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SYSTEMS OF NONLINEAR WAVE EQUATIONS
WITH NONLINEAR VISCOSITY

AVNER FRIEDMAN AND JINDRICH NECAS

An equation of the form

• • A d dW(p) A d dV(q) _ f

j^dxt dp, j^dXt dqt
 J

where p = Vw, q = VM, U = du/dt9 u = d2u/dt2 represents, for
suitable functions W(p), V(q)9 a nonlinear hyperbolic equation with
nonlinear viscosity and it appears in models of nonlinear elasticity.
In this paper existence and regularity of solutions for the Cauchy
problem will be established. In particular, if n = 2, or if n > 3 and
the eigenvalues of (d2V/dqjdqj) belong to a "small" interval, then the
solution is classical. These results will actually be established for a
system of equations of the above type.

Introduction. Consider a system of N nonlinear equations

in a cylinder Q x (0, oo), with initial data

(0.2) uk (x, 0) = uk0(x), uk (x, 0) = uki (x)

and boundary conditions

(0.3) u = 0 if x e dn, t > 0;

here Q, is a bounded domain in R",

P = (Pu). Q = i.Qn) and
dui diii . dw

Pli = dx-r gii=dxl- W = ~dt-
The special case

has been studied by several authors. For n = 1, existence and unique-
ness of a classical solution was established in [1], [2], [6], [7]. For
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30 AVNER FRIEDMAN AND JINDRICH NECAS

general n Engler [3] has recently established the existence of a strong
solution when W{p) is a general nonlinear isotropic function, that is,
VW(p) = g(\p\2)p, and g(s) satisfies:

1 se'(s)
(0.5) ^<ko<^.<kl<oo;

in case g(s) is globally Lipschitz, the solution is classical. His results
depend in a crucial way on the assumptions in (0.4) (especially the
second one). For earlier work on weak solutions see also the references
given in [3],

For n = 2 Petcher [10] established the smoothness of the weak
solutions, in case (0.4) and dW(p)/dpt = a/(p/), <r-(s) > 0, a\{s) >
C\ \s\2 if \s\ > 1, G"{S) < Ci\s\ if \s\ > 1 and C\, ci are positive constants.

Systems of the form (0.1)-(0.3) may be considered to represent
models of wave propagation in elastic material with nonlinear Hook's
Law (corresponding to the internal energy function W) and nonlinear
viscosity (corresponding to V). In case (0.4), when n = 1 the equation
models simple shear motion of a beam (see [6]), and when n = 2
it models antiplane shear motion of a column with cross section Q
(see [4], [8]); u is the displacement from the rest position. Nonlinear
viscosity terms appear in various models of elasticity; see [11].

In this paper we consider (0.1)-(0.3) with both W{p) and V{q)
nonlinear functions. In §§1-5 we assume that

(0.6) ( ) ( )
positive definite and bounded matrices.

It is well known that under these conditions there exists a unique global
weak solution; our interest is to derive regularity of the solution. In
fact we prove (in §5) that the solution is classical if either n < 2 or
if n > 3 and the eigenvalues of the second matrix in (0.6) lie in an
interval (^1,̂ 2) with X2 - k\ small enough.

Our proof is based on establishing estimates on

\\VU\\LS{QT) (in §2),

||V2M||L2(Qr) (in §3), ||V2w||L,(Qr) (in §4)

where QT = & x (0, T), and finally on

l|V2w||Loo((o>r);L,(n)) (in §5),

for some s > 2, or for any s > 2 if ki - X\ is small enough.
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Finally in §6 we consider the case where

A d

but W{p) is a general nonlinear function of p (not necessarily isotro-
pic) satisfying nonuniform ellipticity condition, and extend the result
of Engler [3] by proving the existence of a strong solution for this case.

