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HOLOMORPHICALLY CONVEX COMPACT SETS
AND COHOMOLOGY

S. TRAPANI

Conditions are given, on a domain D of a Stein manifold X, for
the cohomology groups H?(D;.% ) to be Fréchet-Schwartz spaces for
every ¢ > O and every coherent sheaf # on X.

Introduction. Let V' be a complex space and .# a coherent sheaf
on V. It is well-known that we can endow HY(V;%) of a structure
of topological vector space such that its separated H?(V;.7)/0) is a
Fréchet-Schwartz (F.S.) space. It is of some interest to know when
HY(V;%) is itself F.S. (For instance it is possible, if the answer is
affirmative, to prove a Kiinneth formula.) This is the case when V' is
Stein and .¥ is any coherent sheaf on V', or when V' = X — K, where
X is Stein, K is a compact set with a fundamental system of Stein
neighborhoods and % is a coherent sheaf on X. This is proved in
([3], Théoreéme 2.19, page 40).

In this paper we find conditions on a domain D, in a connected
Stein manifold X of dimension n > 1, which are sufficient for the
groups H4(D; %) to be F.S. and the cohomology groups with compact
support HZ(D;%) to be D.F.S. (Dual of Fréchet-Schwartz) for every
q > 0 and every coherent sheaf # on X. These conditions turn out to
be also necessary if the complex dimension of X is 2. Also we obtain
a cohomology duality theorem for such domains.

Preliminaries. Consider a domain D in a connected Stein manifold
X of dimension » > 1, let S be the union of the connected compact
components of X — D and D' = D U S; the set D’ is open and con-
nected ([11] page 30). Let K be a compact subset of X and #(K)
be the direct limit li_r_)nUDK @(U) with the inductive limit topology; let
spec@(K) be the spectrum of #(K), i.e. the set of all nonzero contin-
uous homomorphisms of the algebra #(K) into C.

Following [13] we say that K is holomorphically convex if the usual
evaluation map g: K — spec@(K) given by g(x)(f) = f(x) is bijec-
tive.
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In this paper we will study the domains D which fulfill the following
conditions:

(a) The domain D’ is Stein.

(b) Every connected compact component of X — D is a holomor-
phically convex compact set.

2. Cohomological properties. This section is dedicated to the study
of the topology of the cohomology groups H4(D;#) where D is a
domain in X which fulfills conditions (a) and (b) and # is a coherent
sheaf on D’.

We will prove the following results:

THEOREM 1. If (a) and (b) hold for D then:
(i) The space H1(D;% ) is F.S. for every q > 0 and every coherent
sheaf & on D'.
(ii) If & is locally free then HI(D;#)=0for0<g<n—1.

THEOREM 2. If D fulfills (a) and (b) and F is a coherent sheaf on
D' then: the image of the restriction map r: I'(D";%) — I'(D; %) is
closed. If in addition prof & > 2 then r is bijective while if prof & = 1
then r is injective.

THEOREM 3. A domain D in X fulfills conditions (a) and (b) if and
only if H1(D;&) =0for0 < q< n—1and H*"(D;®) is a F.S. space.

To prove these theorems we need some lemmata:

LEMMA 1. Let 0 — X9 5 Y9 L 79 0 be a short exact sequence
of complexes of F.S. or D F.S. spaces and continuous linear maps; let:

~HI(X) 25 HO(Y) 25 HY(Z) &5 HOV (X) -+

be the cohomology exact sequence, then:

(1) The maps I*4, J*? and 69 are continuous.

(2) If one of these has a closed image then it is a topological homo-
morphism.

Proof . The maps I*9 and J*? are obviously continuous. We denote
with Z4(X); Z9(Y) and Z4(Z) the spaces of cocycles and with BY(X);
B4(Y) and B?(Z) the spaces of coboundaries. The maps 7%; 7% and
n, will denote the projections:

n%: Z9(X) - HI(X),
n: Z9(Y) - HI(Y),
nl:79(Z)— HI(Z).
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We have the commutative diagram:

za(x) Lt z4(Y)

|= |=
Hi(X) L He(Y).
If we suppose that Im(/*?) = n%(Im(I)) is closed, we get Im /7 +
B4(Y) closed.
Let us take the map 79: Y9! x Z9(X) — Z9(Y) defined by 79(x, y)
= d*!(x) + I9(y) (where d? is the coboundary map). Now 19 is a
map between F.S. or D.F.S. spaces and has a closed image; then it is
a topological homomorphism. The map w?: Y9-! x Z9(X) — H4(X)
given by: w?(x;y) = n%(y) is onto and the diagram:

Yo x Z9(X) —=— Z4(Y)

lw" l"?f
HiX) 5 HYY)
is commutative.

