NON-TANGENTIAL LIMIT THEOREMS FOR NORMAL MAPPINGS

Kyong T. Hahn

Let X be a relatively compact complex subspace of a hermitian manifold N with hermitian distance d_N . Let Ω be a bounded domain with C^1 -boundary in C^m . A holomorphic mapping $f: \Omega \to N$, $f(\Omega) \subset X$, is called a normal mapping if the family $\{f \circ \psi : \psi : \Delta \to \Omega$ is holomorphic}, $\Delta := \{z \in \mathbb{C} : |z| < 1\}$, is a normal family in the sense of H. Wu. Let $\{p_n\}$ be a sequence of points in Ω which tends to a boundary point $\zeta \in \partial \Omega$ such that $\lim_{n\to\infty} d_N(f(p_n), l) = 0$ for some $l \in \overline{X}$. Two sets of sufficient conditions on $\{p_n\}$ are given for a normal mapping $f: \Omega \to X$ to have the non-tangential limit value l, thus extending the results obtained by Bagemihl and Seidel.

1. Introduction. In [2], F. Bagemihl and W. Seidel posed the following question: Given a sequence $\{z_n\}$ in the open unit disc Δ converging to some $\zeta \in \partial \Delta$ and a meromorphic function $f: \Delta \to P_1(\mathbb{C})$ such that $\lim_{n\to\infty} f(z_n) = c$ for some $c \in P_1(\mathbb{C})$, under what conditions on fand $\{z_n\}$ can f have the limit c along some continuum in Δ which is asymptotic at ζ ? They answer this question with two interesting sufficient conditions on f and $\{z_n\}$.

In this paper we extend their results to the higher dimensional case. First we shall introduce a few terminologies.

Let Ω be a bounded domain with C^1 -boundary in \mathbb{C}^m . Then at each $\zeta \in \partial \Omega$, the tangent space $T_{\zeta}(\partial \Omega)$ and the unit outward normal vector ν_{ζ} are well-defined. We denote by $\mathbb{C}T_{\zeta}(\partial \Omega)$ and $\mathbb{C}\nu_{\zeta}$ the complex tangent space and the complex normal space, respectively. The complex tangent space at ζ is defined as the (m-1) dimensional complex subspace of $T_{\zeta}(\partial \Omega)$ and given by $\mathbb{C}T_{\zeta}(\partial \Omega) := \{z \in \mathbb{C}^m : (z, w) = 0, \forall w \in \mathbb{C}\nu_{\zeta}\}, (z, w) = \sum_{j=1}^m z_j \bar{w}_j.$

We say that a subset $S \subset \Omega$ is asymptotic at $\zeta \in \partial \Omega$ if $\overline{S} \cap \partial \Omega = \{\zeta\}$ and non-tangentially asymptotic at ζ if $S \subset \Gamma_{\alpha}(\zeta)$ for some $\alpha > 1$, where

- (1a) $\Gamma_{\alpha}(\zeta) := \{ z \in \Omega : |z \zeta| < \alpha \delta_{\zeta}(z) \},$
- (1b) $\delta_{\zeta}(z) = \min\{p(z, \partial \Omega), p(z, T_{\zeta}(\partial \Omega))\},\$

and p denotes the euclidean distance in \mathbb{C}^m . In particular, a curve $\gamma: (0, 1) \to \Omega$ is non-tangentially asymptotic at ζ if $\gamma(t) \in \Gamma_{\alpha}(\zeta)$ for some $\alpha > 1$ and all $t \in (0, 1)$, and $\lim_{t \to 1^-} \gamma(t) = \zeta$.

Let N be a connected paracompact hermitian manifold with hermitian metric h_N which induces the standard topology of N. By d_N we denote the distance function associated with h_N .