1. Existence and uniqueness. Let N, n be positive integers and let
P = (Pi. • • • >PN), Q = (tfi. • • • .QN) where pk = (pkl>...,pkn), qk =
{Pk\ > • • > Qkn) a r e variable points in R". We are given two functions

W = W{p), V = V{q) from RnN into R1,

satisfying the following conditions:

(1.1) W and V belong to C2(RnN)),

E

(1.3) A,|^|2 < E E l ^ t f « J < A2|^|2 (0 < At < A2 < oo)

for ail p,q and RniV and ^ real, where

Let Q be a bounded domain in R" with C2 boundary dQ; for any
T> 0 we set

Q r = {(x, T);x e fi}, Q r = { ( x . t);xeCl, 0<t< T}.

We write d/dt also as """, i.e., u = du/dt, u = d2u/dt2, etc.
Consider the system of N nonlinear partial differential equations

where pk = V«fc, gfc = Vuk (thus pfa- = duk/dxh qki = duk/dXi), with
initial conditions

(1.5) « t (* .0 )=«w(4
M)t(x, 0) = uk\(x) for JC G Q
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and boundary conditions

(1.6) uk(x,t) = 0 forxedQ, 0<t<T.

We assume that

(1.7) fkeL2{QT) vr>o,
uk0, ukl belong to W0

12

DEFINITION 1.1. A function u = {u\,..., u^) is called a weak solu-
tion of (1.4)-(l. 6) if

(1.8) u

UGL2((0,T);W-l'2(Q))

where W-l-2(Q) is the conjugate of W^2(Q), if (1.5) is satisfied (ob-
serve that u € C([0, T]; W-^2{Q)) and thus uk(x,0) is well defined
in the trace class W~l-2(Q)), and if (1.4) is satisfied in the following
sense:

JJQT [ M + E ^ ^ + E ̂ a l j = JJQT M
for any <j> e L2((0, T); W*

THEOREM 1.1. There exists a unique weak solution u = {u\,..., uN)
of (\A)-{\.6); further, ifuk0,ukl belong to W2-2(Q) then

(1.9) ueCl((0,T);Wi'2(Q)).

Indeed, existence and uniqueness have been established, for in-
stance, in general Hilbert space framework in [5; Chapter 7, Theorem
1.2], and (1.9) follows from [5; Chapter 7, Theorem 3.2].

By taking a sequence Tm | oo and the corresponding solutions u =
Urm, and extracting a convergent subsequence, we obtain a solution u
of (1.4)—(1.6) for all T> 0; by Theorem 1.1, the solution is unique.

We conclude this section with a conservation law. Multiplying (1.4)
by «£, integrating over Qt and summing over k, we get
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and the third integral on the left-hand side is equal to

tQ,

Since, by (1.2), (1.3),

it TtJJQ, at

we obtain the estimate

(1.11) / \u\2+ f \Vu\2+ [[ \Vu\2<C (C = C(T))

for 0 < t < T.
In §§2-5 we assume that

(1.12) W{p) and V{q) belong to C3,

(1.13) fk€Wl'r(QT) Vr>0, K r < o o ,

(1.14) ukQ, ukl belong to W2>2Q) n WXr(Q) VI < r < oo,
and derive additional regularity results for the weak solution (which
already satisfies (1.8), (1.9) for all T> 0); in particular, the solution
will be shown to be classical in case n < 2.

2. Vu is in U.

LEMMA 2.1. Suppose v is a weak solution of

m
ini=\ OXi

v = 0 on dpQr, the parabolic boundary O/QT, ft e Lq{Qj) for some
I < q < oo (0 < i < n), 0 < yo < y < y\ < oo (y,yi constants). Then,

for every 0<t<T,

where Cq is a constant dependent only on Q, y0. Vi, T and q.

Proof. Consider first the case Q = {xn > 0}. Let M, be the solutions
of

Ui-yAui = fi inQT,
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Ui = 0 on {xn = 0} x (0, T) if 0 < / < n - 1,

§ £ = 0 on {xn = 0} x (0, T),

Ui(x, 0) = 0 i f x e Q, 0<i<n.
Then

Each m (0 < / < n - 1) can be represented by means of Green's
function, and un can be represented by means of Neumann's function.
Applying Lq parabolic estimates to the ut [9; IV, §3] the assertion
(2.1) follows. In order to extend (2.1) to general domains Q, we use
partition of unity and proceed as in the derivation of Lq estimates for
parabolic equations in non-divergence form (see, e.g., [9]).