Since 7|1 ro+B+(y) 18 still a topological homomorphism, so is I*4.
The proof for J*7 is the same.

We now look at 9. To prove that §¢ is continuous is equivalent to
proving that 69 = 8% o n%: Z4(Z) — HI*!(X) is. Now the surjective
homomorphism, 19: Y9 — Z4 is topological, then J4: (J9)~1(Z9(Z))
— Z9(Z) is topological onto and
V9)~(Z4(2))

Ker J4

is a topological isomorphism. The coboundary map 47 is continuous
and

Ja: — Z9(Z)

d%((J9)~1(29(Z))) € KerJ9*! = Imi?*],
and moreover i9t! is topological and injective; then the map g% =
(19+1)=1 o df is continuous.
We have that Img? C Z9+1(X), so we can define y9 = n‘)’(“ og?
and y9(KerJ?) = 0. The map
-1 q
-q. (J9) " (Z2%(2))
Ve KerJ¢ -

is continuous then so is 47 = @9 o (J9)~!,

Hq+l(X)
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Now 47 is a topological homomorphism if and only if 87 is, if and
only if w7 is.

We have Im y? = Im d¢. So if Imd¥ is closed we have 74! (Im o)
closed and Im g9 + B9t1(X) = Im a4 closed. Again 67 is topological
and so are 7% |40 and . o

LEMMA 2. Let D be a domain in X, then there exists a locally finite
partition of S = D' — D made by compact sets, say {K,}nen- Let us
put K, =J?_, K; and D), = D UK, then:

(1) The set D}, are domains.

(2) The domain D fulfills (b) if and only if each K,, is holomorphically
convex, in this case, each K}, is holomorphically convex also.

Proof. The existence of a locally finite partition of S by compact
sets is proved in ([11] page 29). They are relatively open in .S, then (2)
follows from the fact that a compact set K in X is holomorphically
convex if and only if every connected component of K is ([15] page
14). (1) is proved in ([11] loc. cit. page 30). m]

LEMMA 3. Let K be a holomorphically convex compact set on X
and & be a coherent analytic sheaf on X. Then the space I'(K; %) =
l_i_l_l_}UDK I'(U; %) with the inductive limit topology is D.F.S.

Proof. Let {U,}nen be a fundamental system of open neighborhoods
of K such that U, C U,.

For every U,, let U, be the envelope of holomorphy of U,. Each
U, is thus a Riemann domain over X.

Let n,: U, — X be the projection on X; let i,: U, — U, be the
canonical embedding and for n > m let ¢, n: U, — U,, be the map
induced by the inclusion J,, ,,: U,, — Up,.

Given the compact sets:

Ro= {x & Uy |(x)| < max| er(ﬂffn)}.

Consider the projective system (I?,,; ®nm); the projective limit of this
system is isomorphic to K. Thus for every neighborhood U,, there
exists n; > ng such that for every n > n; we have:

Gnoon(Kn) Cin,(K)  ([13] page 513).
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Now if we take #,* on U, as the inverse image sheaf of & through
7, we have an algebraic isomorphism:

lim T(Ky; %) 25 T(K; 7).

m>n
The map 05 derives from restriction maps and therefore it is contin-
uous for the inductive limit topologies. Moreover K is the projective

limit of K, so every element in I'(K;.%) comes from an element in
I'(K,;#,*) for some n € N. Then we have a continuous map:

p: T(K;F) — lim [(Kp, 5°).
m>n
The map p is the inverse of 6. The map 65 is therefore a topo-

logical isomorphism.
In a neighborhood of K we have the exact sequence of sheaves:

