Ω°°X ^ BO{P) and if the generator x e H^Ώ^X; Z/2) Aαs

# 0 wA^ 2 G P, ίÂ Λ JSΓ = Z?o(P). // Ω°°Z - 50[w, oo) ( P ) with n > 2,

= Z?o[«, oo) ( P ).
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(iv) // Q°°X~SO{P) and if the generator x e= H^X; Z/2)

has Q2x Φ 0 when 2 G P (or the non-zero primitive element y e

H3(Ω°°X; Z/2) has Sqιy Φ 0 when 2 e P), ίΛew X = so ( P ). // Ω°°X =

SΌ[«, oo) ( P ) w//Λ w > 2, then X ~ so[n, oo) ( P ) .

(v) // Ω°°X « (SO/U)(P) and if the generator x e #2(Ω°°X; Z/p)

Aαs x* Φ 0 /or eαcΛ odd p ^ P and Q4x Φ 0 when p = 2 e P (or the

non-zero primitive element y e H6(Ώ,°°X; Z/2) Λβ5 S q 2 ^ Φ 0 when p = 2

e i > ) , rΛβπ X^(SO/U)iP). If Ω°°X~(SO/U)[n,oo)(P) with n > 3,

X = (so/u)[n, oo)(P).

(vi) // Ω°°X = (U/Sp)(P) and if the generator x e ^ ( Ω 0 0 ^ ; Z/p)

gxjc # 0 for each odd p e P α«rf β 4 x # 0 wΛeπ p = 2 e P, then

X=(u/sp){Py If Ω^X = (U/Sp)[n,oo)(P) with n > 2, ώαt X ^

(vii) // Ω 0 0 ^ ~ BSp[n, oo) ( P ) w/YA « > 1, /Λ̂ « X = fo/?[«, oo) ( P ) .

(viii) // Ω 0 0 ^ = S/?[Λ, OO) ( / ) ) with n>\, then X = .yp[«? oo)(/,}.

(ix) // Ω°°X = (Sp/U){P) and if the generator x e //2(Ω°°X; Z//?)

Λ:^ ^ 0 /or ^cΛ oJJ e P , /Aew X « (sp/u)(P). If Ώ°°X =

«, oo) ( P ) wzYA « > 3, ί/ιe« X = (ΛP/W)[«, OO) ( P ) .

(x) // Ω°°X s (U/O){P) and if the generator x e H^ίl^X; Z/p) has
Qιx Φ 0 for each odd p G P α«J c2 =£ 0 wΛew /? = 2 e P,

(u/o){Py If Ω°°X = (U/O)[n, o o ) ( P ) wi/A « > 2,

Proo/. In part (i), the condition Ώ°°X = £ t / ( P ) implies Ω 0 0 ^ / -

BUp

A for each J ? G P . Thus Xp

A - buA by 3.2(i) and the hypothesis on

H*(Ώ°°X; Z/p). Hence X - bu(P) by the following theorem. The other

parts follow similarly.

THEOREM 3.4. Let L be one of the spectra KO[n, oo) or K[n, oo) for an

integer n. For an (n — l)-connected spectrum X and set P of primes,

suppose that Xp

A — Lp for each p e P and that π*X ~ TT + L ( P ) . // P is

finite, then X ~ L(py If P is infinite, then there are maps X —> L ( P ) and

L ( P ) -» X whose homotopy fibres have finite homotopy groups.

This will be proved in 3.14.

REMARK 3.5. Applying Theorem 3.3 to the spectrum bso® which

satisfies Ω^^o^— BSO, we deduce that bso^^P) ^ bso^P) for any finite set

P of primes, generalizing the result of Adams-Priddy for a single prime.

However, bso®* bso by [4, p. 146], so our finiteness assumption on P
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cannot be omitted. Theorem 3.3 clearly remains valid when the P-localiza-

tion 7 ( P ) is replaced by the P-adic completion Yp

A = Πp e P YP

A, and the

finiteness assumption on P can then be omitted.

Let C and D be among the spaces considered in 3.3, but with P

possibly infinite. Then C is equivalent to Ω°°(Σ'^)[ra, oo) ( P ) or

Ω0 0(ΣzΛ:θ)[m,oo) (p ), and D is equivalent to Ω°°(ΣjK)[n9 oo) ( P ) or

Q°°(ΣJKO)[n9 oo) ( P ) . We call C out of phase to D if C or D involves K

and i — j is odd, or if C and 2) involve KO and / — j = 3, 5, 6, or 7 mod

8. We call C //i weak phase to D if C and Z> involve # 0 and i — j = 1 or

2 mod 8. The following theorem generalizes faithfulness results of

Madsen-Snaith-Tornehave [19] for Ω00 and non-existence results of

Anderson [8] for phantom maps.

THEOREM 3.6. For an arbitrary set P of primes and n > 1, let X,

Y G HS be connected spectra such that, up to equivalence, ίl°°X and Ω°°Y

are among the spaces: BU[n, oo) ( P ) , U[n, oo) ( P ) , BO[n, oo) ( P ) ,

SO[n, oo) ( P ), (SO/U)[n, oo) ( P ), ( t / / ^ ) [ π , oo) ( P ), BSp[n, oo) ( P ),
5p[«,oo) ( P ), (Sp/ί/)[w, oo)(P), tfwd (t//0)[/i,oo)(P). Suppose that the
mod-/? (co)homology of Ώ°°X and Ώ°°Y satisfies the conditions in 3.3 for

each prime p e P. 77zew:

(i) Ω00: [X, Y] -> [Ώ°°X, Ω°°7] w mow.

(ii) // Ω°°X/5 owί o//ιΛαsβ ro Ω°°7, /AeΛ [X9Y] = 0.

(iii) 7/ Ω°°Ύ is not in weak phase to Ω°°Y, then TΓ̂ : [X, 7] ~>

[ β ® ^*^, β ® ^*7] w mo«o.
(iv) ΓAer^ are no non-zero phantom maps in [X, Y].