From now on we assume that (1.12)—(1.14) hold, and set

dqk.dqij > *«U0 " dpkidpij•

THEOREM 2.2. For any T>0 there exist constants PQ> 2 and C > 0
such that

\ if If l ̂  C ^2<s< Po-(2.3) Y, \ if IV"*IS + If lV^l
f^[ [JjQr JJQT

Proof. We first proceed formally, assuming that the solution is smooth.
Let Zfc = %• Differentiating (1.4) in t we get

"A
XjJ'

and, by (1.12)-(1.14),

(2.5) zk(x, 0) belongs to WO
U(Q) n W1>r(O) for any 1 < r < oo.

Let

(2.6) y =

and rewrite (2.4) in the form

(2.7) zk-yAzk = -J2-£-
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where

In view of the choice (2.6), we have

(2.9) _ |£|

where |£|2 = E f c /(tf )2. Since ̂  = Afk by (2.2), the matrix Aa>f} = A%
where a = (/, fc), /? = (j, I) is symmetric, i.e., Aap = Apa. Hence (2.9)
implies that for any real vectors £ = (<̂ f), C = (Cf )>

(2.10) | E ( ^ A / - AV(q)t}$)\ < i(A2 -
Consider the linear parabolic system

(2.11) zk - yAzk = - J2 g£-

(2.12) z^ = 0 ona p Q r

where q = Vw, and G = (hijtgki) (1 < l,k < N and 1 < j < /i,
0 < i < /i) is any vector with components in LS{QT). We introduce
the norm

where Af is a positive constant to be determined.
For any G, there is a unique solution z = ( z i , . . . , z# ) of (2.11),

(2.12). We denote the vector (Vzi , . . . , Vz^) by Vz and set Vz = SG\
we also define the norm

(2.14) H | | { |
Then 5 is a linear mapping from Ls into Ls (with the norms defined
by (2.13), (2.14)), and by Lemma 2.1

(2.15)

where As is a constant depending on s, as well as on k\9 ki> T and Q.
We claim that

(2-16) ^
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Indeed, if we multiply (2.11) by z^ and integrate over Qt, we get, after
summing on k,

In view of (2.10), the first integral on the right-hand side is bounded
by

Recalling (2.6) we obtain

(2.17)

ft \zk\
2<C [[ |Vz,|2,

Since

the assertion (2.16) now follows provided M is chosen sufficiently
large (depending on the constant C in (2.17)).

By the Riesz-Thorin theorem, log ||*Sr||i/̂  is a convex function of /?,
0 < p < 1. Hence,
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Using (2.15), (2.16) we conclude that

(A \\-OL = ?Q 4f £ _ I — PL a

notice that #5 < 1 if 5 - 2 is small enough.
In view of (2.7), (2.8), the functions z^(x,t) = z^{x,t) - z^x,0)

satisfy a system of the form (2.11), (2.12) with

= fk + Sk

and Jk depending on the data Z((JC, 0). By (2.18),

ff |v*|*<(||S||f)'/"/• { £ l V +
J J Qt J J Qt

<($s)sfj \vz\* + ($syMjJ
where z?5 < 1. Hence

Recalling that zk = uk, we conclude that

provided t = T and 5 is such that #$ < 1; this estimate is valid also
for any t & (0, T), since Aqo and #$ are independent of t.

Set

/

Since

we have

Qt

Substituting this into (2.19), we get

{x,t) = Vuk{x,Q)+ I Vuk(x,z)dT,
Jo

ff \Vuk\
s<C + C fcj>{T)dT.

