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POTENTIAL ESTIMATES IN ORLICZ SPACES

M A R T I N SCHECHTER

We study estimates of the form

M0~
ι (jM0(u)dμ(xή < CM~ι

for u(x) e C°°(RΠ), where Afo(/), M(t) are convex functions and μ, v
are measures. We apply this inequality to the study of boundary value
problems for quasilinear partial differential equations.

1. Introduction. In recent years there has been considerable interest
in inequalities of the form

( 1 . 1 ) (J \u(x)\* ή * ( J ή \
ueC°°{Rn)

(cf. [3-24] and the references quoted in them). Such inequalities have
widespread applications to both linear and non-linear problems. We
outline one here. Suppose one is interested in solving the Dirichlet
problem

(1.2) ( l - Δ ) m w = /(.x,w) i n Ω c R " , u(x) = 0 o n d Ω

(here dΩ is the boundary of the domain Ω). One can solve (1.2) by
topological methods if one can show that

(1.3) f\{l-A)mu(x)\pdιs(x)<oo

implies

(1.4) J\f(x,u(x))\pdv{x)<oo.

If f{x, t) satisfies

(1.5) \f{x.t)\

and the inequalities

α Vk{x)>\u{x)r>
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hold, then (1.3) will imply (1.4). Inequality (1.6) is precisely of the
form (1.1) if we take q = akp and dμ = Vξ dv. This method was
used by the author in [23, 24]. If instead of (1.5), f(x, t) satisfied

(1.7) \f{x,t)\<Σvk{x)Mk{t)

where the Mj(t) are convex functions, we would need inequalities of
the form

(1.8) ( J ή

<cMk{ I \(l-AΓu(x)\?dv(x)

This is a special case of the inequality we consider in this paper.
There are several approaches one can apply to prove such inequali-

ties. We have chosen the capacity method as described in [1, 2, 8, 14,
15, 16]. It is quite clear that other methods can be applied as well.

Expressions of the form

pu(u,M) = IM{u)dv

appear in the study of Orlicz spaces (cf. [13]). Some of the techniques
used in the study of such spaces are useful in dealing with the problems
outlined here. The functions Mo(t), M(t) considered by us are not
required to have all of the properties of iV-functions as described in
[13].

Now we describe some of the results of the paper. First we find
sufficient conditions for

(1.9) M-ι{pμ(u,M0)} < CM-ι{pv([l -A]mu,M)}

to hold for all u e C°°(Rn). Our main hypothesis is

(1.10) \\\J2m,μXe\\\2m.tMM < Cμ{e)/M~ι[μ(e)l e c R n , ί > 0 ,

where the left hand side is an Orlicz type norm not only depending
on m, v} M but also on the set e and a parameter t > 0. J2m,μ *s the
Bessel potential of order 2m with respect to the measure μ. For the
special case of inequality (1.1), hypothesis (1.10) is implied by

d^J2m,μXe <Cμ{e)W. e c R Λ

For the case 1 < p < q we show that (1.11) implies (1.1) provided
v is sufficiently regular (i.e., satisfies (2.8)). This generalizes results
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of Adams [1, 2] and Kerman-Sawyer [10,11] who considered the case
dv = dx.

In practice inequality (1.11) is not very useful. It requires an in-
equality to hold for arbitrary (closed) subsets e of Rn. Even if we
can restrict the shape of the sets e, it would be virtually impossible
in general to verify whether or not (1.11) holds. For this reason we
replaced (1.11) by

(1.12) Ί

where a satisfies

(1.13) 0<a/nq = 2rn/n-l/qf.

The expression (1.12) involves one calculation of integrals of given
quantities. Using this expression we obtain the inequality

(1.14) \\Vu\\g <cMa,q>p,AV)\\{\ -*)mu\\PtV

where a satisfies (1.13) and

(1.15) )j

is a norm. This is convenient in some situations. For instance, if
dμk = Vg dx and each satisfies (1.12), it is clear that dμ = (£) Vk)

q dx
will also satisfy it. On the other hand, it is not so clear that the same
is true of (1.11). Moreover, (1.12) implies (1.1) even when q < /?, but
(1.11) does not.