By Hol(Ω , N) we denote the space of all holomorphic maps $f: \Omega \to N$. We say that a mapping $f \in \text{Hol}(\Omega, N)$ has an asymptotic limit l at $\zeta \in \partial \Omega$ along the curve γ in Ω , write $\lim_{\gamma \ni z \to \zeta} f(z) = l$, if γ is asymptotic at ζ and $\lim_{t \to 1^-} d_N(f(\gamma(t)), l) = 0$, a radial limit l at ζ if $\lim_{\varepsilon \to 0^+} d_N(f(\zeta - \varepsilon v_{\zeta}), l) = 0$, a non-tangential limit l at ζ if $\lim_{\Gamma_n(\zeta) \ni z \to \zeta} d_N(f(z), l) = 0$ for every $\alpha > 1$ and an admissible limit l at ζ if $\lim_{\Lambda_n(\zeta) \ni z \to \zeta} d_N(f(z), l) = 0$ for every $\alpha > 0$, where

(2)
$$A_{\alpha}(\zeta) := \{z \in \Omega : |(z - \zeta, \nu_{\zeta})| < (1 + \alpha)\delta_{\zeta}(z), |z - \zeta|^2 < \alpha\delta_{\zeta}(z)\}.$$

Let M be a connected complex manifold of dimension m. We assume that M is hyperbolic, i.e., the Kobayashi pseudometric k_M is a metric. Denote the infinitesimal Kobayashi metric by K_M . According to H. Royden [10], the Kobayashi metric k_M is the integrated form of K_M . M is hyperbolic if and only if for each $p \in M$, there exists a neighborhood U_p and a constant $a_U > 0$ such that

$$K_M(q,\xi) \ge a_U|\xi|$$
 for $(q,\xi) \in U \times \mathbb{C}^m$.

DEFINITION. A mapping $f \in Hol(M, N)$ is called *normal* if the family $\{f \circ \psi : \psi \in Hol(\Delta, M)\}$, Δ is the unit disc in C, forms a normal family in the sense of H. Wu [11].

We remark that the definition of normality adopted here does not require M to be homogeneous and coincides with that of [7] when Mis homogeneous and N is compact [1], [6]. Therefore, it is a slightly more general notion than that of [7].

2. Preliminary properties of normal mappings. Let X be a relatively compact complex subspace of a hermitian manifold N. We shall denote by Hol(M, X) the space of all holomorphic maps $f: M \to N$ with $f(M) \subset X$.

LEMMA 1. Let M be a hyperbolic manifold and let X be a relatively compact complex subspace of a hermitian manifold N with hermitian metric h_N . The family $F \subset Hol(M, X)$ is normal in the sense of H. Wu if for each compact subset $E \subset M$ there exists a constant C(E) > 0such that

(3)
$$Qf(p) := \sup_{|\xi|=1} \frac{h_N(f(p), df(p)\xi)}{K_M(p, \xi)} \le C(E)$$

for all $p \in E$ and all $f \in F$.

Due to the compactness of \overline{X} , the proof of Lemma 1 can be carried out in the same way as that of Lemma 2.7 of [7]. Therefore, we omit the proof.

THEOREM 1. Let M be a hyperbolic manifold (not necessarily homogeneous) and let X be a relatively compact complex subspace of a hermitian manifold N. The following statements are equivalent for $f \in Hol(M, X)$.

(a) f is normal.

(b) There exists a constant Q > 0 such that

$$Qf := \sup\{Qf(p) : p \in M\} \le Q.$$

(c) There is no P-sequence $\{p_n\}$ in M possessed by f, i.e., there is no sequence $\{q_n\}$ in M such that $\lim_{n\to\infty} k_M(p_n, q_n) = 0$ but $\overline{\lim_{n\to\infty} d_N(f(p_n), f(q_n))} \ge \varepsilon$ for some $\varepsilon > 0$.

