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SIMPLICITY OF PARTIAL AND SCHMIDT
DIFFERENTIAL OPERATOR RINGS

D. R. MaLm

In this paper we develop necessary and sufficient conditions for
certain differential operator rings to be simple. We do this for a
ring with finitely many commuting derivations and for a ring with a
commuting Schmidt higher derivation of finite length. Also we give a
correspondence between finite sets of derivations and Schmidt higher
derivations.

In this first section we deal with the simplicity of a differential oper-
ator ring over a ring with finitely many commuting derivations. Many
of the results of this section overlap those of others, among them Jor-
dan [8], Hauger [S] and Voskoglou [11]. The second section deals
with the construction of a Schmidt higher derivation from a set of
derivations, and vice versa. The correspondence is the same as that
of Heerema [6] but we give a different construction. The third section
deals with simplicity of a differential operator ring over a ring with a
Schmidt higher derivation. All rings are considered to be associative
with unit. This research will form part of the author’s Ph.D. disser-
tation at the University of Utah. The author wishes to thank K. R.
Goodearl for his help and suggestions.

1. Let Jy,...,d; be derivations on a ring R. A (dy, ..., dy)-ideal of
R is any ideal I of R such that §;(I) C I for all i. The ring R is said to
be (dy,...,d)-simple if R is nonzero and the only (dy, ..., d;)-ideals
of R are 0 and R. The elements r € R such that §;(r) = O for all i are
called (dy, ..., d)-constants and form a subring of R.

If 4y, ..., d; are commuting derivations on R, the formal linear dif-
ferential operator ring

T = R[@],...,@k;51,...,5k]
is the free left R-module generated by the symbols

ez(k) .. .9?(1)

85



86 D. R. MALM

with each #n(i) a nonnegative integer and given a ring structure by the
relations
0,0, =0,6,
O,r=r0; + 5,‘()‘)

for all j, j, all r € R, together with the usual multiplication in R. It
is convenient to think of the elements of 7 as polynomials, with left
coefficients in R, in the ©’s. For a k-tuple I = (i(k),...,i(1)), with
each i(j) a nonnegative integer, let

[I|=i(k)+---+i(1)

and
e = @;’((k) - @)

and call I the order of ®. Let N = (n(k),..., n(l)) and M =
(m(k),...,m(1)). We say the order of OV is greater than that of @
if |[N| > |M]| or, if |N| = |M|, if there exists j € {1,..., k} such that
n(i) = m(i) for i > j and n(j) > m(j). Otherwise the order of OV is
less than or equal to that of ©M.

For nonzero ¢ € T, the leading coefficient of t is the coefficient (in
R) of the monomial of highest order in ¢ with nonzero coefficient. We
will usually denote an element t € T by

t= ZCX]@I

with oy € R. If oy is the leading coefficient of ¢, the order of ¢ is
said to be J. One should note that for nonzero ¢,s € T, the leading
coefficient of ts is the product of the leading coefficients of # and s
unless that product is zero. When k = 1, the order will be denoted by
a lower case letter.

LEMMA 1. Let 6y, ...,0; be commuting derivations on a ring R and
F the subring of central (d,,...,0d;)-constants of R. If the differential
operator ring

T=R[@1 ..... @k;él,...,ék]

is simple then the center of T is F and R is (y,..., O )-simple.

Proof . Certainly F is contained in the center of T and any element
of R central in T is in F. So it will be enough to show that the center
of T is contained in R to show F is the center of 7.

If A4 is a proper nonzero (dy, ..., d;)-ideal of R, then AT is a proper
nonzero ideal of 7. Hence, T simple implies R is (J, ..., Jy )-simple.
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As R is (dy, ..., 0 )-simple, any nonzero central (dy, ..., d;)-constant is
invertible and therefore F is a field.

Suppose ¢ = 5" ;0! # 0 is central in T with leading coefficient o
and order J. Since ©;t —t0; =0 foralliand rt—tr =0 forallr € R,
we get ay € F. Since T is simple, ¢ is invertible. If |J| > 0, and the
leading coefficient of ¢~! is By, then Byay; = 0 implying By = 0, a
contradiction. Therefore |/| =0 and ¢ € R. m]

We can think of the derivations dy, ..., d; being defined on 7" such

that forte T
0i(t) =0t —10;.
Note that this implies §;(8;) = 0 for all i, j and if ¢ = }_ ;©/, then
0:i(t) = X 6:(ay)®!. Also note that Leibniz’ rule holds:
n
oMab)=>" (’l’) 5i(@)"=i(b)
i=0

and also
n

8%a = Z{: (’l’) si(@)en!
1=l
forall i, j, alla,b € R.

The ring R can also be considered as a left 7-module with a 7T-
module multiplication * under which ©; xr =J;(r) and s x r = sr for
all j, all s, € R. With this module structure, right multiplication in
R by a (dy,...,d;)-constant is a left 7T-module endomorphism of R,
and these are the only left 7-module endomorphisms of R.

The next theorem has been proved in [5] and [11, Theorems 3.3,
3.4]. We supply a proof to indicate the difference between the Q-
algebra case and the (Z/pZ)-algebra case. The case where kK = 1 was
originally proved by Amitsur [1].