This will be proved in 3.11.

REMARK 3.7. Theorem 3.6 remains valid when the P-localization is

replaced by the P-adic completion, or when Ω°°X is allowed to have

higher connectivity than Ω°°y. However, parts (i)-(iii) can fail under the

reverse connectivity assumption. For instance, consider the standard

fibration of spectra

Z>w(P)-> # ( Z ( P ) , 2 ) -» φ , o o ) ( P )

for 2 G P and let (so/u)(P) -> H(Z{P)9 2) be the Postnikov map. Then the

composite map /: Oo/w) ( P ) -> w[5, oo) ( P ) is essential although Ω 0 0 / - 0,

Ω°°(5Ό/W) ( P ) is out of phase to Ω°°w[5, oo) ( P ), and / is not detected by

homotopy groups.
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To prove 3.6 we need the following result, due largely to Adams [4]

but covering additional cases. Let XG = X A MG for a spectrum X and

abelian group G.

THEOREM 3.8. For a torsion free abelian group A and integers n and z,

the groups [K[n, oo), KA]i9 [KO[n, oo), KA]., and [K[n, oo), KOA] are

naturally isomorphic to countable products of A9s for even i and to 0 for odd

i. The group [KO[n, oo), KOA]; is naturally isomorphic to a countable

product of Λ's for i = 0 or 4 mod 8, to a countable product of A/2A's for

i ΞΞ 1 or 2 mod 8, and to 0 otherwise.

Proof. For any X e //S there are natural exact sequences

0 -* E x t ( * , _ ! * , Λ) -> (#Λ) y JT -> Hom( f,.*, A) -> 0

0 -> Ext(^O, + 3 X,Λ) -> ( # O Λ ) 7 X ^ Hom(ϋ:θ / + 4 X,Λ) -> 0

of Anderson which may be obtained from the universal coefficient theo-

rem of [3] using the TΓ^AΓ-injectivity of iτ^KG and the τr*AΓ0-injectivity of

π*KOG when G is divisible. Since the ^-localizations ( = KO*-

localizations) of A^-oo, n — 1] and KO(-oo, n — 1] are given by

K(-oo,n — 1]Q and KO(-oo,n — 1]Q, the canonical map r: K -» KO

induces epimorphisms K*K(-oo, n - 1] -> ^ ϋ Γ O ( - o o , Λ - 1],

^ ^ ( - o o , /i - 1] -* KO*K(-oo, n - 1], and KO*K(~oo, n - 1] ->

KO*KO(-oo,n - 1]. By [4, p. 162], the map # * # [ « , oo) -> ϋ : * ^ is

mono, so ^ i Γ -» ίΓ+(-oo, w — 1] is epi. Hence the maps

K*KO[n, oo) -> ^ϋΓO, K0*K[n, oo) -> AΓO îΓ, and K0*K0[n, oo) ->

KO*KO are all mono with rational cokernels. By [5], ^AΓ is countably

free over TΓ̂ AΓ on generators of degree 0, and thus K0*K0 is countably

free over π*KO on generators of degree 0, since KO0KO c K0K and

KO*KO « T Γ ^ O ® KO0KO by [6]. This gives sufficient information on

the groups KtK[n, oo), K KOin, oo), KO^n, oo), and ^ 0 A:θ[«,oo)

to deduce the theorem from Anderson's exact sequences.

This proof also shows for any n that KO*KO[ny oo) is countably free

over π*KO on generators of degree 0, since KO*KO has this property and

KO*KO[n, oo) -> K0*K0 is mono with rational cokernel.

If Λ/2Λ Φ 0 and / Ξ= 1 or 2 mod 8, then there are uncountably many

/ e [JSΓO[/I, oo), AΓOΛ],. with /*: π*K0[n, oo) -> π*+iKOA zero. This

follows when Λ = Z by Theorem 3.8 since there is only one non-zero /*

compatible with the action of η and the [MZ/2, -]*-periodicity, and it

follows in general by naturality under Z -> Λ. However, the other homo-

topy classes in 3.8 are detected by homotopy groups.
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COROLLARY 3.9. If X equals K[n, oo) or KO[n, oo) and Y equals K or
KO, then

7 7 * : [

is mono, except in the above-mentioned case.

Proof. By Theorem 3.8 the map [X, 7Λ]. -> [X, YAQ]t is mono in the

required cases.

Theorem 3.8 also permits a very short proof of Anderson's result [8]

on the non-existence of phantom cohomology operations in connective

Λ-theory.

COROLLARY 3.10. Let X equal ^K or Σ'KO for some i and let Y equal
K or KO. Iff: X[m, oo) ( P ) -> Y[n, oo) ( P ) is a phantom map for a set P of
primes and integers m, n, thenf — 0.

Proof. Let k = min{m, n) and consider the exact sequence

••• -> [ΣX[m,oo)(P),Y[k,n-l]iP)] -* [ X[ m, oo)(P)) Y[n, oo)(P)]

-+ [X[m,oo)(P), Y[k,oo)(P)] -> •••.

Since the first group is finitely generated over Z ( P ) and the third group is

a product of Z ( P ) ' s or Z/2's, the second group is reduced, i.e., has no

non-zero divisible subgroup. Thus it contains no non-trivial phantom map

by 2.9.

3.11. Proof of Theorem 3.6. Let L and M be the spectra of form

(&K)[n, ao) or (Σ'KOftn, oo) such that Ώ°°X = Ω°°L(P) and Ω°°Y =

Ω°°M(P). Then for each p ^ P, Ω°°X/ = Ω°°L^Λ and Ω007/,
Λ « Ω°°M/,

and thus X / « L/ and 7/7

Λ « M / by 3.4. Let /: I ^ F b e a map

satisfying one of the conditions: (i) Ω00/ = 0; (ii) ίi°°X is out of phase to

Ω°°y; (iii) Ώ°°X is not in weak phase to Ω°°y and /*: β 0 77*X -> β Θ ττ^7

is zero; (iv) / is phantom. Then fp

A: Xp

A -> Yp

A is zero for each p EL P

by 2.5, 3.8 with Λ = Z / , 3.9 with Λ = Z / , and 2.9. Thus / factors as a

composition Jf -> X ρ -> 7 by 2.8. There are maps X -» L ( P ) and M(P)

-> 7 whose homotopy fibres have finite homotopy groups by 3.4, and

there is an associated factorization X -> L(P) -> Λ^ -> M(P) -> 7 of /.