(2.1) 0240 49 50 andthe corresponding:
0— (R &) 25 TR ) 25 T (K 571) = 0,
0-I'(K;%2)->T(K;e")-T(K;%)—0.
In fact for holomorphically convex compact sets, theorem B holds ([6]
page 73). R R R
The spaces I'(Ky; &), T'(Kn; @), and I'(K,; &,*) with the inductive
limit topology are D.F.S. and the maps of the exact sequences are

topological homomorphisms ([2] page 236).
If we pass to the inductive limit we get:

0 — Im[(Ky; &) —— WmI(Ky65) —f— WmI(Ky F) — 0
n n n

o o o
0-IrK;¢) — IK;¢") —— TI(K;%)—0.
The space I'(K;@") is D.FS. ([2] page 234) and, 6, being topo-
logical isomorphism, li_r}nn I'(K,;@;") is D.F.S. also. Since topological
homomorphisms are preserved b~y passing to denumerable inductive
limit, ([2] page 227) the maps A and j are topological. It follows
that li_r_’nn I'(K,;&*) is a Hausdorff space, so it is D.F.S. and its image

through 1 is closed. Hence l_i_l_l_}n F(I?,,;? *) is D.F.S. m]

Let U be an open neighborhood of a compact set K C X and .¥ a
coherent sheaf on U.
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We have the exact sequences:
(2.2) — HYU,S) % HOU;5) 25 HOU - K;.9)
%, gIr U, F) — -
(23) — Ext{(U-K;5;Q" % Extd (U; 75 Q")
L9, Extd(K; 75 Q) 24 ExtiT (U - K, 7, Q") — - -

(Q" is the sheaf of holomorphic differential n forms).

There exist two short exact sequences of F.S. respectively D.F.S.
spaces, and continuous linear maps, whose cohomology sequences are
(2.2) and (2.3) respectively. If we consider on (2.2) and (2.3) the
induced topologies, then the sequences of the separated spaces are
dual to each other. Moreover:

(o) HI(U — K; &) is F.S. if and only if Ext} *!(U — K;#;Q") is
D.F.S.

(B) H4(U; &) is F.S. if and only if Ext} %*!(U;5;Q") is D.F.S.

(y) HA(U;5) is F.S. if and only if Ext""9*!(K;5;Q") is D.F.S.
([1] page 1163).

We now can prove the following:

LEMMA 4. If U is Stein and K is holomorphically convex, then the
topology on Hom(K; ; Q") of the sequence (2.3) is D.F.S. and coin-
cides with the inductive limit topology of T (W ; Hom(% ; Q")), where W
runs in a fundamental system of open neighborhoods of K.

Proof. We have that H"(U — K; %) = H"\(U;%) = 0 [9]. Then
HIY(U; %) = 0 and by (y) the space Hom(K;.7; Q") with the topol-
ogy of (2.3) is D.F.S.

Denote this topology by T'.

Note that if W is another Stein neighborhood of K contained in U
then, by excision the 7 topology on Hom(K;.%; Q") with respect to
W equals that with respect to U.

On the other hand, by Lemma 3, Hom(K; #; Q") with the inductive
limit topology is D.F.S.

Denote this topology by L. We must prove that L and T topologies
coincide.

First step: & = @. Let W be an open neighborhood of K in
U and Jy: HE(U;6) — HE(W;&) the inclusion map. The map



HOLOMORPHICALLY CONVEX COMPACT SETS 185

Jw o "1 H*=Y(U — K;@) — HE(W;@) is continuous for the stan-
dard topologies. This is proved in [3] pages 42-43 when K has a
fundamental system of Stein neighborhoods; however the proof in the
general case is the same. Recall now that H"(U — K;#) = 0 and by
(a) that Ext, (U — K;#;Q") is D.F.S. We can conclude that the dual
map of

lim (Jy 06"~ '): H"'(U - K;&) — lim H](W;2)

WK WK
can be identified with dy: Hom(K;#;Q") — Exti (U — K;;Q"),
where Hom(K;#; Q") has the L topology and Ext}((U - K;0;Q")
has its standard one. With these topologies dy is a continuous
map between D.F.S. spaces. Since U is Stein, Hom, (U;&;Q")
= Ext;(U;#;Q") = 0 and & is bijective. Therefore J; is a topo-
logical isomorphism. By Lemma 1, J; is a topological isomorphism
also if Hom(K;#; Q") has the T topology and Ext, (U — K;@; Q") has
its standard one. So L and T coincide on Hom(K;#; Q").