THEOREM 2. Let R be a Q-algebra, 6y, ..., 5, commuting derivations
on R and F the subring of central (4, ..., d;)-constants of R. Then the
ring

T = R[@l,...,Ok;JI,...,Jk]
is simple if and only if R is (91, ...,0)-simple and no nontrivial F-
linear combination of 4, ..., Oy is an inner derivation by a (91, ..., ;)-
constant. In this case the center of T is F.

Proof. If T is simple, R is (Jy,...,d;)-simple and the center of T
is F by Lemma 1. If oy,...,a; € F and

(@101 + -+ ayd)(r)=ar —ra
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for all r € R and some (dy, ..., d;)-constant a, then, for
s=0O1+ -+ 4O —a,

we have s x r = r(—a). So multiplication by s is a left 7-module
endomorphism of R. Then for any ¢ € T, the commutator st — £s is in
the annihilator of 7R. Since T is simple, 7R is faithful. This forces
s to be central in T and so s € F by Lemma 1. Therefore o;; = 0 for
all 7.

For the converse we will use induction on k. If Kk = 1, let A be a
nonzero ideal of T = R[O;d]. If n is the minimal order of nonzero
elements of A4, then the set

J={aeR|a®"+a, 0" '+...+ay € A for some a,_i,...,a) € R}

is a nonzero d-ideal of R. Since R is d-simple, 1 € J, and so we can
choose g € A,

n
q=) a6
=0

with a, = 1. For any r € R, we have gr —rq € A of smaller order than
n, so gr — rq = 0. Similarly ©g — ¢O = 0, so each a; is a J-constant.
If n>0,

0=gr—rq = (nd(r)+ an_1r — ra,_1)®" ! + terms of lower order,

implying nd(r) + a,_;r — ra,—; = 0 for all r € R, a contradiction.
Therefore n=0and g =1€ 4. Thus A =T and T is simple.

Suppose k£ > 1 and the theorem is true for fewer than k derivations.
Now

T=R[91,...,8k;61,...,5k]gS[@z,...,ek;dz,...,é‘k]

where S = R[O;;d,]. By induction, T is simple if S is (J,,...,d)-
simple and no nontrivial linear combination of d,,...,d; by central
(92, ...,d)-constants of S is an inner derivation on S by a (95, ..., d)-

constant of S. If
n
a= Z a,-@’i
i=0

is a central (dy, ..., d;)-constant of S with a, # 0, then

i(a) =Y 0;(a;)® =0
i=0
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for j > 2 and
n
©10—a®) =Y 5y(a,)8! =0.
i=0
So each g; is a (dy, ..., d)-constant. If n > 0, then for any 7 € R,
0 = ar — ra = (anr — ran)O} + (nandy(r) + ap_1r — ray—1 )07
+ terms of lower order.
The vanishing of the ©7 term yields a, € F, and then from the van-
ishing of the 87“ term we get a contradiction. Therefore n = 0 and
all central (J5, ..., d;)-constants of S are in F.
Suppose a0, + - - - + ad; = Jdp, the inner derivation on S by the

(03, ...,0r)-constant b = by + - - - + b, O™, with b,, # 0 and the ¢; € F.
Since

m
0= (02 + -+ dy)(©)) =50, —O1b = —61(h;)8]

i=0

and b is a (J,, ..., d)-constant, we have that each b; is a (Jy,...,)-

constant. Now

0p(R) = (202 + -+ + 40 )(R) € R,
so for all r € R, the element
br —rb = (bmr — rby)OT + (Mbwd)(r) + by—17 — rhy_1)OT !
+ terms of lower order

is in R. If m > 2, then b,, € F and we get a contradiction from the
vanishing of the @’1"‘1 term. Therefore m < 1 and b = by + 0,0,
(here b; may be 0). As before b, € F and for any r € R,

(00 + -+ + a0y )(r) = br —rb = b16,(r) + bor — rby.

Hence each o; = 0. Therefore no nontrivial linear combination of
03,...,0; by central (d,,...,J;)-constants of S is an inner derivation
on S by a (y,...,J;)-constant of S.

Suppose S has a nonzero (d,, ..., d;)-ideal B. Let / be the minimal
order of nonzero elements of B. Then the set

J={a€R|a8’,+a1_1911‘1+~--+a0€B for some q;_;,...,ap € R}

is a nonzero (dy,...,0;)-ideal of R. Since R is (dy,...,d)-simple,
1 € J, and so there is an operator

s=8’1 +s,_19’1‘1 +---+5 €B
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Since d;(s) € Bfor j > 2and d;(s) = O,5-50; € B, wehave d;(s) =0
for all j since these operators have lower order than /. Therefore each
sjisa (dy,...,d;)-constant. Also, if /> 0, for any r € R, we obtain

O=sr—rs=(6,(r)+s_yr— rs,_l)Oll‘l + terms of lower order

and the vanishing of the 811"1 term yields a contradiction. Therefore
/ =0 and 1 € B proving that S is (d,, ..., d;)-simple.
The induction hypothesis is now verified, and thus 7 is simple. O

When R is a (Z/pZ)-algebra for some prime p, if J is a derivation
on R, then
82,67,
are all derivations on R. This complicates the simplicity criteria for
the differential operator ring in the positive characteristic case.