/

o
Hence, by Gronwall's inequality, c/)(t) < C, and (2.3) follows.
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So far we have assumed that the solution was smooth enough. In
order to prove (2.3) rigorously, we approximate the initial values by
smooth initial values, say ukQ, uk{ (k —• 0) in Cg (Q). By a fixed point
argument one can prove that (1.4)-( 1.6) with initial data w|0, u

k
kl has a

classical solution in Qaifa = a^ is small enough; o^ —• 0 if 1 —• 0. The
unique weak solution uk asserted in Theorem 1.1 which corresponds
to the data w£0, u

k
kx must coincide with the classical solution for t < a^

and, as A —> 0,

(2.20) iij-m* mCla0,nwi'2(n)).
We now work with finite differences in time; that is, setting

•7 (v t\ A tWv t\ - Uk{x,t + h)-iik{x,t)
zk{x, t) = Ahuk{xt t) = ^

and finite-differencing (1.4) in time, we obtain a system similar to
(2.4) with A% replaced by

Aki = / ^ T ^ - ( v " ^ ' ) + <VU^ t + h)~ VU^'»)dx

JO O(ikiO(ilj

and similarly B1^ replaced by £% and fk replaced by Ahfk. Since uk
k

is smooth in Q^, (2.5) is satisfied.
Proceeding as before, we deduce that

(2.21) J2 If IA*(V"£)I5 <C + CJ2[ |A*V«J(*. 0)|'.
-̂̂  J JQT *-* Ja.

As h —• 0 the right-hand side converges to

(2.22) C + cW|VfiJ(x,0)| ' .

Since, in view of (1.14), we can choose the approximations M£0, M^
such that the right-hand side of (2.22) is bounded independently of 1,
it follows from (2.21) that

where C is a constant independent of A. Letting A —• 0 and recalling
(2.20), the assertion (2.3) follows.

The proof of Theorem 2.2 yields:

COROLLARY 2.3. For any 2 < PQ < go, ifk-i — X\ is sufficiently small
so that &Po < 1 (&Po as in (2.18)), then (2.3) holds for all2<s < p0.
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3. V2w is in I2.

LEMMA 3.1. There exists a constant C such that

E{/7

Proof. We first establish that V2w and V2w belong to L2(QQ x (0, T))
where £2Q is any compact subdomain of Q. We shall begin be deriving
a priori estimates, assuming for the moment that V2w and V2M are
indeed in L2.

Let !?# and BR>, be two concentric balls with radii R and R1 respec-
tively, R < Rf, and 5 ^ c fli. Let rj be a cut-off function: ?; e Cfp{BRi),
r\ = 1 in 5/j. Fix any integer m, 1 < m < n, and set z^ =
Differentiating (1.4) with respect to xm we get

The functions Zk = Y\zk satisfy:

i.j.l

where

(3.4) F ^ ^ ^ ^
v ; K dxm *-^ r\ kldXj

V d (Aijn zA^0*!bLAjz.1 ^ i 2 1 j~Aklzl

Multiplying (3.3) by Zk and integrating over Qu we get, after sum-
ming over k,
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Recalling that Zk = r\zk and using (1.11) and (3.4), we easily estimate

\EgFkZk\ * C+CE / / f l IV21 |x|+CE//ft |V ( , £ ) | W

where \z\2 = £|zfc|2, |VZ|2 = £|VZ,t|2. Hence

< C UL
1/2

+C
1/2

Substituting this into (3.5) and using (1.2), (1.3), we easily obtain,
after using the Schwarz inequality,

Since

we have

diik _ d_ (duk

dXm " Jt

< 2 + IT f \Zk(x,
JO

ds.

Substituting this into (3.7) and setting

we obtain

Hence, by GronwalPs inequality,

(3.8)

and then also

(3.9)

f
Jo
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In order to prove (3.8), (3.9) rigorously, we work with finite differ-
ences, replacing duk/dxm by

hem,t)-uk{x,t)

where em is the unit vector in the .x^-direction. Then, with zk =
Â Wjt, Zk = Yfzk, the relations (3.2)-(3.4) hold with minor differences,
namely, Al^(p) is replaced by

l 82V
JQ T= JQ *(X' 0

he™> 0 - Vw(x, 0 ) dx

and similarly for B%9 and dfkldxm is replaced by A^/^; notice that
Vzk and Vuk belong to L2(QT) (by Theorem 2.2). We can now pro-
ceed as before (but this time rigorously), to establish analogously to
(3.8), (3.9), that