In the general case, if ¥ is coherent on U, choose a sequence like

(2.1): on an open Stein neighborhood W of K in U. From this we
derive:

0 — Hom(7;Q") £ Hom(¢"; Q") X Im A — 0
and
(2.4) 0 — Hom(K;7;Q") LA Hom(K;2"; Q")
2L (K ImA) — -
We have the commutative diagram:
0 0

Hom(K;¥;Q") —“— Hom(K;s";Q")
(2.5) P 9er

J

Ext} (W - K;7;Q") —2— Extl(W - K;&";Q")
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where &; comes from the sequence:
(2.6) --- — Extd(W — K;F;Q") = Ext{(W;5;Q")
— Extd(K; 7, Q") 2 ExtiT (W - K;9;Q7) — - -

The map u'* is obviously L continuous and I'(K;ImA’') with the L
topology is D.F.S., it follows that Im x'* is L closed. So it is an in-
jective L topological homomorphism. From the diagram (2.5) we
obtain that y'* is T continuous also and has L closed image, there-
fore, by the first step, it has T closed image and it is a 7" topological
homomorphism. o

Proof of Theorem 1 Given & coherent on D’ we have that H(D; %)
is F.S. and H"(D;%) = 0, so we must prove that H?(D;¥) is F.S. for
O<g<n-1.

First step: S compact, & locally free:

Let us choose a Stein neighborhood U of S, since S is holomorphi-
cally convex and U is Stein, Ext?(S;#;Q") = HI(S; Hom(¥;Q")) =
0if ¢ > 0 and Ext{(U;5;Q") = 0if ¢ # 0 and ¢ # n while
Ext}(U;#,Q") is D.F.S.

It follows, using the sequence (2.3) that Extz( U-S;7;Q" =0if
q # 0 and ¢q # n while Ext}(U — S;%;Q") is D.F.S. Applying (a) we
derive:

HI(U-S8;9)=0 if0<g<n—-1 and H" Y (U-S;%), isFS.

Second step: S compact, # coherent:

The first step proves our statement if & is locally free, i.e. prof # =
n. The second step follows by induction on $(¥) = n — prof¥. In
fact: let us choose a sequence like (2.1): 0 - % - " - % —0,0na
Stein neighborhood W of S in U, where S(¢) < S(¥) — 1.

(Such a sequence exists by [3] page 243.)

It induces the cohomology sequence:

= HIW -8;6") - HI(W -S;F) - H*\ (W -8;,2) — - -

if0<g<n—1,then HY(W —S;#") =0and H*\ (W - S,;%) is F.S.
By induction hypothesis, so H4(W — §;%) is F.S. and by excision
HY(U-S;%)is F.S.
If ¢ = n — 1 the cohomology sequence is:
S HYVW - 8,%) 2L H V(W - S30)

2L g\ W - 8,F) — 0.



HOLOMORPHICALLY CONVEX COMPACT SETS 187

By Lemma 1, 4" ! is a topological homomorphism onto, hence
H" YW - 8;%) is E.S. if and only if ImA”~! is closed. By induc-
tion hypotheses H* ' (W — S;%) and H" }(W — S;0") are F.S.,
so ImA”~! is closed if and only if 1 is topological. The spaces
Ext}c(W - §;%) and Ext}c(W — §;¢") are D.F.S. and the dual map
of A7~! and be identified with the &; of the sequence (2.6). Then we
must prove that g; is topological or, which is the same, that it has
closed image. From the commutative diagram (2.5) it follows that
we need to prove that Im u'* is T closed. This has been shown while
proving Lemma 4.

Hence H"~ (W —-S;.7) if F.S. and again by excision H"~1(U~S;%)
is F.S. If we choose U = D’ we conclude the proof in case .S is compact.

Third step: S is not compact, .# is coherent.

Let {K,}nen be a locally finite partition of S by holomorphically
convex compact sets as in Lemma 2.