LEMMA 3. Let R be a (Z/ pZ)-algebra, p a prime, 6y, ..., commut-
ing derivations on R and F the subring of central (9y, ..., & )-constants
of R. Assume that no nontrivial F-linear combination of

p 5P’
01,0{,0{ ,...

is an inner derivation by a (94, ..., dy)-constant. Set S = R[©y;0,] and
let be S bea (dy,..., Oy )-constant.
(@) If br —rb € R for all r € R, then

m
— Qv
b=a+ Z a0
Jj=0
for some (8, ...,0;)-constant a € R and some ay, ... ., am € F.

(b) If b is central in S, then b € F.

Proof . (a) Write out
n
b = Z bi@i ’
i=0

and suppose b, # 0. Since b is a (dy,...,0;)-constant, each b; is a
(91, ..., d;)-constant. From assumption (a), if n > 0 we get b, € F. If
n <1, we are done. If n > 1 and if p does not divide »n, then, for all
reR,

br — rb = (byr — rby)©} + (nbpdy(r) + by_1r — rby_)O"!
+ terms of lower order.
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Since br — rb € R, we get a contradiction from the vanishing of the
e7~! term.
If p|n, set

t = max{i | b; # 0 and p does not divide i}
or 0 if no such i exists. Let
A={j|bj#0and n> j>t}.
Note that n € A4, and that for j € 4, we have

j=p9m,
with (m;, p) =1 and /(j) > 1. Let
s =max({t - 13U {p'V(m; - 1)| j € 4})
and .
C={jed|pVimj-1)=syu{tift—1=s}
Ift e C,let my =t and [(t) = 0, so that each j € C can be written as
Let
B={bj| jeC}

Since br —rb € R for all r € R, we have BC F.
If s > 0, evaluating the coefficient of ©] in br — rb, we have

> mib;8P" (r) + byr — by =0
jec
for all r € R. Since m;b; # 0 for all j € C, this gives a contradiction.
Therefore s = 0, and hence t < 1 and m; = 1 for all j € 4. This
proves (a).
(b) If b is central, then br —rb = 0 € R for all r € R, so by part (a)
we have
m
b=a+) a0}
Jj=0
for some (dy, ..., d;)-constant a € R and some ay, ..., am € F. But

m
O=br—rb=> a;6f'(r)+ar—ra
Jj=0
for all r € R, implying a; = 0 for all j. Then q is central in R and so
beF. m]
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The next theorem was proved for k = 1 in [8, Thm. 4.1.6]. The case
where kK = 1 and R is commutative was considered in [2, Thm. 3.2a]
and [3, Thm. 2.3]. There are related results in [5] and [11, Thm. 3.5];
in particular, Voskoglou proves that the given conditions are necessary
for T to be simple.

THEOREM 4. Let R be a (Z/pZ)-algebra, p a prime, d,, ..., com-
muting derivations on R and F the subring of central (dy,...,0;)-
constants of R. Then the ring

T:R[@l,...,@k;él ..... ék]

is simple if and only if R is (6y,...,0x)-simple and no nontrivial F-
linear combination of

{67 |i=1,....k j=01,...}
is an inner derivation by a (81, ..., 0y )-constant. In this case the center

of T is F.

Proof. If T is simple, R is (dy, ..., Jx)-simple and the center of T
is F by Lemma 1. If there are some «;; € F such that

> o)
is an inner derivation by the (dy, ..., d;)-constant a, then
S = Z «; Jef’ S - a
acts on 7R as right multiplication by —a. For any ¢t € T, we get that
st — ts is in the annihilator of #R. Then 7 being simple implies § is
central in 7. By Lemma 1, we have s € F and so each o;; = 0.
For the converse we use induction on k. If kK = 1 and A is a nonzero

ideal of T = R[©;J] with n the minimal order of nonzero elements
of A, the set

J={a€R|a®"+a, 0" '+...+a, € A for some a,_i,...,ay € R}

is a nonzero J-ideal of R. Since R is d-simple, 1 € J, and we can pick

q € 4,
n
=) a®
=0

with a, = 1. Since ©g — ¢O € A4 and this operator is of lower order
than n, we get ©¢ — ¢© = 0 and so each g; is a J-constant. Also
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qr —rq = 0 for all r € R, and so g is central in 7. By Lemma 3, we
have g € F. Therefore n =0 and 1 € 4, and so T is simple.

Suppose k > 1 and the theorem is true for fewer than k derivations.
Now

T=R[61,...,9k;51,...,5k]gS[@z,...,Gk;52,...,5k]

where S = R[©;d,]. By induction T is simple if S is (Jy,...,d)-
simple and no nontrivial linear combination of

(67 1i=2....kj=01,...}

by central (J,...,Jd;)-constants of S is an inner derivation by a
(d2, ..., 0 )-constant of S.
Suppose there exist «;;, with i > 1, central (dy, ..., d;)-constants of

S such that
Z aijéi”

is inner by the (J5, ..., d;)-constant

n
b=> b8l
i=0

Since the o;; are central in S, they are also J;-constants and so each
a;; € F by Lemma 3. For all r € R,

br—rb=>)a;;6?'(r)€R.