All of the inequalities mentioned have counterparts when one re-
places (1 - Δ) by —Δ. We give sufficient conditions for the inequality

(1.16) M-{[pμ(u,M0)] < CM-ι[Pjy(Amu,M)]

to hold for all u e C£°. We show that this inequality holds if we
replace the Bessel potential Js>μ with the Riesz potential IStβ in the
hypotheses. In particular we show that

(1.17) \\u\U,, < c\\{dx/duγia,μ\\\ιl,%v\\^u\\p,u

holds when 1 < p,q.
In dealing with inequality (1.9) we introduced a capacity depending

on a parameter:

(1.18) cStttUM{e) = mϊ{pu{VM)tJsv > t on e).
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The reason for this is that we do not have the homogeneity properties
of the Lp spaces. The corresponding capacity estimate that we need
is

(1.19) Γ clmχuM{{x e Rn: \u(x)\ > t})M(t)~ι dM{t)
Jo

In dealing with inequality (1.16) we define the corresponding capacity
by replacing Js by Is in (1.18). The inequality corresponding to (1.19)
replaces 1 - Δ by -Δ.

2. The inequalities. For a function u(x) e Cm(Rn), we let Dmu{x)
denote the vector, the components of which consist of all derivatives
of u of order m. By \Dmu(x)\ we shall denote the sum of the absolute
values of all such components. We let M0(t), M{t) be continuous,
even functions, with M[t) convex and M0(t) strictly increasing in |ί|.
Also we assume

(a) M(2t)<CxM(t), ί>0,

(b) M-1 {J™ M0(f(t)) dM0(tή

<C2M-'{f™ M{f{t))dM{t)}

holds for all non-increasing functions f(t) > 0.

(c) Afo(O "-* °°' ^ ( 0 -^ oo as ί -^ oo,

(d) M(0) = 0.

If we take M0(t) = tq, M{t) = tp

9 then (b) becomes

[ (/ f('γd'Ί •
This holds for non-increasing f{t) provided 1 < p <q. We define

(2.1) pu{u,M) = f M{u)dv

and we are interested in determining conditions on M${t), M(t), v, μ
so that the inequality

(2.2) M^{pμ(u,M0)}<
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holds for all u e C°°(Rn). For this we shall assume also that

(e) Pv(Tnv,M) < Cpv{y,M\ v e C(RΠ)

where

Tnv{x) = supδ~n ί v(y)dy.
δ<\ J\χ-y\<δ

When M(t) = tp with 1 < p < oo, it is well known that (e) holds
for the case dv = rfx (cf., e.g., [26]). For other cases necessary and
sufficient conditions can be found in [17,19].

In stating our hypotheses we shall make use of the operator

It is well known that

(2.3) Jsf(x)= ί Gs(x-y)f(y)dy

where the function Gs(x) e C°°{Rn - {0}) and satisfies

(2.4) C3\x\s~n < Gs(x) < C4\x\s-n, \x\ < 1,

C5\x\ye'W < Gs(x) < C 6 |JC|^-W, |JC| >

where γ = {s - n - l)/2 (cf. [3]). Let

(u,v) = / u(x)v(x)dx.

For any set e c R n define

(2.5)
on e

where the supremum is taken over all v such that Jsv(x) > t for x e e.
Our first result is

THEOREM 2.1. Assume that there is a constant Cη independent oft
and e such that

(2.6) \\\J2m.μXe\\\im.t.€.vM < CΊμ(e)/M^[μ(e)l e c Rw, t > 0,

where χe is the characteristic function ofe and

(2.7) J2m.μXe{x) =
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Assume also that v is absolutely continuous with respect to Lebesgue
measure and satisfies

(2.8)
2m

Σ Jkidu/dx) < Cdv/dx
k=\

Under the assumptions given above, there is a constant C such that

(2.2) holds for all ueC°°.