Let {U,},en be a sequence of disjoint open neighborhoods of K,
and U = {J,, U,. We have for g > 0 the topological isomorphisms:

HI(D; %) ~ H{''(D',.5) ~ HIT (U ) ~ [ [ HET (Uns #)

n

~[THE (D59) ~ [[HUD' — Kn; 7).
n n

By the second step HY(D' — K,,;.%) is F.S. for every n € N, further
HY(D'-K,;¥)=0if & is locally freeand 0 < g < n — 1. O

Proof of Theorem 2.

First step: S compact.

Let # be a coherent sheaf on D', since theorem B holds for S, there
is a canonical isomorphism

Ext!(S;7;Q") — I'(S; Ext?(#;Q")) for every g > 0.

([3] page 35.)

If prof ¥ > 2 then Ext"(#; Q") = Ext"~! (7 ; Q") = Ext"(S;.7; Q")
= Ext""1(8;7;Q") = 0 and H}(D';.%) = H}(D';%) = 0. Hence the
restriction map r: I'(D; %) — I'(D; %) is bijective. If prof # = 1 then
Ext"(#;Q") = Ext"(S$;.7;Q") = 0, so H)(D;¥) = 0 and H{(D; %)
is F.S. by (y).

Hence the restriction is injective and has closed image.

If prof. ¥ = 0, then there exists a short exact sequence:

(2.7) 0—#05) % 5 —2 L 0on D such that:
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/7;;0(7”1)'—/1 = 0, the set A4 is discrete on D’ and prof > 1. So we
derive the commutative diagram:

0D #0(F) —2 [(D',5) -2 T(D;2) -0

lrﬂ//j’(y) lry l"g’

0—I(D;7)(F)) —2— T(D;F) —2— I(D;%) —0.
In fact H'(D'; #0(7)) = H(D;#Z)(¥)) since #2(F) has discrete
support.

The map Voo is onto (every section on I'(D; Z’;io (¥)) can be extended
to D' as 0); hence Imrg 2 Im#hp o Tao(s) = Imhip = Kerlp. So
Imrg =I5 (Imlpory) =I5 Im(re olp)) = I5' (Imrg). Now prof & >
1, therefore Imre is closed and so is Imrs. The space Hbl (D", F) is
then F.S.

Second step: S is noncompact.

Let {K,},en be a locally finite partition of S by holomorphically
convex compact sets. We obtain, as already observed in the proof of
Theorem 1, that H{(D";,.7) ~ [1, HI?"(D’;BT) for every g > 0. 0

Proof of Theorem 3. If D fulfills (a) and (b) then H4(D;#) = 0 for
0<g<n-1and H* !(D;#) is F.S. by Theorem 1.

Conversely, choose a locally finite partition {K,},en of S by com-
pact sets. Let K] and D] be defined as in Lemma 2. Consider the
!/

Mayer-Vietoris sequence of the pair (D}; X — K):
(2.8) - — HY(X;@) - HI(D!;0) x H'(X — K!;6) —» H1(D;0)
- Hq+1(X;@’) —_

From the hypotheses we deduce that H9(D};#) =0if0<g<n-1
while H"~1(D!;#) is F.S.

But D, € D/, and D' = |J,nD;. By the Hartogs theorem the
restrictions r?: HY(D)] ;&) — H?(D;;?) are bijective for r € N and
0 < g < n-1. It follows that HY(D";#) = liLnrH‘i(D;;ﬁ) for 0 <
g < n-—1([5] page 325-339). So HY(D";¢) =0if 0 <g<n-1
and H"~!(D’;#) is F.S. To prove (a) we must prove that H"~!(D';©)
vanishes or, which is the same, that its dual vanishes. By the Serre
duality theorem [H"~!(D;#)] ~ H}(D';Q"). From the sequence:

0—-Q% _p —Q"—=Q} — 0 we derive:
0Ty (X -D;Q" — HkI(D';Q") — Hkl(X;Q”) —



HOLOMORPHICALLY CONVEX COMPACT SETS 189

So H!(D';Q") ~ Tk (X — D';Q"). By construction the set X — D' has
no compact connected components, then I'y (X — D'; Q") = 0 and (a)
follows.