The resulting map L ( P ) -> M ( P ) is phantom by 2.9 and thus zero by 3.10.

Hence / = 0.

To prove Theorem 3.4, we need results on the self-equivalences of

L/p°° = LZ/p°° for p prime where L is one of the spectra K[n, 00) or

KO[n, 00) and where Z/p00 is the /?-torsion subgroup of β / Z . Consider
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the set of degrees d such that πdL/pGC ~ Z/p™ and let d(i) denote the

/th such degree in increasing order. A set {ψi}ι<i<k of endomorphisms

φy: πd(i)L/p°° -> π^L/p00 is called realizable if there exists a map /:

L/p 0 0 -> L/p 0 0 inducing φz for 1 < i < k. An endomorphism φ^ is called

compatible with {φ,} x < i ; < k if the set {φ i} 1 < ι < k is realizable. The follow-

ing lemma will give sufficient control over the self-maps of L/p00 or L*.

Some related results are given by Adams in [4].

LEMMA 3.12. There is a sequence of finite subgroups St c 7Γd{ι)L/pco

such that each realizable set {φ, } i < , < * determines an endomorphism φk of

Sk whose extensions to fnd(^k)L/pQO are precisely the endomorphisms compati-

blewith { φ j i ^ * . If{ψι}i<i<Oo is a set of endormphisms with {φι}ι<i<k

realizable for each k < oo, then there exists a unique map f: L/p°° -> L/p00

inducing φ( for 1 < i < oc.

Proof. We suppose that L = KO[n, oo), but our proof can be adapted

to K[n, oc). The canonical map L/p 0 0 -> KO/p™ induces isomorphisms

[L/p 0 0 , L/p0 0] - [ L / p ^ t f O / p 0 0 ] - [KO/p">9KO/p">]9

and there is a universal coefficient isomorphism

as in the proof of 3.8. For each i > 1, let gι G π4_d{ι)KO ~ Z be a

generator and note that g,: KOd0)KO/p°° « KO^KO/p™ since the

TΓ^AΓO-module KO*KO/p°° is a direct sum of copies of π^KO/p00. For

each map Z>: KO/p™ -> KO/p°° the diagram

^ KO^KO/p00

commutes where /z is the Hurewicz monomorphism and &# corresponds

to 6 via the universal coefficient isomorphism. Let (J, c KO^KO/p™

denote the image of gz/z. It suffices to show that Gk Π (Gλ + + Gk_λ)

is finite for each k and to let Sk correspond to its counterimage under gth.

Choose r > 1 relatively prime to p. Then ψrw = re(i)w for each w G Gι

where e(i) = (4 — d(z))/2, and we let ^ G Z ( ; ? )[x] be a polynomial with

ξk(re{i)) = 0 for 1 < i < k and ^(/^W) = ^^ for some j > 0. Using the

operator ξk(ψr), one shows that Gk Π (Gx 4- +(?Λ_i) is annihilated

by pJ and is therefore finite since Gk » Z//?00. Next, the existence of /



16 A. K. BOUSFIELD

follows easily since π4KO/p°° « Z/p°° is divisible. For uniqueness of / it
suffices to show b -0 when b: KO/p°° -» KO/p™ is a map with b* = 0
on πcJ(i)KO/pcc for each / > 1. For 1 <y < oo, there is a ^-equivalence
,4: ΣgMZ/pJ -> MZ/pJ of Adams [1] with # > 0, and there is an induced
isomorphism

Thus 6* = 0 on π4tKO/p°° for all /, and b#: KO4KO/p°° -> π4KO/p°°
vanishes on the image of the canonical map φ π^KO/p™ -> K04KO/pco.
This map is onto since it is a quotient of the isomorphism @πAtK0Q -»
KOAKOQ. Thus 6# = 0 and b « 0.

Using the notation of 3.12, we have

LEMMA 3.13. // d(j) - d(l) < 2p - 2 then Sj = 0. ///: L//?00 -•
L//700 induces an automorphism/*: TΓ̂  ^L/p00 « π^-.L/p00 for each] with

- d{\) <2p-2, thenf: L/p°° - L//?00. // {φjx^^^ ώ * mzfc-
5eί of automorphisms, then φk: Sk -> S^ w αw automorphism.

Proof. The first part follows since L/p00 splits as in [2] for p odd and
since y = 1 for /? = 2. The second part follows using the Adams periodic-
ity of mod-/? homotopy groups of L/p°° and knowledge of its k-in-
variants for p = 2. The third part follows from the preceding parts.

3.14. Proof of Theorem 3.4. For each p e P, X//?00 = L/>°

{Jy— Lp , and X ρ — L^ since 7Γ%X« π*L{Jy Thus there are cofibre

sequences

X -4 LQ Λ L/P 0 0

M V

L -> L -> L/P°°

inducing short exact sequences

for each / > 1. Assuming that P is finite, we construct isomorphisms
(α,,/?,, γ,) for i > 1 such that the above diagram commutes and the
/^-components of {Y/} i < z < ^ a r e realizable for each p e P. Let «! be an
arbitrary isomorphism and let β1? y1 be induced by α^ Given (a^β^y^
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for 1 < i < k9 let Sk c ττd{k)L/Pco be the sum of the Sk c πdik)L/P°° for
/? e P, and let γΛ be the isomorphism induced by {Ύi}ι<i<k. It induces
an isomorphism άk: πd(k)X Θ Z//i « πd(k)L(P) <8> Z//i where w = | ^ | .
Since P is finite, the quotient map Z ( P ) -• Z//i restricts to an epimor-
phism ZfPy -> ZΛ* for units. Thus we can choose ak: πd{kyX « πd^L^Py
inducing δΛ and then let βk, yk be induced by <xk. Then γ^ extends % and
is compatible with {γ, } i ̂  , < * on p-components for p e P. After complet-
ing this inductive construction, let 6: LQ- LQ and c: L/P 0 0 = L/P 0 0 be
the equivalences induced by {βι} , > x and {γ,}, > i Now c/ ~ ι;6 by 2.9 and
we obtain a: X ^ L ( P ). When P is infinite, similar methods give the
required maps X -> L ( P ) and L ( P ) -> X