(3.10) Mr,Ah
muk)\

2 + If \V(r,Ah
mUk)\2] < C;

C is independent of h. By standard lemma in calculus it follows that,
in BR x (0, T) (where r\ = 1), the derivatives

dxm' dxm

exist and belong to L2(BR x (0, T)), and

(3.11) E
k

r
JO

f
BR

f
JBR

,duk

this holds for every 1 <m<n.
We next proceed to extend the interior estimates (3.11) to the bound-

ary, replacing BR by BR(XO) n Q where BR(XQ) = {x e Rw, \x - xo| <
i?} and xo is any point on dQ. Suppose dQ n 2?RO(;CO) (for some
0 < R < RQ) is given by xn = h{x\,...,xn-\) with h e C2, such
that xn > h in Q n 5i?o(xo)- Take for simplicity %o = (0 , . . . , 0) and
introduce new variables

JCJ = jcf- if 1 <i<n- 1,

it will be convenient to write x\ = hi(x). Setting

Uk(x',t) = uk(x,t),
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(1.4) becomes

d

w h e r e /> = { P x , . . . , P N ) , Q = ( Q i , . . . , Q N ) , Pk = ( P k l , . . . , P k n ) , Qk
(Qki Gjfc»)>

As before we first proceed formally, differentiating (3.11) in any
tangential direction xm (1 < m < n - 1). Setting zk = dU/dxm,
Zfc = rlzk where ^(JC') is a cut-off function r\ € C™(BP>), r\ = 1 in Bp

for some 0 < p < p', and defining

ltj=\

we find that

(3.13)

where F^ is defined similarly to F^ in (3.4); the difference is that

^ki'^id a r e r ePl a c ed ^ ^li-> Bki> th a t w/ ^s replaced by (7/, and that the
variables Xj are replaced by the variables x'j.

Multiplying (3.13) by Z^ and integrating over (x, t), and proceeding
as before, we arrive at the analogs of (3.8), (3.9). If we work with
finite differences A^ (instead of with d/dxm), then we can establish
rigorously the analogs of (3.10) and (3.11); thus

Vir-7-Uk and V-zr-r-Uk

belong to LZ(BP x (0, T)) and

(3.14) vJr^m

vm

dx'm
UL <c

(1 <m<n-l).
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It remains to consider the normal derivatives d(VUk)/dxr
n,

d(VUk)/dx'n. Since we have already proved that V2iik, V2uk, V2uk

are locally in L2(QT), the same is true of V2Uk, V
2C/^. Hence we can

apply the djdx\ differentiation to dW/dpkh dV/dqki in (3.12), thus
obtaining the relation

In view of Theorem 2.2 and (3.14), we can estimate the L2(Bpx(0,T))-
norm of Uk and of

d2Ui

d2Ul

It follows that

(3.15)

where

(3.16)

By ellipticity, the matrix {B^)^t=x is uniformly positive. Hence we
can solve from (3.15),

(3.17) I

where ^ is another function, still satisfying (3.16), and ay are uni-
formly bounded functions. Setting

£ t/ \J «/ MJp

we easily deduce from (3.17) that

" t (j>{s)
Jo

ds

and therefore

9(4)2

2
d2uk

9(4)2

2

<c
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Combining this with (3.14) we find, after going back to the variables
xu that (3.11) holds with BR replaced by BR(x0) n Q (for R small
enough), for all 1 < m < n. This completes the proof of Theorem 3.1.

4. V2M is in Ls. In this section we prove:

THEOREM 4.1. For any T>0 there exist constants Po>2 and C > 0
such that

\V2uk\
s]<C ifl<s<p0.