Proof. (a) \Rightarrow (b): Assume that $\{f \circ \psi : \psi \in \text{Hol}(\Delta, M)\}$ is a normal family. By Lemma 1, for each compact $E \subset \Delta$, there exists a constant Q = Q(E) > 0 such that

(4)
$$h_N(f \circ \psi(0), (f \circ \psi)'(0)) \le Q$$

for all $\psi \in \text{Hol}(\Delta, M)$. By the definition of K_M at $(p, \xi) \in M \times \mathbb{C}^m$, there exists $\psi \in \text{Hol}(\Delta, M)$ such that $\psi(0) = p$, $\psi'(0)a = \xi$ for a > 0and $a/2 < K_M(p,\xi) \le a$. Therefore, from (4),

$$h_N(f(p), df(p)\xi) \leq 2QK_M(p,\xi)$$

for all $(p, \xi) \in M \times \mathbb{C}^m$. Namely, $Qf \leq 2Q$.

(b) \Rightarrow (c): If (c) fails to hold, then there exists a sequence $\{p_n\}$ and $\{q_n\}$ in M with $\lim_{n\to\infty} k_M(p_n, q_n) = 0$ but $\overline{\lim} d_N(f(p_n), f(q_n))$ $\geq \varepsilon$ for some $\varepsilon > 0$. It contradicts (b), because (b) implies that $d_N(f(p_n), f(q_n)) \leq Qk_M(p_n, q_n)$.

(c) \Rightarrow (a): If (c) holds, then for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $z, w \in \Delta$, $k_{\Delta}(z, w) < \delta$ implies $d_N(f \circ \psi(z), f \circ \psi(w)) < \varepsilon$

59

for all $\psi \in \text{Hol}(\Delta, M)$, since otherwise there exists an $\varepsilon > 0$ such that for all $n \in \mathbb{N}$ there exist sequences $\{z_n\}$ and $\{w_n\}$ in Δ with $k_{\Delta}(z_n, w_n) < 1/n$ but $d_N(f \circ \psi(z_n), f \circ \psi(w_n)) \ge \varepsilon$ for some $\psi \in \text{Hol}(\Delta, M)$. This means that $\{z_n\}$ is a *P*-sequence for $f \circ \psi$. Since

$$k_M(\psi(z_n),\psi(w_n)) \leq k_{\Delta}(z_n,w_n) \leq 1/n \to 0,$$

 $\{\psi(z_n)\}\$ is also a *P*-sequence for f in M which contradicts (c). Therefore, $\{f \circ \psi : \psi \in \operatorname{Hol}(\Delta, M)\}\$ is an equicontinuous family and hence normal since \overline{X} is compact. This proves (a).

Theorem 1 is also proved in [6] for compact N and in [3] for N = the Riemann sphere.

3. Boundary behavior of normal mappings.

THEOREM 2. Let X and N be given as in Theorem 1, and let Ω be a bounded domain with C^1 -boundary in \mathbb{C}^m . Suppose that S is an arbitrary asymptotic continuum at $\zeta \in \partial \Omega$ such that

(6a)
$$\lim_{S\ni z\to \zeta} \frac{p(z,\mathbf{C}\nu_{\zeta})}{r(\nu(z))} = 0$$

where $r(\nu(z))$ denotes the radius of the largest ball in $\Omega \cap CT_{\nu(z)}$, centered at $\nu(z)$, the orthogonal projection of z to $C\nu_{\zeta}$ and $CT_{\nu(z)}$ is the hyperplane through $\nu(z)$ that is parallel to $CT_{\zeta}(\partial\Omega)$. If $f \in Hol(\Omega, X)$ is a normal map such that $\lim_{S \ni z \to \zeta} d_N(f(z), l) = 0$ for some $l \in \overline{X}$, then $\lim_{\Gamma_n(\zeta) \ni z \to \zeta} d_N(f(z), l) = 0$ for all $\alpha > 1$.

Proof. By the definition of $r(\nu(z))$, $\Omega \cap CT_{\nu(z)}$ contains the euclidean ball $B(\nu(z), r(\nu(z)))|_{CT_{\nu(z)}}$, the restriction to $CT_{\nu(z)}$.