So, by Lemma 3,
m
b=a+) a0}
j=0
for some (dy, ..., d;)-constant a € R and some ay,...,a, € F. Then,
for any r € R,

) m
Z ;6 (r) = a6 (r)=ar —ra,
Jj=0

and so each o;; = 0.
If S has a nonzero (5, ...,d;)-ideal B, let n be the minimal order
of nonzero elements of B. Then the set

J={a€R|aB®}+a, 10" '+ - -+ay € B for some a,_y,...,ap € R}

is a nonzero (dy, ..., d;)-ideal of R. Therefore there is a ¢ € B with

n
q=)_ aé
—~
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and a, = 1. Also the operators ©,9 — ¢0; = d,(q), as well as J;(q)
for i > 1 and gr — rq for all r € R are in B, have lower order than n,
and so are 0. Therefore g is a central (dy, ..., d;)-constant of S and
s0 g € F by Lemma 3. Then n = 0 and 1 € B, proving that S is
(03, ..., 0)-simple.

The induction hypothesis is now established, and therefore T is
simple. o

As an example to satisfy the hypotheses of Theorem 4, let K be a
field of characteristic p > O and let {x;; | i=1,....kj=12,...}
be independent indeterminates over K. Set R = K({x;;}). Define
commuting K-linear derivations dy,...,d; on R by

0i(xij) =Xij+1 and G;(xpm;) =0

for all m # i.
First we show the set

0/ li=1.. kj=12..}

is linearly independent over R. Suppose there exists some o;; € R

such that
Z a,-jéij =0.

For fixed n, pick / such that no term x,,;,;, for i > 0, is involved in
any of the o, ;. Then

0= 0yjd] (xm) = Z L
J

which implies each a,; = 0. Since n was arbitrary we have ¢;; = 0
for all 4, j.
Therefore the set

(o7 li=1,..,kj=01,.}

is linearly independent over the central (dy, ..., i )-constants of R. As
R is simple, the differential operator ring 7 is simple.

2. A finite Schmidt higher derivation (S.h.d.) on a ring R is a set of
additive maps dj, d, ..., d; on R such that dj is the identity map and

d;(ab) = }:daw,,



DIFFERENTIAL OPERATOR RINGS 95

foralla,b € Rand i = 1,...,k. Infinite S.h.d.’s were first used in [4]
and [10]. For example, if J is a derivation on a Q-algebra R, then the
maps

d;=6'/i!

define a S.h.d. on R. For another example, let K be any field and
K[x] a polynomial ring over K. Define K-linear maps do, d;, ..., d;

on K[x] such that
aixi) = (1) w1

for all i, j. Then dy, d,,...,d; is a S.h.d. on K[x], with dy = identity
map and d; = d/dx. If char(K) = 2, then

dz(x2n) — ann—-Z

and
dz(x2n+l) — nx2n—l'

Let dy, d,,...,d; be a S.h.d. on a ring R and observe that d;(1) =0
fori=1,....k. A (dy dy,...,dy)-ideal of R is any ideal 4 of R such
that d;(A) C A for all i. The ring R is said to be (dy, d,,...,dy)-
simple if R is nonzero and the only (d, ..., d))-ideals of R are 0 and
R. The elements r € R such that d;(r) = 0 for all i > 0 are called
(dy, ..., dy)-constants and form a subring of R. For dy, d;,...,d; a
commuting S.h.d. on R, we can form a differential operator ring over
R, analogous to the differential operator rings of the previous section,
as in the following theorem. We first fix some notation.

Let

M ={(l(0),...,l(k) | /(0) = —oo and
/(i) is a nonnegative integer for i > 0}

and observe that M is an additive semigroup with zero element ¢(0) =
(=00,0,...,0). Fori>0,let e(i) = (/(0),...,/(k)) € M with [(i) =1
and /(j) = O for all other j > 0. We have for L = (/(0),...,I(k)) e M
and a nonnegative integer j,

L+ je(i) = (1(0), ..., 1(i) + j..., 1(k))

for i > 0, while
L+ je(0) = L.
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THEOREM 5. Let dy, d,,...,d; be a commuting S.h.d. on R. Then
there is a differential operator ring S generated by R and elements
Dy, Dy, ..., Dy with relations

J
DiD;=D;D;, Do=1  Djr=Y d(r)D;_,

for all i, j and all r € R, such that S is free as a left R-module with the
monomials
D/?(k) .. 'DF(I)

Jor n(i) > 0 forming a basis.

Proof . Let U be a free left R-module with basis

{ur | L=(/(0),...,l(k)) € M}.
Let
E = Endgz(U).

There is an injective ring map R — E under which any element r € R
corresponds to left multiplication by » on U. We identify R with its
image under this map so that R is now a subring of E.

Since U is the direct sum of the subgroups Ru;, we may define
maps D; € E, for 0 < j < k, such that

j(rur) Zd JULre(j—i)
for r € R. Let S be the subring of E generated by Dy, Dy, ..., D, and

R.
Givenr € R andLeM

DiD ruL Zde(dn uL+€] —n)+e(i—m)

—0 n-O
= Z Z dn(Am(r))ULre(i-m)+e(j—n) = DjDi(rur).
n=0m=0
Thus DiDj = DjDi for all i, ]
Given 7,5 € R,
J i
D (rsup) = Zd rs)uL“ -0 = (Z di—n(r)dn(s)) ULte(j-i)
=0 i=0 \n=0

o j-i J
= Z D di(r)dn($)Upre(jmi—n) = > di(r)Dj_i(sug).