T J

Proof. We first establish the assertion of the theorem in Qo
 x (0̂  T)

where Qo is anY compact subdomain of Q. We begin by taking any
two concentric balls BR, BR> with R< Rf, BR> c Q as in the proof of
Theorem 3.1, and introducing the functions z^ = duk/dxm, Zk = r\zk

as before. We assume for the moment that Vzk is in LS(QT). By
(3.3), (3.4) we have,

(4.2) zk - yAzk = - E g£; ((^y*« - AM(q»w) + Gk

where y is as in (2.6) and

- V if BiJ d 9M/ - V — (Rijn
'dXm

Let
p = —^—z if n > 3, p = oo if n < 2.

« — 2
Set

i.l i.l

By Theorem 3.1 and Sobolev's imbedding,

(4-5) JL*sG JLjg*'rsc
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Let Uk and Vk be the solutions of

(4.6) Uk-yAUk = hk inQT,
Uk = Zk(x,0) on dpQT,

and

(4.7) Vk-yAVk='£i-£rgjkil inQT,

Vk = 0 on dpQT.

By L2 estimates for the heat operator,

. 0)11^(0) < C (by (4.5), (1.14)).

Consequently, by Sobolev's imbedding,

(4.8) ff \VUk\
r<C Vr<p.

Next, by Lemma 2.1 and (4.5),

(4.9) ff \VVk\
r<Y,ff \8jk,xY<C Vr<Jp.

JJ JJ
ff \VVk\

r<Y,ff \8jk,xY<
JJQT JJJQT

Consider the functions Zk = Zk- Uk- Vk. From (4.2), (4.3) and
(4.4)-(4.6) we see that the Zk satisfy:

(4.10) ^ Z f c - _

d .

(4.11) Zfc = 0 ondpQT

where

gtj = -
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In order to estimate VZk we consider, more generally, the system

(4.13) Yk-yAYk=J^-^-(

d

(4.14) = 0 on dpQT,

and proceed as in §2 to define an operator S mapping vectors G =
(hij, gkj) into vectors V 7 = (VFi , . . . , VYN) where Yx,..., YN is the
solution of (4.13), (4.14); we use the Ls norms

\\G\\ =

By Lemma 2.1
\\S\\s<As,

where As is a constant. Using (2.10) we can derive the same estimate
(2.16) as before, provided M is sufficiently large, and then (2.18) also
holds. Recalling (4.10)-(4.12) we deduce that if p0 > 2, p0 - 2 small
enough, then

(4.15) Y,jl \VZk\s<Cj2ff \Skj\s V2<Kp0.

This inequality can also be established with QT replaced by Qu for
any 0 < t < T. Substituting gki from (4.12) and using (4.8) (4.9), we
get

(4 .6 ,
'dxn

2 < 2 < p0.

Hence, by Gronwall's inequality (cf. the argument following (2.19)),

QT

It follows that
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In deriving (4.17) we have assumed that V2uk,V
2uk belong to Ls.

In order to derive (4.17) without making this a priori restriction,
we work with finite differences, as in §3, and establish (4.17) with
d/dxm replaced by A^. It then follows that V2uk, V2uk belong to
LS(QQX (0, T)) for any compact subdomain QQ of Q, and (4.17) holds.

In order to derive the Ls estimates near the lateral boundary of
QT, we apply the same arguments used in the derivation of (4.17) to
the system (3.3), and thus derive Ls estimates, which extend the L2

estimates of (3.14). Finally, using (3.17), we can estimate the Ls norm
ofd2Uk/d(xf

n)
2, d2Uk/d(x'n)

2 near the boundary. This completes the
proof of Theorem 4.1.

Analogously to Corollary 2.3 we have:

COROLLARY 4.2. For any 2 < po < q$, ifki - k\ is sufficiently small
so that &Po < 1 (&Po as in (2.18)) then (4.1) holds for any 2 < s < po-

5. Additional regularity.

LEMMA 5.1. Ifpo>2 and Po-2 is sufficiently small, then

(5.1) sup Vs f \uk\
sds<C V2<s<p0.