4. ^-Localized Moore spectra. Recall that Adams constructed in-
equivalences A: ΣqjMZ/pJ -» MZ/pj in i/S for /? prime and 7 > 1,
where qj = Maxίδ,!^"1} for p = 2 and 4y = 2(p - \)pj~ι for /? odd
(see [1]). These A's induce equivalences Aκ: Σqj(MZ/pu)κ = (MZ/pJ)κ

demonstrating the periodicity of the spectra (MZ/pJ)κ. However, these
A's are not canonically determined, and the Aκ's need not be compatible
for successive j 's. In this section we construct a compatible sequence of
equivalences a: Σqj(MZ/pJ)κ = (MZ/pj)κ together with an associated
system of Adams-like maps which will be used to prove Theorem 2.1.

LEMMA 4.1. For p prime, j > 1, and n = 0 mod^y, there are isomor-
phisms πn_2(MZ/pJ)κ~0, πn_ι(MZ/pJ)κ^Z/p^ and τrn(MZ/pk)κ

« Z/pj θ G where G = 0forp odd and G = Z/2 for p = 2.

Proof. By [10, §4] there is a fibre sequence

in i/S where r = 3 for /? = 2 and where r is a positive integer generating
the group of units of Z/p2 for p odd. The homomorphism (ψr — 1)*:
miKO/pj -> miKO/pj is zero for « - 2 < / < « 4- 2. Thus ^(MZ/pJ)K

has the desired properties for /? odd, while πi(MZ/2J')κ is isomoφhic to
0 for 1 = n - 2, to Z/2^ for 1 = π - 1, and to Z/2^ Φ Z/2 or Z / 2 7 + 1

for / = n. Since T;2 acts nontrivially on πnK0/2J\ η2 also acts nontrivially
on τrn_ι(MZ/2J)κ. Thus πn(MZ/2J)κ contains an element of order 2
which is not divisible by 2, and consequently πn(MZ/2J)κ « Z/2 y θ
Z/2.

Choose a sequence of maps

MZ/p A MZ/p2 -*•••-• M Z / y Λ MZ/pJ+1 -•
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in HS which is carried by Ho to the canonical sequence of injections of
Z/pJ's.

LEMMA 4.2. For p prime, j > 1, and n = 0 mod qj+\, the image of the
homomorphism eκ*\ πn(MZ/pJ)κ -> πn(MZ/pJ+ι)κ is pπn(MZ/pJ+ι)κ.

Proof. This follows by inspecting the homotopy exact sequence of the
cofibering

using the groups calculated in 4.1.

PROPOSITION 4.3. For p prime, there exists a sequence of equivalences
a: Σqj(MZ/pJ)κ = (MZ/pJ)κ forj > 1 such that the diagrams

\κ

 aθ^°a {MZ/pi)κ

commute in HS.

Proof. Let a: Σqι(MZ/p)κ -> (MZ/p)κ be induced by an Adams
map, and suppose inductively that the ^-equivalence a: Σqj(MZ/pj)κ

-> (MZ/pJ)κ has been constructed. Letting n = qJ+ι, consider the dia-
gram

ΣnMZ/pJ+ι -f> (MZ/pJ+ι)κ

and apply 4.1 and 4.2 to construct a map / such that the associated
diagram of τrw-groups commutes. Hence ε°σ = 0 where ε = f°Σne —
eκ°(a° o a) is the commutation error and σ is the indicated map in
the cofibering

ΣnS A ΣnMZ/pJ ^ Σ"+1S.

Thus there exists δ: Σn+1S -* (MZ/pJ+1)κ such that ε = δ ° T, and there
clearly exists μ: ΣnMZ/pJ+ι -+ Σn+1S such that τ = p Σ V Conse-
quently the diagram commutes when / is replaced by / = / — δ°μ, and /
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is a ^-equivalence since a ° ° a is. The inductive step is completed

by letting a: Σn(MZ/pJ+ι)κ -> (MZ/pJ+ι)κ correspond t o / .

Using our results on the surjectivity of the ^-localization map

[X9Y]i -* [Xκ,Yκ]i for sufficiently large / when X and Y are finite

CW-spectra (see [13]) we can deduce that each of the equivalences a:

Σqj{MZ/pj)κ -> (MZ/pJ)κ in 4.3 is induced by some ^-equivalence

A: ΣqjMZ/pj -> MZ/pj. However, to achieve the required compatibility,

we shall instead use the following lemma to construct our system of

Adams-like maps.

LEMMA 4.4. For each finite CW-spectrum Y, there exists a sequence of

K^-equivalences of finite CW-spectra Y = Yo -> Yλ -> Y2 -> whose

homotopy direct limit is the K^-localization of Y in HS. Thus colimJX, YJ*

« [X, Yκ]* for each finite CW-spectrum X.

Proof. Let Lo, Lv L 2 , . . . be a sequential listing of the homotopy

cofibres of the Adams maps ΣU: Σi+q*MZ/p -> ΣιMZ/p for p prime

and i G Z. By [10], a spectrum E G i/S is ^- loca l if and only if

[Lo E] = 0 for each / e Z. Let Yo = Y and suppose inductively that the

finite CW-spectrum Yn is given. Let Fn denote the X*-acylic finite

CW-spectrum V' i%fLitf for 0 < / < w, / G [L Z , YJ, and L ί f / = Lz. Then

construct Yn -> Yw+1 as the homotopy cofibre of a map i^ -* Yrt acting by

/ on each Lif. The homotopy colimit of the resulting sequence Y = Yo ̂ >

Yλ -> Y2 -> is ^- local by the above criterion, and the lemma follows

easily.