] —
i=0 n=0 i=0
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Thus

It follows that if
DL = Dll((k) . -D{(l)

for L = (/(0),...,/(k)) € M, then
> RD:
LeM
is closed under multiplication and so
S= > RD-
LeM
Thus S is generated as a left R-module by

{DL| L e M}.
Since d;(1) = 0 for i > 0, we have
DjuL = ULte(j) and Dj.uL = UL+ie(j)

To show the DI are left linearly independent over R, let rg, ..., 7, €
R such that
ro+nr D) ... 4 7, DM =0

for distinct L(i) € M. Then
0= (ro+r DXV -+ 1, DEM)u, 0y = rostpo) + rittpay + -+ + rnthr(ny,

implying rg = r; = --- = r, = 0. Thus S is free as a left R-module
with the monomials DL forming a basis. O

We denote the differential operator ring constructed in Theorem 5
by
S = R[Dl, .. .,Dk;do,dl,...,dk].

It 1s also convenient to define leading coefficients for elements of S.
For L = (/(0),...,l(k)) € M, set

IL|=1I(1)+2I(2) + -+ ki(k) and DL =Dk ...pl"

and call L the weighted order of DX. Let N = (n(0),...,n(k)) € M.
We say the weighted order of DV is greater than that of DL if |[N| > |L]
or, if |[N| = |L|, if there exists j € {1,..., k} such that n(i) = (i) for
i > j and n(j) > I(j). Otherwise the weighted order of DV is less
than or equal to that of DL.
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For nonzero s € S, the leading coefficient of s is the coefficient of
the monomial of highest weighted order in s with nonzero coefficient.
We will usually denote an element s € S by

§ = ZO(LDL

with a; € R. If oy is the leading coefficient of s, the weighted order
of s is said to be J. One should note that for nonzero t,s € S, the
leading coefficient of s is the product of the leading coefficients unless
that product is zero. Although we could have defined order as in the
last section, weighted order is useful in Theorem 11.

Before developing criteria for the simplicity of these rings, we note
a case when S is noetherian and we give a construction of a S.h.d.
from derivations and vise versa.

THEOREM 6. Let dy, d,,...,d, be a commuting S.h.d. on a ring R.
If R is right (left) noetherian, the ring

S=R[Dl,...,Dk;do,dl,...,dk]

is right (left) noetherian.

Proof . Set
T = R[Dl, . -"Dk—l;dO» dl, -"’dk——l]-

Note that for t € T, we have d(t) = Dyt — tD; € T. Therefore, o
defines a derivation on 7. Also S = 7[0;S]. Then, by induction on
k, and by [9, Thm. 2, p. 65], we have R right (left) noetherian implies
S 1s right(left) noetherian. |

For the rest of this section, we fix some notation. Given derivations
0,,...,0,and i=1,..., r, let

Sin = 2856

where the sum is over all formally distinct i-tuples (j(1),..., j(i)) with
each j(/) a positive integer and j(1) + --- + j(i) = r. For example,

5(2‘4) = 0103 + 030, + 6,0,.

We define ©(;,) similarly. Also, given a S.h.d. dy, d,...,d;, we
define d(;,) and D;,) in a similar manner.
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LEMMA 7. Let k € N, let R be a ring in which k! is invertible, let
o1, ...,0, be derivations on R, let R[t] be a polynomial ring over R,
and set

R[s] = R[2)/(£**).

Extend each d; to a derivation on R[s] where ;(s) = 0, and set
0 =50, + 820, + - + 550
(@) 0" = Y520 5"y jy for 1 <n < k.
(b) o = Zﬁ:o " /n! is a ring endomorphism of R[s].

Proof. (a) If n=1,

k-1 k-1

j+1 — j+1 —
Do s =D 86 =0
j=0 j=0

Suppose n > 1 and (a) is true for n — 1. Then

k—n+1
o" = 8"‘13 = ( Z Sn_l+j5(n_1'n_1+j)) (551 +-- +Sk5k)
Jj=0

k—n i k—n
=D 5" St jm )Gzt | = D S S nsiy.
i=0 =0 i=0

(b) Set d = 6, +505+- - -+5%~18;. Then @ = sd and d is a derivation
on R[s]. For a,b € R[s],

k k
o(a)a(b) = (Zs"d"(a)/n!) (Zsidf(b)/i!)
i=0

n=0
k

= (Zd” i d’(b)/(n—z)'z')

% o
= Es (Z ( :‘) d”“(a)a”(b)/n!)
=0

= Zs”d”(ab)/n! = a(ab).
n=0

Clearly o is additive, so ¢ is a ring endomorphism. O
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LEMMA 8. Let k € N, let R be a ring in which k! is invertible, let
do. dy, ..., dy be a S.h.d. on R, let R[t] be a polynomial ring over R,
and set

R[s] = R[t]/(¢5*1).

Extend dy, d,, ..., di toaS.h.d. on R[s] whered;(s) =0fori=1,..., k.
(a) p = Zf:o s'd; is a ring endomorphism of R][s].
) Ifp=¢—1, then

p"(ab) = ZZ( ) ("7 1) ei@erie)

i=0 j=0
for 1 <n<kandall ab e R[s].

(C) pn = 21;;61 Sn+jd(n,n+j) fOr 1<n<k.

Proof . (a) Clearly ¢ is additive. For a,b € R,
k
a)$(b) = (Zs di(a ) (Z s"d,-<b))
k
—Zs (Zd di—j b))

i=

= Zs’a' (ab) = ¢(ab).