To prove (b), fix r € N, then (2.8) gives that H?(X — K];#) = 0 for
0<g<n-1and H""!(X - K};¢) is F.S. Then H!(X - K};Q") =0
for ¢ # 1 and ¢ # n while Hk (X — K};Q") and H(X — K};Q")
are D.F.S. From the cohomology sequence with compact support of:
0— Q% g — Q" — QF, — 0, from duality and from the Hartogs
theorem we conclude that H1(K];Q") = 0 for every ¢ > 0. Let E be
the vector bundle of holomorphic differential n-forms. The manifold
X is Stein, then for every p € K] there exists w, € I'(X; E) with
wp(p) # 0. By compactness we can choose a finite number of sections
@y, ..., @y such that N, {x € X: wx(x) = 0} N K] = &. So there
exists an open neighborhood U of K] and a nowhere zero section on
U of the bundle

E"=E®E - --©E.
N, —

m times

Hence E™|y has a trivial subbundle F of rank 1. Choosing a Hermi-
tian metric on E™|y we can construct a subbundle G of E™|y such
that E™|y = G @ F. If £ denotes the sheaf of sections of G we have
for ¢ > 0:

= (HI(K};QM)™ = HY(K};(Q")™) = HY(K;6 © %)
= HY(K};0) @ HO(K);%).

So H1(K};#) = 0 for ¢ > 0 and K] is holomorphically convex ([6]
page 73). We conclude by invoking Lemma 2. O

3. A duality theorem. Choose a domain D in X fulfilling (a) and (b),
a locally finite partition {K, },en of S by holomorphically convex com-
pact sets and a coherent sheaf & on D’. We consider the ring I';(S; %)
of the sections of s with compact support. There is a canonical
isomorphism between I';(S;%) and }_,I'(K,;#). We can consider
the inductive limit topology on I'(K,; %), the direct sum topology on
Y . T (Kn; %) and the induced topology on I'y(S;%). This is a D.F.S.
topology which does not depend on the partition that we have chosen.
In fact if K is a compact subset of D’ and H,, ..., Hy, a partition of K
by compact sets, then the inductive limit topology on I'(K;.#) is the
direct sum of the inductive limit topologies on I'(H;; # ). Therefore if
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{Ks}sen and {K},en are two partitions we have:

T (8;9) =) T(Ks;F) =) > T(KNK};F)
sEN seN |

=Y Y T(KnK};F) =Y T(K};7).
] s I

This topology on I';(S;%) will be referred to as the natural topology.
Now consider the sequence:
= HYD";9) - HY(D";9) —» HY(D;¥) — HI*' (D', %) — -
with the topology derived from its short exact sequence of F.S. space.

REMARK 1. If r: I'(D';.%) — I'(D; %) denotes the restriction, we
have the following topological isomorphisms:

HY)(D'; &) ~ Kerr,
H{(D'; )~ CoKerr,
HI{(D;,7)~HI"Y(D;5) ifgqg>2.

It follows from Lemma 1.
In this section we want to prove:

THEOREM 4. If D fulfills (a) and (b) ther for every ¢ > 0, HS(D";.%)
is F.S. and its dual is topologically isomorphic to T, (S; Ext""9(5F; Q"))
with the natural topology.

To prove this theorem we need to make some other remarks. Let
U be a Stein neighborhood of a holomorphically convex compact set
K C X. For g > 0 the inductive limit topology on I'(K; Ext?(%; Q"))
induces a D.F.S. topology on Ext?(K;%;Q") via the canonical iso-
morphism.

We will call this the L topology.

On the other hand, Theorems 1 and 2 of §2 imply that HL(U;.%)
is F.S. for every g > 0, then by (y), Ext?(K;#; Q") with the topology
of the sequence (2.3) is D.F.S. We will call this the 7" topology.

LEMMA 5. The T and L topologies coincide on Ext?(K;5;Q") for
every q > 0.

Proof . If g = 0, this is just Lemma 4. If ¥ is locally free, then
Ext!(K;7,Q") = I'(K; Ext!(¥;Q")) = 0 for every ¢ > 0 and the
lemma is proved. If ¥ is coherent, by excision the 7T topology on
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Ext!(K ;% ;Q") does not depend on the choice of the Stein neighbor-
hood of K. The proof is again by induction on S(¥) = n — prof #.