As an application of Theorem 2.1 let us consider the case M0(t) =
tq, M{t) = tp with 1 < p < q. They satisfy the hypotheses of Theorem
2.1. In this case

\V{X)\P dv{x)

\p,ιs

Thus if dx <^dv,

WMWlmXe.v.M = Sup
on "e

This means that (2.6) is implied by

(2.9) -^hm,μXe <Cημ{eγl*.

Hence we have

dv w
P'V

p',v

THEOREM 2.2. If \ < p < q, then a sufficient condition for (1.1) to
be true is that (2.8) and (2.9) hold.

Theorem 2.2 was proved by D. R. Adams [2] and Kerman-Sawyer
[10, 11] for the case dv — dx, p > 1. The latter result requires (2.9)
to hold only for the sets e which are dyadic cubes.

Inequality (2.6) is rather difficult to verify in practice, since Cη is
essentially the supremum of a ratio over all subsets e of Rn. For
practical purposes it is much better to give a single expression which
requires a single calculation. This is given by

COROLLARY 2.3. For any p,q> 1,

(2.10) Hull^ < C||(Λc/rfi/)V^l||J(^J|(l -A)mu\\p>,

where

(2.11) 0<a/nq<2m/n- l/q'.
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Proof. Let / = (1 - A)mu. Then u = J2mf. Thus

μ = (/ (/ G2m(x - y)f(y) dyj dμ(xή

< I (/ G2m{x - y)< dμ(xή * \f(y)\ (dy/du) du

xp'/i \ ι / p

Ga(x-y)dμ(x)j {dy/dv)P' dv\

since

G2m{x)q < CGa(x)

when a satisfies (2.11). This gives (2.10).

When dμ = \V(x)\q dx, this reduces to

COROLLARY 2.4. For any p,q>\

(2.12) \\Vu\\q < C\\(dx/duyjQ\V\%(%J(l -A)mu\\p,u

provided a satisfies (2.11).

The expression

(2.13) Ma>g>ίAV)

is a norm, and (2.12) states that

(2.14) \\Vu\\q < CMa>g,p,AV)\\(l -A)mu\\p>,

where a satisfies (2.11). In a sense, Ma>qtP>fU{V) is the smallest norm
for which (2.14) holds. Note that Corollaries 2.3 and 2.4 do not re-
quire p < q nor do they need assumptions (2.8) or (e).

As another example of functions M0(t), M(t) satisfying (b), let
M0{t) = φ{t)q, M{t) = φ{t)p, where 1 < p < q and φ satisfies the
conditions imposed on M(ί) at the beginning of the section. Then

M~ι{τ) = φ-

Thus the left hand side of (b) equals

Φ-1 αo

This equals the right hand side. Thus (b) holds in this case as well.
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In place of (2.2) one can consider inequalities of the form

(2.15) M~ι [pμ(u,M0)] < CM~ι[Pι/(AmufM)].

The methods used to prove Theorem 2.1 apply equally well here. In
this case we replace the operator Js with

(2.16) Isf(x) =csj\x- yΓnf(y)dy

where

and we replace assumption (e) with

(e') pμ(Tv, M) < CPl,(v, M), v e C(Rn)

where

Tv(x) ^ s u p J " 7 2 / v(y)dy
δ J\x-y\<δ

is the Hardy-Littlewood maximal function (modulo a constant). We
have

THEOREM 2.5. Inequality (2.15) holds under the hypotheses of The-
orem 2.1 if we replace Js by Is in (2.5)-(2.8) and replace hypothesis (e)
by (e')

The counterpart of Theorem 2.2 is

THEOREM 2.6. Assume that 1 < p <q and that

(2.17) \\{dx/du)I2m>μχe\\pt>u < Cμ(e)ι^f e c Rn

Then

(2.18) \\uhμ<C\\Amu\\p.v, we Co-

Corresponding to Corollary 2.3 we have

COROLLARY 2.7. For any ρ,q>\

(2.19) Hull,,, < CUdx/d^I^ί^JA^ll^

where

(2.20) a/nq = Irn/n - l/q'.
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In place of Corollary 2.4 we have

COROLLARY 2.8. For any p,q > 1

(2.21) \\Vu\\g < C\\{dx/dyγia\V\^JφJAmu\\^

where a satisfies (2.18).