Hence ¢ is a ring endomorphism.
b)Ifn=1,

l (D (*55) @)

p(a)p(b) + p(a)b +ap(b)
= (¢(a) — a)(¢(b) — b) + (¢(a) — a)b + a(¢(b) - b)
= ¢(a)¢p(b) — ab = ¢(ab) — ab = p(ab).

1

F’J

1 0Jj

Iz



DIFFERENTIAL OPERATOR RINGS 101

Suppose n > 1 and (b) is true for i < n. Then
p"(ab) = pp"~!(ab)

(c) Since p = ¢—1 = sd; +- - - +s*d,, the proof is similar to Lemma
7(a). 0

LEMMA 9. For integers [, m > 0,

%n(’l)m (,-il) (z‘—lm>/"=0'

i=l

Proof .

S (1) (1))
0 (151) (i)

(~1) G4 L= 1)/ j2m = )N +1 = m)!

Mz 1072

~.
Il
o
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which is the coefficient for x” in the power series expansion of fg
where
f(x) =D+ x)™
and
g(x)=(1+x)/L
Since fg is constant, this coefficient is O for m > 0. O

THEOREM 10. Let k € N and R a ring in which k! is invertible.
(a) If 8y, ..., 0y are (commuting) derivations on R, then the rules

do = identity map
r
dr = 8in/i!
i=1

define a (commuting) S.h.d. dy, d, ..., d; on R.
(b) If do, dy, ..., dy is a (commuting) S.h.d. on R then the rules

r
8 =Y (=1)/d(;n/j
j=1
define (commuting) derivations 9,,...,9; on R.

(c) If dy,...,0 are derivations on R and dy, d,,...,d; the S.h.d.
constructed in (a), then the derivations 9., ...,0) constructed in (b)
equal éy,..., 0.

(d) If dy, d},....d; is a S.hd. on R and 0,,..., 0 the derivations
constructed in (b), then the S.h.d. dy,d,,...,d, constructed in (a) is
equal to dy, dy, ..., d;.

Proof . (a) For the ring endomorphism ¢ defined in Lemma 7,

k k k-n
o= 0"/nt=14)_ 3" s"Yéun/n
n=0 n=1 j=0

k

n
=1+ an 25(,’,,)/1'
i=1

=1
For any ring homomorphism

k
d=>s'd;: R— R[s]
i=0
where d;: R — R, the maps dy, d,...,d; form a S.h.d. on R. Hence
(a) is proved.



DIFFERENTIAL OPERATOR RINGS 103

(b) Using the map p defined in Lemma 8, set

k
5= (=1 /mp

n=1

We have, for any a, b € R[s],

d(ab) = Z(( 1)"*!/n)p" (ab)

finzl(( o (1) (77 1) i@ o)

n=1i=0 j=0

Note that p’(a)p™(b) = 0 whenever / + m > k. The coefficient of a
particular term p!(a)p™(b) above for / >m >0and [ + m < k is

S () ()

i=l

which is 0 by Lemma 9. Similarly, for m > /> 0 and / + m < k, the
coefficient of p!(a)p™(b) in the above is 0. The coefficient of a term
pl(a)b (or ap!(b)) is (—1)'*1/l. Hence, é(ab) = d(a)b + ad(b) and &
is a derivation on R[s].

If B is any derivation from R to R[s] and

k
B=> s
i=0

with each f;: R — R, then each B; is a derivation on R. Now, by
Lemma 8§,

k k—n

(( D n)pm =3 N (=) n)s"Hd e )

n=1 j=0

k
Z —1)*/ j)d(jmy =D 5"0n,
n=1

IIMN‘ ﬁM*‘

so each 9, is a derivation on R.
(c)If 3 = s6; + -+ s¥6) and p = sdy + - - - + s*d}., we have

k
Yo" /nl=p+1
n=0
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as in the proof of (a) and
k

k
Y (=0 n)pt = 5",

n=1 n=1

as in the proof of (b). Hence,

k k ok

Y (=)™ /n) (Zai/iz) =) 5"0y.

n=1 i=1 n=1
But

k k n
9= ((=1)"/n) (Za"/i!>
n=1 i=1

since the coefficient of a term 9/ for j < k is the coefficient of x/ in
the power series expansion of loge* and 9/ = 0 for j > k.

S0 =50, +- +5k6, =50, +--- + 5K and 9; = 6; for all i.
(d) For 0 = d} + sd} + - - - + s*d},

k k n
o= (Z((—l)’“/z‘)(a - 1)") / n!
i=1

n=0

since the coefficient of g/ for j < k is the coefficient of x/ in the
power series expansion of ¢!°¢* and ¢/ = 0 for j > k.
On the other hand,

Z(( 1)*1/i)(e = 1) Zs”an

as in the proof of (b). If we denote this map by @, then as in the proof
of (a),

Za”/n' = 1+§:s ZB(,,,)/Z' =1+sd; +---+skd,.

n=1 i=1

Since the left hand side equals o (as shown above) we obtain d} = d;
for all i. O

THEOREM 11. Let k € N, and let R be a ring in which k! is invert-
ible. Let dy, d,,...,d, be a commuting S.h.d. on R and 6y, ...,0; the
corresponding commuting derivations as in Theorem 10(b). Then the
rings

S=R[D1,...,Dk;d0,d1 ..... dk] and T=R[81,...,8k;51,...,5k]



DIFFERENTIAL OPERATOR RINGS 105

are isomorphic. Moreover, there is an isomorphism that is the identity
on R and preserves leading coefficients.