Consider a sequence 0 — & 4 o7 £ & — 0 on a Stein neighbor-
hood W of K in U, with S(2) < S(¥) — 1. We derive:

(3.1) 0— Hom(¥;Q") — Hom(¢"; Q") — Hom(%; Q") 2>
Ext!(#;Q") =0
and the isomorphisms ¢?~!: Ext?~!(2;Q") — Ext?(¥;Q") when p >
2. Since K is holomorphically convex (3.1) induces:
0 - Hom(K;5;Q") - Hom(K;#"; Q") — Hom(K;%; Q")
2 Ext!(K; 7,Q") — 0

and the isomorphisms: ¢7~!: Ext’~!(K;2;Q") — Ext?(K;%;Q")
when p > 2.

If the spaces have the L topologies all of these are topological ho-
momorphisms.

Since the lemma is proved for p = 0, for the case p = 1 it is enough
to prove that G0 is T continuous. Consider the commutative diagram:

0 0

! !

Hom(K;7;Q") -2 Ext!(K;7;Q")

603 l la‘y

Extl(W - K;5;Q") —2 Extl(U-K;7,Q")

! !

0 0

where dp, and d,, are those in (2.3) and 6, is that in (2.6).

Since d;,, is a topological isomorphism and 6, o dy,, is continuous,
it follows that 49 is continuous.

If 2 < p < n -1, by induction hypothesis the L and T topolo-
gies coincide on Ext?~!(K;Z;Q"), so we must prove the 67~ ! is T
continuous.
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W is Stein, so Ext?(W;5;Q") = 0, Ext/*! (W;5;Q") is D.F.S. and
we have the commutative diagram:

Op—1
Ext’~(K;2;Q") —% Ext’(W - K;Z;Q")

l&”“' J«GP
J,
0 — Ext?(K;7;Q") —Z Ext!*' (W - K;7;Q")

dp, is an injective topological homomorphism, the map J,, o 67! =
6p 0 d,_y, is continuous, then §7~! is continuous. If p = n, we will
prove that Ext"(K;%;Q") is finite dimensional. There is a unique
D.F.S. topology on a finite dimensional vector space, so the L and T
topologies must coincide.

If prof # > 1 then Ext"(K;5;Q") = 0.

If prof # = 0, we take the sequence:

0-2)(F)—»F —-%—0 onl
where Z)(F)|y-4 =0, A is discrete in U and prof & > 1. From this
we derive:
— Ext"(K;Z;Q") — Ext"(K;7;Q") — Ext"(K; #)(F); Q") — - -
Since prof & > 1, Ext"(K;%; Q") = 0 and it is enough to prove that
Ext"(K; #0(F); Q") = Ext"(K N 4; Z0(F); Q") is finite dimensional.
The set A is discrete in U, hence ANK = {xy,..., Xm}, then

m
Ext"(K N 4;2)(7);Q") = > Ext"({x;}; #)(F); Q").
i=1
For every i with 1 < i < m, let U; be an open neighborhood of x; such
that Ext"(Z0(5); Q")|y,—(x3 = 0. If x; € V C Uj, then
T(V;Ext"(Z(9), Q") = [(U; Ext" (#)(5);Q7); 5o
T (Ui Ext" (#)(5); Q"))
= lim I(V; Ext"(#{(); Q"))
Vax;
= T({x;}; Ext"(Z)(F); Q") = Ext"({x;}; Z)(F); Q")).
Therefore I'(U;; Ext” (%;40 (%), Q") is F.S. and D.F.S,, it follows that
it is finite dimensional. o

Proof of Theorem 4. The space H{(D';.¥) is F.S. for every ¢ > 0
by Theorems 1 and 2. Moreover if S is compact the theorem follows
from Lemma 5.
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If S is noncompact and {K;}sn is a locally finite partition of S by
holomorphically convex compact sets, then:

[Hq(D"?]' |;H H;é (S‘?)']