Note that (2.8) is not required in Theorems 2.5, 2.6 and Corollaries
2.7, 2.8. It is also not required that p < q.

3. Variable capacity. In proving Theorem 2.1 we shall prove a ca-
pacity inequality of the type derived in [1, 14, 15]. However, we lack
homogeneity and are forced to use a capacity depending on a param-
eter. We define

(3.1) cs>ί>u>M{e) = inf{/^(v,M),Λv > t on e}.

ForwGC°°(Rw), let

Nt = Nt[u) = {x e Rn: \u(x)\ > t}.

Set

We shall prove

THEOREM 3.1. Under the hypotheses o/§2

(3.2) / c2m,uM{t)M{t)-χ dM{t)
Jo

<CPι/{[l-A]mu,M), MGC0°°.

Before proving Theorem 3.1, we show how it implies Theorem 2.1.
For u € C°°, let f{t) = M-χ{μ(Nt)). Then the left hand side of (2.2)
equals

(3.3) M

by (b) of §2. Now by (2.5)

μ{e) < r 1 J[J2mv]Xe dμ < Γι j vJlm,μχe dx

<M-χ[M{t)-χpv{v,M)]\\\J2m,μXe\\\2m,t,e,uM
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provided Jιmv > t on e. Thus by (2.6)

μ(e) < M-ι[M(ή-ιpu(v,M)]CΊμ(e)/M-ι[μ(e)].

Hence

This implies that

M[f(ί)] = M[M-ι{μ(Nt)}] < M[CΊM-ι{M(tΓιpv(v, M)}]

<CM{t)-χpv{vyM)

by (a) of §2. Since this is true for every v such that Jιm v > t on Nt,
we have

M[f{t)]<CM{t)-χCιmMM{t).

Thus the right hand side of (3.3) is bounded by
roo

C2M-ι{C cλm,v
Jo

The assumptions on M imply

(3.4) M~\Cu) < max(C

If we now apply Theorem 3.1 we obtain (2.2). D

Inequality (3.4) is a consequence of

(3.5) M(θt) < ΘM{t), 0 < θ < 1

which follows from the convexity of M and (d) of §2.
4. The capacity inequality. In proving Theorem 3.1 we shall make

use of some elementary lemmas. We shall make use of the following
function for r < s

GsAx) = Gs-r{x), \x\ < 1
= Gs(x), \x\ > 1.

Our need for these functors stems from the fact that

(4.1) \DrGs(x)\ <

This can be verified by noting that

and applying (2.4). If we introduce



POTENTIAL ESTIMATES IN ORLICZ SPACES 391

we can state

LEMMA 4.1. IfO <k<r<s, then

\DkJsf\ < cJsf
l-W^Js,rf

k/r, / > 0.

Proof. We note that

(4.2) Gs,k(x) < cGs(xγ-W^Gs,r(x)k/r

by (2.4). If we now make use of (4.1), we have

\DkJsf{x)\ < c I Gs_k(x - y)f{y) dy

a \ l-(k/r) / r \k/r

Gs(χ - y)f(y) dy) (j Gs,r(χ - y)f(y) dy) D

LEMMA 4.2. Let { ί/}^ be a sequence of positive numbers such that

(4.3) tj -+0 as j —> -oo, tj -* oo as j —• oo,

(4.4) /,-_, < θtj, tj < Citj-i, 0 < θ < 1.

Let φ{t) e C°°(R) be such that

φ(t) = 0, t < δ,

= 1, t>\-δ,

where δ is some positive quantity. Let Fj(t) be the C°° function

(4.5) Fj(t) = tjφ[{t - 0_i)/(0 " 0-i)]

Then

(4.6) Fj(t) = tj, t > tj

and

(4.7) tk-ι\FJk)(t)\<C9, k = 0,ί,...,m.

Proof. Inequality (4.6) is obvious. To prove (4.7) note that for
t > tj, (4.6) gives

Fj(t) = tj < t.