Proof. Define 6,...,6; by
6n —Z( l+1/l (i,n)-

Note that 8,8, = 8,0; for all , j. Let R[¢] be a polynomial ring over
R and set

R[s] = R[#]/(¢F1).

Set

D=sD + --+s*D, and p=sd, +--+s*d,.

As in the proof of Lemma 7(a)

k—n
D" =3 5" Dinnj)
j=0
for 1 <n <k. Hence
k k k—n
Z(( n+1/n)Dn ZZSrHJ ( 1 n+l/n) (nnt )
n=1 n=1 j=0

n

k k
=" S (=1 )D(jmy = D 5"On.
n=1 n=1

Now for 1 < n < k and a € R[s] we show that
n n—i )
D"a = ZZ ( ) (n h l) p" " (a)D" .
i=0 j=0
To see this note that

Da = p(a)D + aD + p(a),
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which is the above with n = 1. Then by induction,

D"a=D""'Da = D""'(p(a)D + aD + p(a))

_"Z‘”Z"<n_1)<n_;_i)

J
X (p""(@)D + p"~'"i(@)D + p"~i (@) D"

e UG RNCRICTY
(=) (7))o
(51)+ -l

Then for a € R we get

0a= 335 (1)1 /m) (") (") orit@pn

n=1 i=0 j=0
k
=a0 + Z "oy (a)
n=1

as in the proof of Theorem 10(b). Hence,
©,a = a®, + d,(a),

forl1<n<kandallaeR.

Consequently, there exists a unique ring homomorphism ¢: T — S
such that ¢ is the identity on R and ¢(©,) = 6, for all n.

If

0#> rn@reT
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with leading coefficient r;, then

¢ (Z rLGL) €s

also has leading coefficient r;. To see this, note that the highest
weighted order monomial of ©,, is D,. Therefore

> et #0
implies
6 (> r®*) #0
and hence ¢ is injective.

As in the proof of Theorem 10(d), we have

k k n
> (Z((—l)f“/i)pi) /n! =D+1.

n=0 \i=1

Therefore

D+1= zk: (gsiéi)n/n!

n=
k k—n . k no_
=1+ ZS'H-]@(,,,,H_}') /n' =1+ ZS" Ze(i’,,)/l.!
n=1 \j=0 n=1 =l

and it follows that

n

n
Dn=) 8yn/it=9¢ (Z O(in)/ i!)
i=1

i=1
for 1 < n < k. Hence ¢ is also surjective and therefore an isomor-
phism. o

We end this section with two lemmas that allow us to extend a S.h.d.

LEMMA 12. Let dy,d,,...,d; be a S.h.d. on a ring R and let C be
a right denominator set in R. Then dy, d,,...,d; can be uniquely ex-
tended to a S.h.d. on R[C1].

Proof . Let R[t] be a polynomial ring over R and set

R[s] = R[t]/(t**1).
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Note that d = dy + sd; + - -- + s*d;, defines a ring homomorphism
d: R — R[s]. Let ¢: R — R[C~'] and ¢': R[s] — R[C~!][s] be the
natural maps. For any c € C,
¢'d(c) = ¢'(do(c) + sdy(c) + - - - + s*d(c))
=¢'(c) +s¢'(dy(c)) + - + 55¢' (di ().

Since ¢'(c)~! exists in R[C~!][s], we can inductively solve for coef-
ficients of a right or left inverse for ¢'(d(c)). Therefore, there exists
#'(d(c))~! in R[C!][s] for all ¢ € C.
Hence, there exists a unique ring homomorphism
d': R[IC™']1 — R[C™[s]

such that d'¢ = ¢'d. If we write d' = d} + sd} + --- + skd| with
each d]: R[C~'1— R[C™'], d}.d},....d} is a S.h.d. on R[C~!] which
uniquely extends dj, d, ..., dx. o

LEMMA 13. Letdy, d,, ..., dy beaS.h.d onaring R. Given f,..., fi
central elements of the polynomial ring R[x], there is a unique ex-
tension of dy, dy,...,d; to a S.h.d. on R[x] such that d;(x) = f; for
1<i<k.

Proof.. Let R[t] be a polynomial ring over R and set

R[s]= R[1]/(**").

Then we have a ring homomorphism
d=dy+sd+-- +s*d.: R — R[s].

This extends uniquely to a ring homomorphism

d': R[x] — R[x][s]
such that

d(x)=x+sfi+ --+5f,
because x + sf, + - - - + sk f; is central in R[x][s]. If
d'=dy+sd|+ - +skd,

with each dj: R[x] — R[x], then dj,dj,...,dy is a Sh.d. on R[x]
extending dy, d, ..., d,. The uniqueness is clear. o

3. We develop some necessary and sufficient conditions for simplic-
ity of differential operator rings coming from a S.h.d. The proof of
the next lemma is similar to that of Lemma 1.
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LEMMA 14. Letdy, d,,...,d; be a commuting S.h.d. on a ring R and
let F be the subring of central (d,, ...,d;)-constants of R. If the ring

S=R[Dl,...,Dk;do,dl,...,dk]

is simple then the center of S is F and R is (dy, ..., dy)-simple. m]

If dy,d,,...,d; is a commuting S.h.d. on a ring R, then R can be
made into a left module over the ring

S =R[Dl,...,Dk;do,dl,...,dk]

using an S-module multiplication * by which D; x r = d;(r) and
s*r = sr for all i and all 5,r € R. With this left module structure,
right multiplication in R by a (d|, ..., d;)-constant is a left S-module
endomorphism of R.