The following proposition will provide our system of Adams-like

maps of finite CW-spectra. For notational convenience, we take j > b

where b = 1 for p odd and b = 4 for p = 2.

PROPOSITION 4.5. For each prime /?, there exists an array of finite

CW-spectra WJ for j > b and 0 < i < p, together with K^-equivalences u:

Wj -> Wj+ι and a: ΣqjWj -> Wf+ι and maps λ: Wf -> W^λ in HS such

that Wj° = MZ/pi and the diagrams

a « upVap

ΣΊJW* -> Wi+ W V Σqj+1W -> W?
j j j j j

i ΣqJU i u i ev ΣqJ+ιe | λ

Σ
. . Λ a . ~ uVa

<7yτx/rί + i ^ W VtZ® \/ V ^ + i M / ^ Vff
j J j + 1 y'4-1 _/-(-1

commw/e.
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Proof. Let a: Σqj{MZ/pj)κ = {MZ/pj)κ for j > b be a compatible
sequence of equivalences, and for each j let

MZ/pJ = Vt° Λ ^ Λ ^ Λ . . . -> (MZ/pJ)κ

be a sequence of ^-equivalences of finite CW-spectra as in 4.4. For

j = b construct a finite subsequence

iviz./p — vvb -* vvb -+ —> vvh -* \iviz,/p ) κ

together with maps a: ΣqhWι

h

! ~> W^'+1 for 0 < / < p such that the dia-

gram

)κ
la la la | α

W\ - Wl - , . . . - , / ^ -> (MZ/pb)κ

commutes. Next for sufficiently large /, choose a map c such that the

diagram

commutes. Now the solid arrow diagram

MZ/ph V Σqh+ιMZ/pb U ^aP Wξ

I ix

MZ/pb+ι V Σqh+*MZ/pb+1 -> F̂VLi

commutes, and for sufficiently large k there is a map λ such that the two

subdiagrams commute. Let u: W®+1 -> Wjj+i denote the map tk\

MZ/ph+1 -> F/+ 1, and define λ: »^ -> H^+ 1 and a: Σ^Wb°+1 -> ^ + 1

from the diagram. Continuing in the obvious way, one inductively con-

structs the required array.

5. Cospectra associated with Moore spaces. Continuing toward a proof

of Theorem 2.1, we now obtain a system of cospectra associated with

Z/pJ-Mooτe spaces where p is a fixed prime. We work simplicially and

assume familiarity with the elementary theory of simplicial sets (see [20],
[17]). Let s.sets* denote the category of pointed simplicial sets and recall
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that each L G s.sets* has a geometric realization \L\ which is a pointed
CW-complex. Let

M{Z/pΛ) ̂  M{Z/p\\) ̂ M{Z/p\l) ̂ •-

be a sequence of cofibrations in s.sets* such that each \M(Z/p\\)\ is a
Moore space of type (Z/pJ\ 1) and such that the sequence is carried by Hx

to the canonical sequence of injections Z/p -» Z//?2 -» Z/p 3 -••...
Let S1 G s.sets* be the standard 1-sphere whose only non-degenerate
simplicies are a vertex and 1-simplex, and for n > 2 let Sn G s.sets*
denote the «-fold smash product S1 Λ AS1. For m > 1 and j > 1,
let M ( Z / ^ w ) = M ( Z / ^ , l ) Λ S f l 1 " 1 and let e: M(Z/pJ\m)-+
M(Z/pJ'+ι,m) denote e A 1. An augmented cospectrum X consists of
sequence of objects Xn G s.seta* and maps σ: S1 Λ Xn+ι -> X" for
w > 0, together with an object Xa G j.jeto* and map ε: Xa -» X°. A map
/: X -> Y of augmented cospectra consists of a sequence of maps fn:
Xn -> 7Λ such that /"σ = σ(l Λ/"+ 1) for each π > 0, together with a
map /α : J f -> Ya such that ε/α = f°ε. For an augmented cospectrum X
and object L G s.sets*, let X Λ L denote the augmented cospectrum with
( ^ Λ L)z = Γ Λ L and ( Z Λ L)α = Xa A L. As in 4.5 let b = 1 for /?
odd and let b = 4 for p = 2. Also let #7 = 2(p — l)pj~ι for /̂  odd and
let g7 = Max{8,2-7'"1} for p = 2. Our goal in this section is to prove

PROPOSITION 5.1. For each prime p, there exists an increasing sequence
of positive integers mj for j > b together with a sequence of augmented
cospectra P(j) and maps p: P(j) A SdJ -> P(j + 1) with dj = mJ+ι — m^
such that the following conditions hold: P(j)a = M(Z/pJ, mj)\ the maps ε:
P(j)a -> P(j)° and σ: S1 A P(j)n+ι -> P{j)n are K*-equivalences; the
maps ρa: M(Z/pj, m}) A SdJ -> M(Z/pJ+ι, mJ+1) equal e\ the maps ρn:
P(j)n A SdJ -> P(j + l)n are cofibrations; and for each j > b and n > 0
there exists a K^-equivalence Sι A M(Z/pJ\mj) -> P(j)n where i is the
integer with 0 < i < qj and n = -i mod qjm

The proof is completed in 5.5. We begin by obtaining a rigid simpli-
cial version of Proposition 4.5. A diagram

A
1
B

-» C
4

is called a pre-cofibration if it commutes and the induced map B UAC ^ D
is a cofibration.
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LEMMA 5.2. For each prime /?, there exists an increasing sequence of

positive integers nij forj > b together with an array of objects Bj e s.sets*,

forj > b and 0 < / < / ? , and an array of maps u: Bj -» Bj+1, a: Sqj A Bj

-> Bj+1, and λ: Bf A Sd; -> Bj+1 with dj = mJ+ι - m} such that the

following conditions hold: Bf = M(Z/pJ\ mf)\ the maps u: Bj -* Bj + ι are

K^-equiυalences and cofibrations; the maps a: Sqj A Bj -> Bj+ι are K*~

equivalences; the maps λ: Bf A SdJ -> Bj+ι are cofibrations; and the

diagrams

A Bj A Bj+ι

| l Λ «

Λ Bj+1 A Bj+2

(upAl)V(ap Al)i _ ,\f n j\ (upAl)V(ap Al)

B? A Sdή v(Sq^ A Bf A Sdj) -> Bf A

j e V ( l Λ e ) I λ

Bj+ι

are pre-cofibrations.