In the interval // = [f/_i, tj],

Fj(t) < tj < Cgίy-l < CSt.
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Since Fj(t) = 0 for t < ί, _ 1 } we see that (4.7) holds for k = 0 with
C9 = max(C8,1). By (4.5)

Thus for k < m

\Fik){t)\<Cιoήntj^tj^)k in Ij

= 0 outside /,.

Consequently in Ij we have by (4.4)

tk~ι\F(k)(ί)| < C 1 0 ^ / ( 0 - O-O" < Qo/(1 - ^

Thus we can take C9 = C 1 0/(l - θ) m , and (4.7) holds. D

LEMMA 4.3. If I <r<sf then

(4.8) \DrFj(Jsf)\<CJs,rf, / > 0 ,

H'/ẑ r̂  ί/ẑ  constant C does not depend on j or f.

Proof. Let u = / 5 /. We have
r

(4.9) £>rf) (κ) = £ 23 F]k\u)Dhu---Diku.

Thus by (4.7)

Moreover, by Lemma 4.1

(4.10) \DιJsf\ <

Substituting this into the expression above, we obtain (4.8). D

LEMMA 4.4. For 0<r<s,

(4.11) M(Js,rf) < CJs,rM(f), / > 0.

Proof. We have

Js,rf = c Gs,r(x - y)f(y) dy I I GSJ{x - y) dy.

Thus by Jensen's inequality (cf., e.g., [13])

M{Js,rf) <c'j GsAx - y)M{f{y)) dy/ f GSJ{x - y) dy

= c"JsM{f).
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LEMMA 4.5. For 0 < r < s < 2m

(4.12) Pv(Js,rf,M) < Cpu{f,M).

Proof. By Lemma 4.4 and (2.8)

M{Js,rf) du<c j Js,rM(f) dv

Gs,r{x - y)M{f{y)) dy dv{x)

= cf[j GsΛx - y) dι>(x)] M{f{y)) dy

< C f{du/dy)M{f{y))dy = C'Pl/(f,M).

This gives (4.12). α

We shall need to prove an inequality corresponding to Lemma 4.1
for the case r = s. For this purpose we make the following definitions.
We let

Msf{χ)= ί \χ-yΓnf{y)dy,
J\x-y\<\

Tsf{x) = supδ~s ί \x- yΓnf(y) dy,
δ<l J\x-y\<δ\x-y\<δ

Js,s/(X) = Jsf(x) + Tnf{x) + f{x).

We have

LEMMA 4.6. For 0 <s <n there is a constant Cs such that

(4.13) Tsf(x) < CsTnf{x), x e Rn

Proof. ¥oτδ < 1,

/
J\x-y\<δ

Thus we can take Q - 2"/(25 - 1).
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C O R O L L A R Y 4.7. For 0<k<s

(4.14) \DkJsf\ < CJsf
l-^Js,sfV

s, / > 0.

Proof. We have

\DrJsf\ < CJGSΛX - y)f(y) dy < C'Ms-rf(x) + CJsf(x).

Now for δ < 1,

Ms-rf(χ) = ί \χ- yΓr-nf(y) dy+ ί
J\x-y\<δ ^ ^ < | J C — y | < l

<δs-rTs-rf{x)+δ-'Msf{x).

Take δs = Msf{x)/CsTnf{x). It is < 1 by Corollary 4.7. Then

(4.15) Ms-rf(x) < CMsf{xγ-rVsTnf{x)rls

by Lemma 4.6. Since Msf < Jsf, we have

\DrJsf\ < CJsf
s-^s[Tnf

rls + Jsfl
sl

This gives the lemma. D

Lemma 4.8 is similar to an inequality of Hedberg [9] (cf. also [20]).

LEMMA 4.9. For / > 0

2m

(4.16) |[(1 - Δ Γ - l]Fj(J2mf)\ < C
r=0

where the constant is independent of j and f.