THEOREM 15. Let R be a Q-algebra, dy, d,,...,d, a commuting
S.h.d. on R and F the subring of central (d,,...,d)-constants of R.
Then the ring

S = R[Dl,...,Dk;do,dl,...,dk]

is simple if and only if R is (dy, d,, ..., d;)-simple and no nontrivial
F-linear combination of
{di®...di0 | i(j) > 0and 0 < i(1) +2i(2) + - + ki(k) < k}

is an inner derivation by a (dy, ..., dy)-constant. In this case the center
S is F.

Proof . If S is simple then the center of S is F and R is (dy, ..., di)-
simple by Lemma 14. In a manner similar to that of Theorem 2, no
nontrivial F-linear combination of

{di®...diM | i(j)>0and 0 < i(1)+2i(2) +---+ki(k) < k}

is an inner derivation by a (d, ..., dy)-constant.
Conversely, using the construction of Theorem 10 and Theorem 11,
we have
S=T= R[Ol,...,ek;dl,...,ék]

for commuting derivations dy, ..., J; related to dy, d,, ..., di as in The-
orem 10. Then R being (dy, d, ..., d;)-simple implies R is (dy, ..., d)-
simple. No nontrivial F-linear combinations of

{di®...diV | i(j) > 0and 0 < i(1) +2i(2) + -+ ki(k) < k}
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being inner by a dj,...,d;-constant implies no nontrivial F-linear
combination of dy,...,J; is inner by a (dy, ..., d;)-constant. Since F
is also the subring of central (dy,..., d;)-constants of R, by Theorem
2 the ring S is simple. O

LEMMA 16. Let dy, d,, ..., d; be a commuting S.h.d. on a ring R and
I a nonzero ideal of the ring

S=R[Dl,...,Dk;do,dl,...,dk].
Ifq=YriDL e, thend;(q) =Y. d;(rp)DL €I for all i.

Proof . If i = 1 then 3. d,(r; )DL = Diq—gqD, € I. If i > 1, suppose
the lemma is true for all j < i. Then

i—1
Zd,-(rL)DL =D;q — Zdj(q)Di—j el 0O

J=0

THEOREM 17. Let dy, d,, ..., d; be a commuting S.h.d. on a ring R
and F the subring of central (dy, ...,dy)-constants of R. Then the ring

S=R[Dl,...,Dk;do,dl,...,dk]

is simple if and only if R is (dy, dy, ..., dy)-simple and no nontrivial
F-linear combination of

{dp®...arM | n(i) > 0 and n(k) +--- +n(1) > 0}

is an inner derivation by a (d,, . .., dy)-constant. In this case the center
of Sis F.

Proof . If S is simple, the proof is similar to that of Theorem 15.
Conversely, assume that R is (dy, d}, ..., d))-simple and no nontrivial
F-linear combination of

{dl?(k) .. .df(l) | n(i) >0and n(k)+---+n(1) >0}

is inner by a (dy, ..., d;)-constant.

If A is a nonzero ideal of S, let J be the minimal weighted order of
nonzero elements of 4. Using Lemma 16, the set of 0 together with
those r € R that are leading coefficient of elements of 4 of weighted
order J forms a (dy, d;, ..., d;)-ideal of R. Hence, we have g € 4 of
weighted order J with leading coefficient 1. Using Lemma 16 again,
all other coefficients of g are (d,..., d;)-constants. Also, gr —rg =0
for any r € R.
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If ¢ = Y_r; DL, let I denote the highest weighted order such that
rr & F (orif all rp € F let I = e(0)). For all r € R, the coefficient
of D! in gr —rq is 0. If |J| > 0, then from the vanishing of these
coeflicients we get some F-linear combination of

{dp®...drMW) | n(i) >0 and n(k) +---+n(1) > 0}
being an inner derivation by a (dy, . . ., di)-constant. Therefore |J| =0,

whence ¢ = 1 and so 4 = S. Thus S is simple. o

As an example to satisfy the hypotheses of Theorem 17, let K be
a field of characteristic 2 and let xj, X,,... be independent indeter-
minates over K. By Lemma 13, there exists a unique K-linear S.h.d.
dy, dy, dy on K[{x;}] such that

di(x;) =xi;1 and dy(x;)=0

for all ;. Then Lemma 12 implies that dj, d;, d, extends uniquely to
a S.h.d. on R = K({x;}).

Note that d;(x?) = 0 and d,(x?) = x?, for all i. As R is a field, we
only have to show that the set

{d?Md?@ | n(i) > 0 and n(1) + n(2) > 0}

is linearly independent over the subring of central (d;, d;)-constants
of R. Actually, we show this set is linearly independent over R.
If we have some ¢;; € R such that

Z Olijdljdzj =0,
Ly
find / such that x;,, is not involved in any of the o;; for 2 > 0. Then
0=> a;d{d](x}) =D aid{d](xx])
ij ij
=Y oy (xt, ) =D XXty
Lj LJj
Therefore each o;; = 0 and the set
{d?Vd3? | n(i) > 0 and n(1) + n(2) > 0}

is linearly independent over R. Thus the ring R[Dy, Dy;dy, d;, d,] is
simple.
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