The distance-decreasing property of the Kobayashi metric implies

(7)
$$k_{\Omega}(z,\nu(z)) \leq \tanh^{-1}\frac{|z-\nu(z)|}{r(\nu(z))},$$

and hence, as $S \ni z \to \zeta$, $\eta := \nu(z) \to \zeta$ along $\nu(S) := \{\nu(z) : z \in S\}$ from (7). Since f is normal, by Theorem 1, there exists a number Q > 0 such that

(8)
$$d_N(f(z), f(\nu(z)) \le Qk_{\Omega}(z, \nu(z)).$$

Therefore, $\lim_{\nu(S) \ni \eta \to \zeta} d_N(f(\eta), l) = 0$. Let Ω_{ζ} be the connected component of $\Omega \cap C\nu_{\zeta}$ with $\zeta \in \partial \Omega_{\zeta}$. Then the restriction $f|_{\Omega_{\zeta}}$ is a normal

map from the plane domain Ω_{ζ} into X. Therefore, it follows from Theorem 4 of [5] with a slight modification that

$$\lim_{\tilde{\Gamma}_{\alpha}(\zeta) \ni \eta \to \zeta} d_N(f(\eta), l) = 0 \quad \text{for all } \alpha > 1,$$

where $\tilde{\Gamma}_{\alpha}(\zeta) := \Gamma_{\alpha}(\zeta) \cap \mathbb{C}\nu_{\zeta}$. The rest of the proof can easily be carried over from the proof of Proposition 8.2 of [7] to this case with X replaced by d_N .

COROLLARY 1. Let X and N be given as in Theorem 1 and let Ω be a bounded domain with C^2 -boundary in \mathbb{C}^m . Let S be an arbitrary asymptotic continuum at $\zeta \in \partial \Omega$ such that

(6b)
$$\lim_{S\ni z\to \zeta} \frac{p^2(z,\mathbf{C}\nu_{\zeta})}{p(z,\mathbf{C}T_{\zeta})} = 0.$$

If $f \in \text{Hol}(\Omega, X)$ is a normal map such that $\lim_{S \ni z \to \zeta} d_N(f(z), l) = 0$ for some $l \in \overline{X}$, then

$$\lim_{\Gamma_{\alpha}(\zeta)\ni z\to \zeta} d_N(f(z),l) = 0 \quad \text{for all } \alpha > 1.$$

Proof. Since Ω is a bounded domain with C^2 -boundary in \mathbb{C}^m , there exists an $\varepsilon = \varepsilon(\zeta) > 0$ such that the euclidean ball $B_{\varepsilon} := B(\zeta - \varepsilon \nu_{\zeta}, \varepsilon)$ is contained in Ω and tangent to $\partial \Omega$ at ζ from inside. The order of tangency in this case is not worse than along the admissible region A_{α} given in (2). In fact, there exists a constant C > 0 such that

$$r(\nu(z)) \ge C |\zeta - \nu(z)|^{1/2}$$

for $z \in S$. See Example 1 of [4]. Therefore,

(9)
$$\left[\frac{Cp(z, \mathbf{C}\nu_{\zeta})}{r(\nu(z))}\right]^2 \leq \frac{|z-\nu(z)|^2}{|\zeta-\nu(z)|} \leq \frac{p^2(z, \mathbf{C}\nu_{\zeta})}{p(z, \mathbf{C}T_{\zeta})}.$$

Corollary 1 now follows from Theorem 2 or directly from the Proof of Proposition 8.2 of [7] with minor adjustments.

We now prove the following extensions of the results given in [2].

THEOREM 3. Let X and N be given as in Theorem 1. Let Ω be a bounded homogeneous domain in \mathbb{C}^m and let $\{p_n\}$ be a sequence of points in Ω which tends to a boundary point $\zeta \in \partial \Omega$ where the outward normal ν_{ζ} exists, such that

(a) there exists a constant M > 0 with $k_{\Omega}(p_n, p_{n+1}) \leq M$ for all n,

(b)
$$\lim_{n \to \infty} \frac{p(p_n, \mathbf{C}\nu_{\zeta})}{r(\nu(p_n))} = 0$$

If $f \in \text{Hol}(\Omega, N)$ is a normal map which omits $l \in \overline{X}$ in Ω but $\lim_{n\to\infty} d_N(f(p_n), l) = 0$ then

$$\lim_{\Gamma_{\alpha}(\zeta)\ni z\to \zeta}d_N(f(z),l)=0 \quad for \ all \ \alpha>1.$$

Proof. Let $\varphi_n \in Aut(\Omega)$ be such that $\varphi_n(p_0) = p_n$ for some fixed point $p_0 \in \Omega$. Then the family $\{g_n\}, g_n = f \circ \varphi_n$, omits *l* for all *n* and forms a normal family, since *f* is normal.