Proof. First construct a system of finite CW-spectra Wj and associ-

ated maps in HS satisfying the conditions of Proposition 4.5. Then

desuspend to give a system of pointed CW-complexes Xj and associated

maps in the pointed homotopy category Ho satisfying conditions like

those in the present lemma, but without cofibration properties. Then

inductively rigidify, using 5.3 below, to give the required system in s.sets*.

LEMMA 5.3. Let i: A -> B andf: A -> C be maps in s.sets* and let β:

\B\ -> X and γ: \C\ -> X be homotopy classes to some X e Ho such that

γ | / | = β\i\ in Ho. If i is a cofibration, then there exists an equivalence 8:

\D\ = X in Ho for some D e s.sets* together with maps g: B -> D and j :

C -» D in s.sets* such that the diagram

A

ι«
B

-* C

ij

D

is apre-cofibration with 8\g\ = β and δ\j\ = γ in Ho.

The proof is straightforward.
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5.4. Periodic systems of simplicial sets. Suppose henceforth that we are
given a system of objects Bj and associated maps in s.sets* satisfying the
conditions of 5.2. For j > b consider the infinite diagram

« a ••

i a

Bf i Bj
i a

Bf Λ Bj

where a vertical map X --> Y denotes a map Sqj A X -> Y. Now extend
the diagram infinitely to the right by inserting successive push-out squares,
and let Cy e s.sets* denote the colimit of each row. Let ε: M(Z/pJ\ nij)
-> Cj and a: Sqj A Cj -> Cy denote the induced maps, and note that they
are ^-equivalences. Next, for j > b consider the infinite diagram

Bf -» Bj -> ••• -+ Bf1

Bf

J J j

BJ -+ $ -* '" - Bf-1 - Bf

and extend the diagram infinitely to the right by inserting successive
pushout squares. Then for 0 < k < p let Dj0 e s.sets* denote the direct
limit of the (k + l)st row from the bottom. Let ε: M(Z/pJ, nij) -> Df,
a: SqJ A Of -» Df~\ and a: Sq; A Df -> Df~x for 1 < k < p - 1 be the
induced maps, and note that they are all ^-equivalences. Next observe
that our first extended diagram maps injectively to the present extended
diagram, and for 0 < k < p let d: Cj -> Df be the induced map.
Note that d is a cofibration and ^-equivalence. Moreover,a(l A d) = da
and dε = ε. Finally, observe that the objects D9 and the maps ap:
Sq;+1 A Of -> D9 and ε: M(Z/pJ\ rrij) -» Df can also be constructed by
starting with the diagram

Bf ^ Bf

iaP

Bf ^ Bf
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where a vertical map X -•> Y now represents a map Sqj+1 A X -» y. Thus
there is an induced map c: Z)? Λ S^ -> Cy + 1. Moreover, c is a cofibration
such that a{\ A c) = c(ap A 1) and φ Λ 1) = ε.

5.5. Proof of 5.1. For j > b, let C(j) be the augmented cospectrum
such that C(j)a = M(Z/pj, nij) and C(y)n = S1' Λ C, for w s -/ m o d ^
with 0 < / < qβ let D(j) be the augmented cospectrum such that D(j)a

= M(Z/pJ, rΠj) and £(7)" = Si A Df for π = A:̂  - 1 mod^ y + 1 with
0 < k < p and 0 < i < q}\ and let D{j) be the augmented cospectrum
such that D{j)a = M{Z/p\mj) and D(j)n = S* Λ D? for n =-i
modqJ+ι with 0 < / < qj+1. Let ί/: C(j) -> 2)(y), c: Z)(y) Λ 5^ ->
C(y + 1), and φ: ί)(y) -> D(j) be the obvious maps of augmented
cospectra, and note that d and c are termwise cofibrations while d and φ
are termwise ^-equivalences. Consider the infinite diagram

D(b + 1) -> •••

b(b) d-> D(b +1)

iψ

D(b)

where dc: D{j) --> D(j -f 1) denotes the termwise cofibration dc: D(j)
A SdJ -> D(jΓ + 1). Now extend the diagram infinitely to the right by
inserting successive pushout squares, and let

> P{b + l ) -

denote the bottom row of the extended diagram. One easily checks that
this sequence has the required properties. In particular, for each j > b

d

there are termwise ^-equivalences C(j) -> D{j) -» P(j), and thus there

are K* -equivalences

5' Λ M(Z/p\mJ)
l^Si Λ Cj = C(j)H - P(j)"

for 0 < / < ήfy and n = -i mod g..