Proof. Let u = J2m f. Then

(4.17) [(

equals

(4.18) Fj

plus terms of the form (4.9) with k > 1 and 1 < r < 2m. Taking
s = 2m in Lemma 4.3, we see that for r < 2m, the sum of the absolute
values of these terms is bounded by the right hand side of (4.16) with
r = 0 and r = 2m missing. For those terms in which r = 2m, we
make use of Lemma 4.8. From that lemma we see that (4.10) holds
even when r = s provided we define JStS as above. Applying this to
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(4.9) we obtain CJim>2mf as a bound for such terms. Finally we note
that (4.18) equals

Fj(u)(f-u)

which is bounded by C(f+ύ). This gives (4.16). D

Now we give the
Proof of Theorem 3.1. For u e C°° fixed, let / = (1 - A)mu, v =

JinλfV Then \u\ < v. Let the sequence {//} satisfy the hypotheses of
Lemma 4.2. Then the left hand side of (3.2) is bounded by

7=-oo

OO

<c
j=-oo

OO

j=-oo

Here we made use of (4.4), (4.6) and (a) of §2. Note that

(4.2)

Since only derivatives appear in (1 -A)m - 1, the support of the func-
tion (4.14) is contained in the set

Gj = {xe Rn: tj-X < v(x) < tj}.

Thus by Lemmas 4.9, 4.5 and (e)

2m2m *

< CJ2 / M{Jlm,\f\)dv
r=0 JG>

<σ ί

where the constants are independent of j and / . Hence

Δ)m - l]Fj(v),M) < C

= C ί M(f)du

j=-oo
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On the other hand, the support of Fj(v) is contained in
oo

IK
and it is bounded by tj. Thus

Pv{Fj{v),M)<JΓ[ M(tj)dv = M(tj)f;v{Gk).
k=jjGk k=j

Consequently,
OO OO 0 0

PΛFj{u),M)< £ ΣM(tj)u(Gk)
j=-oo k—j

= f; Σ
k=-oo 7=—oo

OO

OO

<C Σ v{Gk)M{tk_x)<C Σ / M(y)dv

= C f M{Jlm\f\)du < C'Jλf(f)du

Here we made use of (4.4), (4.5), (3.5) and Lemma 4.5. This gives
(3.2). D

5. The homogeneous inequalities. Now we turn to the proof of in-
equality (2.15). For this purpose we need a counterpart of Theorem
3.1. In place of (3.1) we define

(5.1) cStt>ι/tM(e) = inf{/v(v,M),/yV > ton e}

and

where JV* = Nt(ύ) is the set defined in §3. Corresponding to Theorem
3.1 we have

THEOREM 5.1. Under the hypotheses of Theorem 2.5 there is a con-
stant C such that

(5.2) Γ clmMM{t)M{t)-1 dM(t) < CPι,(Amu, M), u e Co~
./o
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In proving Theorem 5.1 we replace Lemma 4.8 with

LEMMA 5.2. I/O < k<s, then

(5.3) \DkIsf\ < CIsf
l~^Tfkls, / > 0.

This lemma is due to Hedberg [9] (cf. also [20]). The proof is similar
to that of Lemma 4.8. Replacing Lemma 4.9 we have

LEMMA 5.3. There is a constant independent of j and f such that

(5.4) \A™Fj(I2mf)\ < C(f+ Tf), / > 0.

Proof. Let u = Iimf- Then AmFj(u) equals

(5.5) F'j{u)Amu

plus terms of the form (4.9) with k > 1 and ]Γ) iq = 2m. If we now
apply (4.7) and (5.3), we see that these terms are bounded by CTf.
Since / = Δmw, we obtain (5.4). α

We can now give the

Proof of Theorem 5.1. Following the proof of Theorem 3.1 we see
that the left hand side of (5.2) is bounded by

(5.6) f ) pu(AmFj(v),M),
7=-oo

where / = Amu, v = Iιm\f\. Since JF)(v) is constant outside Gj9 we
see that (5.6) is bounded by

(5.7) C Έ ί M{\f\ + T\f\)dv
j=-oojGJ

in view of Lemma 5.3. If we now make use of (4.20), we see that
(5.7) is bounded by

/•[M(f) + M(T\f\)]du

This is where assumption (e;) is used to show that (5.2) holds. α

The proof that (5.2) implies (2.15) is similar to the proof of (2.2)
and is omitted.
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