For R > M, let $B_k(p_0, R) := \{p \in \Omega : k_\Omega(p_0, p) < R\}$. Since Ω is homogeneous, k_Ω is complete and, hence $\overline{B}_k(p_0, R)$ is a compact subset of Ω . So, $\{g_n\}$ has a subsequence $\{g_m\}$ which converges uniformly on \overline{B}_k to $g \in \text{Hol}(\Omega, N)$. Since each g_m omits l on B_k , by the Hurwitz theorem [8], either $g(z) \neq l$ or $g(z) \equiv l$ on $B_k(p_0, R)$. But since $d_N(g_m(p_0), l) = d_N(f(p_m), l) \rightarrow 0, g(z) \equiv l$ for all $z \in B_k(p_0, R)$. This implies that f(z) = l for all $z \in B_k(p_m, R)$ and all m, i.e., $f(z) \equiv l$ on $\bigcup_{m=1}^{\infty} B_k(p_m, R)$. Since

$$k_{\Omega}(p_m,\nu(p_m)) \leq \tanh^{-1}\frac{|p_m-\nu(p_m)|}{r(\nu(p_m))} \to 0$$

as $n \to \infty$, there exists m_0 such that for all $m \ge m_0 k_\Omega(p_m, \nu(p_m)) < R$ which implies $\nu(p_m) \in B_k(p_m, R)$ for all $m \ge m_0$. Let $S := \mathbb{C}\nu_{\zeta} \cap \bigcup_{m \ge m_0} B_k(p_m, R)$.

Then condition (6a) in Theorem 2 is trivially satisfied and also $\lim_{S \ni z \to \zeta} d_N(f(z), l) = 0$. Therefore, we have

$$\lim_{\Gamma_{\alpha}(\zeta)\ni z\to\zeta}d_N(f(z),l)=0$$

for all $\alpha > 1$ by Theorem 2.

THEOREM 4. Let X and N be given as in Theorem 1. Let $\{p_n\}$ be a sequence of points in a bounded domain $\Omega \subset \mathbb{C}^m$ which tends to a boundary point $\zeta \in \partial \Omega$ where the unit outward normal ν_{ζ} exists such that

(a)
$$\lim_{n\to\infty}k_{\Omega}(p_n,p_{n+1})=0,$$

(b)
$$\lim_{n \to \infty} \frac{p(p_n, \mathbf{C}\nu_{\zeta})}{r(\nu(p_n))} = 0$$

If $f \in \text{Hol}(\Omega, X)$ is a normal map such that $\lim_{n\to\infty} d_N(f(p_n), l) = 0$ for some $l \in \overline{X}$, then $\lim_{\Gamma_n(\zeta) \ni z \to \zeta} d_N(f(z), l) = 0$ for all $\alpha > 1$. *Proof.* Let $\{q_n\}$, $q_n = \nu(p_n)$, be the orthogonal projection of $\{p_n\}$ to $\mathbb{C}\nu_{\zeta}$. Then

(10)
$$k_{\Omega}(q_n, q_{n+1}) \leq k_{\Omega}(p_n, p_{n+1})$$

so that $k_{\Omega}(q_n, q_{n+1}) \to 0$ as $n \to \infty$. Let γ be a curve in $\Omega \cap C\nu_{\zeta}$ joining q_n and q_{n+1} by shortest curves. Since k_{Ω} is an inner metric, such curves exist for sufficiently large n. Since f is normal, by Theorem 1, there exists Q > 0 such that