6. Proof of Theorem 2.1. Our proof of Theorem 2.1 will depend on
certain natural constructions involving s.s. spectra and topological spec-
tra. As noted in [16, §2], these two types of spectra have equivalent
homotopy theories in the sense of Quillen [23], and their homotopy
categories are equivalent to HS.
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6.1. Preliminaries on spectra. An s.s. spectrum M consists of a
sequence of objects Mn e s.sets* together with maps σ: Mn A S1 -> Mn+ι

for n > 0, and a map of 5.5. spectra f:M->N consists of a sequence of
maps fn: Mn -> iVw in s.sets* such that σ(/rt Λ 1) = /π + 1σ for « > 0.
Similarly, a topological spectrum X consists of a sequence of pointed
spaces Xn together with pointed continuous maps σ: Xn A S1 -> Xn + 1 for
« > 0, and a m φ of topological spectra /: X -> 7 consists of a sequence
of pointed continuous maps /„: ^ -> Yπ such that α ( / B Λ l ) = / B + 1 σ for
ft > 0. The singular functor Δ(-) and the geometric realization functor |-|
apply to spectra in the obvious way and provide adjoint functors between
the categories of s.s. spectra and topological spectra. If M is an s.s.
spectrum, then \M| is a topological spectrum but need not be a CW-spec-
trum since σ: \Mn\ A Sι -» |AfΛ+1| need not be an isomorphism from
\Mn\ A S1 to a subcomplex of |M r t + 1 | . However, tel|M| is a CW-spectrum
where tel is the telescope functor of Adams [3, p. 171]. A topological
spectrum X is called an ti-spectrum, or fibrant, if the structural maps σ':
Xn -> ΏXn + λ (adjoint to σ: Xn A S1 -> ^ Λ + 1 ) are weak equivalences for
n > 0. An 5.5. spectrum M is called fibrant if each Mπ is a Kan complex
and the structural maps σ': Mn -> ΩMW+1 are weak equivalences for
n > 0, where ΩMrt+1 denotes the pointed simplicial function complex
map^S 1 , Mn+ι). Homotopy groups are defined by π*X = colimτr++AIJίrt

for a topological spectrum X, and by π*M = π*\M\ for an 5.5. spectrum
M. A map of topological or s.s. spectra is a weak equivalence if it induces
an isomorphism of homotopy groups. If M is an s.s. spectrum such that
each Mn is a Kan complex, then there is a natural weak equivalence
M -> ΩM where ΩM is fibrant with (ΩAf)n = colim|.Ω

/Afπ+|.. Thus if M
is any s.s. spectrum, there is a natural weak equivalence M -> ΩΔ|Af |
where ΩΔ|M| is fibrant. For an s.s. spectrum N and for / e s.sets*, let

iV) be the obvious s.s. spectrum with map^/, 7V)W =
, Nn) for each « > 0. For a tower

of fibrant s.s. spectra, we obtain a homotopy inverse limit telirn^^ Mj

by dualizing the mapping telescope construction. Specifically, we con-
struct te l im^^ Mj by forming the pull-back diagram

I («*<>. 4 )
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where Δλ is the standard simplicial 1-simplex, Δ^ = Δλ U *, dt is the ith
face operator, and π(xb, xb+v...) = (πxb+1, πxb+2,...). Note that
telimy ^ ^ M 7 is a fibrant 5.5. spectrum. For a tower Λ^ <- Xb+1 <- •
<- X7f <- X 7 + 1 <- of topological spectra, we obtain a homotopy
inverse limit

Lj^^X i = tel telim

which is an Ω-CW-spectrum.

6.2. Construction of the functor Φp: Hoκ -> HS. For a ^-local
pointed CW-complex X and for a prime /?, we shall construct a CW-spec-
trum φ^ί^) which will represent Φp(X) when we pass to homotopy
categories. First observe that the singular complex ΔX & s.sets* is a
K*-Kan complex in the sense of [9, §12], so each ^-equivalence A -> B
in s.sets* induces a weak equivalence map*(i?, ΔX) -> map*(^4, ΔX) of
pointed simplicial function complexes. Let {P(j) \j > b) be a system of
augmented cospectra and associated maps satisfying the conditions of
Proposition 5.1. For each j > b, let TJ(X) denote the obvious s.s.
spectrum with TJ(X)n = map*(P(7)", ΔX) for each n > 0, and note that
TJ(X) is fibrant. Moreover, the given maps p: P(j) A SdJ -> P(j + 1)
induce maps p: S^ Λ Γ y + 1(X) -> Tj(X) of 5.5 . spectra for j > b. Con-
sider the tower {SmJ+ι A Tj(X)}j>b of s.s. spectra with tower maps
1 Λ p. Let ψp(X) be the Ω-CW-spectrum

If /: W -> X is a weak equivalence of ϋΓ*-local pointed CW-complexes,
then one easily checks that φp(f): ψp{W) — φp(X) in HS. In particular,
φp(s): φp(I+A X) = Ψ;,(X) in HS where / + = / U * with / = [0,1] and
where s: I+A X ^> X is the projection map. Thus φp(d°), <f>p(dι):
φp(X) -> φp(I+ A X) represent the same map in HS since sd° = sd1

where d° and J 1 are the bottom and top maps. Consequently, φp respects
the homotopy relation and induces a functor Φ :̂ Hoκ -> //S. To show
that Φ :̂ Hoκ -> 7/5 takes values in HSκ/p we need

LEMMA 6.3. Lei Y ^ HS be an Ώ-CW-spectrum. Then Y is K*-local
<=> each Yn e i/o w K^Ίocal. Moreover, Y is both K^Ίocal and p-adically

complete <=> Y is K/p^local <=> each Yn is K/p^-local.

Proof. If Y is ΛΓ%-loval and /7-adically complete, then 7 is K/p*-loc&\
since Y^^ = (Yκ)p by [10, Proposition 2.11]. The converse is immediate
since K/p = K A MZ/p and our /7-adic completion is the MZ/p^-locali-
zation. Now suppose for a given E e ifS that there exists a collection
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{Wa e Ho) of Zvacyclic spaces such that a spectrum X e HS is ^-lo-
cal <=> [Σ°°Wa, X]* = 0 for each Wa. Then an easy formal argument
shows that an Ω-CW-spectrum Y is E*-local <=> each Yn is 2?*-local. This
applies when E = K by [10, Theorem 4.8] and applies when E = K/p
since a spectrum X is /?-adically complete <=> [MZ[l/p\ X]* = 0.