=Y [HL(S;9)] ~ D T(K: Ext"™9(7;Q"))
SEN SEN

=TI (S; Ext""9(#;Q")) by definition. ]

4. Cohomology with compact support. Let D be a domain in X
fulfilling conditions (a) and (b), let ¥ be a coherent sheaf on D’, then
we have the following:

THEOREM 5. The cohomology groups H](D; %) with compact sup-
port are D.F.S. for every q > 0. If & is locally free then H!(D;5 ) =0
for g # 1 and q # n.

Proof . Consider the exact sequence of sheaves on D':

and the corresponding exact cohomology sequence with compact sup-
port:

(4.‘1) 0— Ty (D;F) —=Tp(DF) - TW(S; %) 2 Hk (D; %)

— H\(D';F) = H(S;F) —---— HI™(S;5)

— H!(D;%) - HI(D";.%) — H,g(S;?) —
with the topology induced by its short exact sequence of D.F.S. spaces
([1] page 25).

Let {K,}nen be a locally finite partition of S by holomorphically
convex compact sets, then for ¢ > 1 we have:

H{(S;) ~ ZH‘IK,, =0.

It follows that for ¢ > 2 the space H!(D;%) is isomorphic to the
D.F.S. space H!(D';%) [2]. Since I't(D;%) is always D.F.S. it re-
mains to prove that Hk1 (D;%) also is. At this end, suppose first that
prof # > 1, then

T (D', F) ~ [Ext"(D";.7; Q"] ~ [[(D'; Ext"(7;Q")] =0
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and the map my is injective. Since H,g (D';#) is D.F.S. the image of
my is closed and by Lemma 1 it is a topological homomorphism.
Moreover it is enough to prove that Im my with the topology induced
by H}(D; %) is D.F.S. (in fact it contains the closure of 0). However
Im my, is topologically isomorphic to I'y(S;%#) which is D.F.S. since
it is the zero cohomology group of a complex of D.F.S. spaces. If
prof & = 0 we have the exact sequence (2.7) and the corresponding:

- = H(D;#)(¥)) — H/(D;F) — H/(D; %)
— HY(D;#0(F)) = -+

Since #(#) has discrete support we have:
H)(D;70(%)) = H}(D; 7)(%)) = 0;

so the spaces H} (D; %) and H}!(D; ) are isomorphic. Now prof & >
1 and the theorem follows from the preceding step. If & is locally
free the theorem follows from Theorem 1 and duality. o

5. The two-dimensional case. If the manifold X has complex di-
mension 2 then we obtain:

THEOREM 6. Let D be a domain in a connected Stein manifold X
of complex dimension 2, % a locally free nonzero sheaf on X, then:
HY(D;%2) is F.S. if and only ifH,f(D;.‘Z) is D.F.S. if and only if D
Sfulfills (a) and (b).

Proof . If D fulfills (a) and (b) then H!(D;.%) is F.S. by Theorems
1 and 5. Conversely as in Theorem 3 we can prove that D fulfills (b)
and that H!(D'; %) = 0. To prove (a) we choose a point p € 3D’ and
an open Stein neighborhood U of p such that Z|y = #". We have
the Mayer-Vietoris sequence:
- > H\ (D", #)e H(U;Z) - H\(D'NnU,2)
—H}D'UU;Z)— -

Now U is Stein and X is two-dimensional, then:
H\ (D', Z)=H\(U;%)=H*(D'uU;%)=0.

So
HY(D'nU;Z)~[H(D'nU;®) =0.
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Then D' N U is Stein ([6] page 65). The domain D’ is a locally Stein
manifold, then a Stein manifold. However H?(D;.#) is D.F.S. if and
only if H!(D;Hom(Z;Q?)) is F.S. if and only if D fulfills (a) and (b).

COROLLARY 1. Let X be a two-dimensional connected Stein mani-
fold and D a domain in X; suppose that there exists a nonzero locally
free sheaf % in X such that H'(D; %) is F.S. or H¥(D; %) is D.F.S.
Let & be a coherent sheaf on D', then:

(1) The groups Hl(D;%) are F.S. for every ¢ > 0 and their dual
spaces are topologically isomorphic to Ty (S; Ext?~9(F;Q?)) with the
natural topology.

(2) The groups H!(D; %) are D.F.S. for every q > 0.

Proof . 1t follows from Theorems 4, 5 and 6. O
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