(11)
$$d_N(f(p_n), f(q_n)) \le Qk_{\Omega}(p_n, q_n).$$

Therefore, condition (b) together with (7) implies

$$\lim_{n\to\infty}d_N(f(p_n),f(q_n))=0,$$

and hence,

(12) $\lim_{n \to \infty} d_N(f(q_n), l) = 0$

by the triangle inequality. We wish to show:

(13)
$$\lim_{\gamma \ni z \to \zeta} d_N(f(z), l) = 0.$$

Suppose there is a sequence $\{q'_n\}$ on γ converging to ζ for which f fails to have the limit l. By the compactness of \overline{X} there must be a subsequence $\{q'_m\}$ such that

(14)
$$\lim_{m\to\infty} d_N(f(q'_m), l') = 0$$

for some $l' \in \overline{X}$, $l' \neq l$. We may assume that q'_m are all distinct from the points q_m . For each *m*, there exists an index n_m such that q'_m lies on the geodesic segment of γ that joins q_{n_m} and q_{n_m+1} . By (10),

$$k_{\Omega}(q_{n_m}, q'_m) \leq k_{\Omega}(q_{n_m}q_{n_m+1} \rightarrow 0)$$

as $m \to \infty$. Since f is normal, for some Q > 0 we have

$$d_N(f(q_{n_m}), f(q'_m)) \leq Qk_\Omega(q_{n_m}, q'_m) \to 0$$

as $m \to \infty$. From this and (12) we conclude $\lim_{m\to\infty} d_N(f(q'_m), l) = 0$, contradicting (14). Therefore we have (13). Since condition (6a) of Theorem 2 holds trivially in this case, Theorem 4 follows from Theorem 2.

We remark that if the domain Ω in Theorems 3 and 4 is assumed to have C^2 -boundary, then both theorems hold when condition (b) is replaced by

(b') $\lim_{n \to \infty} \frac{p^2(p_n, \mathbf{C}\nu_{\zeta})}{p(p_n, \mathbf{C}T_{\zeta})} = 0$

in both cases.

Introducing the notion of hypoadmissible limit, J. Cima and S. Krantz have proved the Lindelöf Principle for normal meromorphic functions on domains in \mathbb{C}^n with C^2 -boundary in [3]. The author wishes to thank the referee for pointing this out to him.

References

- [1] G. Aladro, Some consequences of the boundary behavior of Carathéodory and Kobayashi metrics and applications to normal holomorphic functions, Pennsylvania State University Ph. D. Thesis, 1985.
- [2] F. Bagemihl and W. Seidel, Sequential and continuous limits of meromorphic functions, Ann. Acad. Sci. Fenn., Ser. A1, 280 (1960).
- [3] J. Cima and S. Krantz, The Lindelöf principle and normal functions of several complex variables, Duke Math. J., 50 (1983), 303-328.
- [4] E. Čirka, The theorems of Lindelöf and Fatou in Cⁿ, Math. Sb., 92 (134) (1973), 622-644; Math. U.S.S.R. Sb., 21 (1973), 619-639.
- K. Funahashi, Normal holomorphic mappings and classical theorems of function theory, Nagoya Math. J., 94 (1984), 89-104.
- [6] G. Gigante, Montel's theorem and P-sequences, preprint.
- [7] K. T. Hahn, Asymptotic behavior of normal mappings of several complex variables, Canad. J. Math., **36** (1984), 718–746.
- [8] P. J. Kiernan and S. Kobayashi, Holomorphic mappings into projective space with lacunary hyperplanes, Nagoya Math. J., 50 (1973), 199-216.
- S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Appl. Math., 2, Dekker, New York, 1970.
- [10] H. L. Royden, Remarks on the Kobayashi Metric, Lecture Notes in Math., 185 (1971), Springer, 125-137.
- [11] H. Wu, Normal families of holomorphic mappings, Acta Math., 119 (1967), 193-233.

Received April 24, 1987. Research partially supported by the 1986/1987 Fulbright Research Grant at Universität Osnabrück-Abteilung Vechta.

The Pennsylvania State University University Park, PA 16802

64