LEMMA 6.4. For eαc/i X e Hoκ, the spectrum Φp(X) e 7/5 w

Proof. Since X is ϋΓ -̂local, Δ I G s.sets* is a ίΓ+-Kan complex. Thus
for each j > b and n > 0, map*(P(y)", ΔJί) is a ΛΓ+-Kan complex, and
there is a weak equivalence

) ( y Λ

for some i by 5.1. Hence the Ω-CW-spectrum id\Tj(X)\ is K/p*Aocdλ by
6.3 since it has p-cotorsion homotopy groups and has ^-local terms
tel|Tj{X)\n. The lemma now follows easily.

LEMMA 6.5. // /: V -> W is a map in Hoκ such that /*:
[M(Z/p,m),V]~[M(Z/p,m\W] for all sufficiently large m, then
%(f): %(V) - Φp(W).

Proof. Let u: V -> W be a pointed continuous map with [w] = / .
Using the above natural weak equivalences

' Λ

we deduce that each Γ 7(M): Γ7(F) -» Γy(ίΓ) is a weak equivalence, and
thus ψp(u): φp(V) -> φp(W )̂ is a weak equivalence.

LEMMA 6.6. The functor Φp: Hoκ -> /f5 carries homotopy fibre squares
to homotopy fibre squares.

Proof. This follows because φp is a composition of functors which
preserve homotopy fibre squares.

We must show that ΦpΏ,°°X ^ Xp for X e HSK, and for this we shall
use double spectra. An s.s. double spectrum M consists of objects Mmn G
s.sets* for m, n > 0 together with maps σx: Mmn Λ Sι ^> Mm+ln and σ2:

* such that the diagram

1 σ x
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commutes where T: Sι A S1 -» S1 A Sι is the twisting map. Similarly, a
topological double spectrum X consists of pointed spaces Xmn for m,
n>> 0 together with pointed continuous maps σx: Xmn A Sι -» Xm+hn

and σ2: A"m rt Λ S1 -> Xm^n+ι such that the corresponding diagram com-
mutes. The double telescope construction of Adams [3, pp. 173-176]
produces a CW-spectrum tel(2)|M+ *\ for each s.s. double spectrum M.
Moreover, there is a natural isomorphism

err t p l \AH Λ/f ^j Γ*Γ^1iTΠ «7Γ Λ//̂

where the colimit is for the infinite commutative diagram {π*
with homomorphisms

(-l)"σ»: ».

Thus if |MW % | and \M*n\ are Ω-spectra for all m, « > 0, then the
canonical edge maps of CW-spectra

^^I <- t e l | M * j 0 |

are weak equivalences.

LEMMA 6.7. There is a natural equivalence Φfi^X - Xp

A for X e HSK.

Proof. Let A" be a ^-local Ω-CW-spectrum. For j > b, form
the obvious s.s. double spectrum DJ(X) with Dj(X)mn =
map s,(P(y)m,ΔXJ. Since each Xn is ^-local by 6.3, \D\X)m^\ and

,w| a r e Ω-spectra for all m, « > 0. Hence the canonical edge maps

are weak equivalences of CW-spectra, and thus their suspensions

tel|S"V+1 Λ i) y(X)*, 0 | -^ te l ( 2 ) | 5^ + 1 Λ

*- tεl\Sm;+ι A DJ(X)Oί*\

are also weak equivalences. The map p: P(j) A SdJ -» P(j 4- 1) induces a
map p: S^ Λ DJ+ι(X) -» i)y(X) of 5.̂ . double spectra for y > b and
there is an associated tower {SmJ+ι A DJ(X)}j>b of s.s. double spectra.
It is now straightforward to construct a chain of weak equivalences of
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CW-spectra

φp(X0) = Lj^

-7->oo

Λ D

:mJ+1
 A

*<+ι Λ DJ(X)θ9t\

1J+1 A mapJM(Z/pJ,mj^,ΔX

ΛmaPj|c(M(Z/y,l),ΔJr)|

A

Λ

Λ

\S2\ Λ tel

HS2|
where M(Z/p°°, 1) G .s.-se/j* is the mapping telescope of the sequence of
M(Z/pJ, l)'s from §5. The lemma now follows by passing to homotopy
categories. For this, suppose that X and Y are ^-local Ω-CW-spectra.
Since Y is an Ω-spectrum, the homotopy classes from X to Y in HS are
the ordinary homotopy classes of topological maps from X to 7, taken
without reference to the cofinal subspectra of X. Thus by the argument of
6.2, the preceding constructions on X determine successive functors
HSK -> HS and successive natural transformations between them. We
thereby obtain a composite natural equivalence Φ^Ω00^ - Xp

A where
Φ^Ω00^ is represented by ψp(X0) and Xp

A is represented by IS2! Λ

The proof of Theorem 2.1 is completed by

LEMMA 6.8. // M is α pointed finite CW-complex with p-torsion
H*(M; Z) and with a K^-equivalence a: 2 r M -> M/or some ί > 0, then
there is a natural equivalence Ω0 0(Φ / ?fF)M = WM for W e i/o^.

Proof. Using the periodicity derived from α, it suffices to construct
Ω00(Φ/7WΓ)Λ/ =s WM when the given M is replaced by a suspension ΣSM.
Thus, letting />* be the stable annihilator of M, we may obtain, for m > 1
and j > k, maps

A M -> M(Z/pJ\ m) A Mr: S m+1
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compatible with suspension and with the maps e\ M(Z/pJ\m) -*
M(Z/pj+ι, m), such that the diagram

(Sm A M) V(Sm+ι A M) °^1 (Sm A M) v(Sm+ι A M)

— I i V r = I i V r

M(Z/pJ, m) AM ' 4 1 M(Z/pJ + k, m) A M

homotopy commutes where /' is the canonical injection, and such that
each / V r is a weak-equivalence. Using the equivalence

Ω00 TJ(W) )Λ M

derived from the augmentation map of P(j), and using the periodicity
derived from α, we see that π*(ΦpW)M is mapped isomorphically to the
/c-fold images in the tower

Consequently for n = m - mk - 1 with m sufficiently large, the com-
posite of the maps

r#. γyM(Z/pk,m-l)ΛM _

is a weak equivalence. This implies the lemma.
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