Proof. Multiplying (2.4) by \zk\
azk (a = s - 2 > 0) and integrating

over Qt, we obtain

g
By Theorems 2.2, 4.1,

|Vw||Vii| and |Vu| |Vii|

belong to Lr(Qt) for some r > 1. Choosing s = 2r and using Holder's
inequality, we get

k

and (5.1) then follows by GronwalPs inequality.
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THEOREM 5.2. There exists a p0 > 2 such that

(5.2) sup J2 I l v 2 ^ l ' ^ C V 2 < ̂  < po-
0<f<F ^ JO.

Proof. Notice that

(5.3) Y I \V2uk\
s < C+CY If |V2w*|5 < C (C constant).

A2, JJQt

We can write (1.4) as an elliptic system

( 5 4 ) _y-A^£) = *
( j ^dXi dqki

 8k

where, by (5.3) and Lemma 5.1,

(5.5) £ / l&l' < C

if 2 < s < PQ for some po > 2. We now argue as in §4; we set
zk = duk/dxm, Zk = r\zk {r\ a cut-off function for BR>), differentiate
(5.4) with respect to xm, multiply by r\ and integrate over Qf We
obtain, analogously to (4.2),

where the L*(£2r)-norm of Gk can be estimated using (5.5). We then
deduce, as in the parabolic case, that (2.18) holds and, consequently,

|VZ t | ' < C

Thus

Similarly we obtain the corresponding estimate with BR replaced by
BR(x0) n Q, where JC0 G dQ, and (5.2) follows.

THEOREM 5.3. Ifn<2 then Vuk and Vuk are Holder continuous
in QT\ consequently (ui,..., «#) is a classical solution in QT for all
T>0.

Proof. From Theorem 5.2 and Sobolev's imbedding it follows that

(5.6) \Vu(xi,t)-Vu(x2,t)\<C\xi-x2\
2 (a= 1-2/5).
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We next prove that, for any 0 < t\ < t2 < T,

(5.7) \Vu(x,t2)-Vu{x,tl)\<C\t1-tl\t' (£ = (1

Let p = (?2 — ̂ i)y ( 7 = 1 — !/•*) and consider first the case where
Bp(x) is contained in ft. Let

9Wx w
 ¥ JBp{x)

where / means the average. Then

2

|v(x f t2) - T;(X, fO| < ] T |v(x , ?/) - ^ ( x , U)\ + \vp(x, t2) - vp(x, ti)\
i=\

[ \vt(y,t)\ (by (5.6))

JBp(x)

< Cp« + \t2 - tx\
l-l»\Bp\-

l»

+ c\t2 -by Theorem 2.2, and (5.7) follows. In case Bp(x) is not contained in
ft, we work with

f v(y,t)dy instead of 4- v{y,t)dy.
JBp(x)nQ JBP(X)

The Holder continuity of VM follows from (5.6), (5.7). The Holder
continuity of VM follows from that of Vw, and thus the proof of The-
orem 5.3 is complete.

Using Corollaries 2.3, 4.2 and an extension of Theorem 5.2 to any
A) (Po > n) if h - h is small enough we also have:

THEOREM 5.4. Let n > 3. Ifk2 - k\ is small enough then Vuk and
Viik are Holder continuous in QT and, consequently, (u\,..., u^) is a
classical solution in

6. General W and linear viscosity term. In this section we consider
systems of the form
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instead of (1.4), but replace the condition (1.2) by a much weaker
condition which allows quite general nonlinear growth for W, namely:

(6.2, i . c

where 0 < l\ < 12 < oo, <5 > 0, r > 2.

We also suppose that

then W(p) > 0 if \p\ > 0.

DEFINITION 6.1. A strong solution u = (u\,..., u^) of (6.1), (1.5),
(1.6) in QT is a function u satisfying: (i) the first two relations in
(1.8) hold; (ii) W(Vu) e L°°((0, T); Ll(Q)); (iii) (6.1) holds in the
distribution since in QT and (1.6) holds in the trace sense; finally, (iv)
the functions

uk> V Uk, — —

dXi dpki

belong to L[^C(QT) and (6.1) holds pointwise a.e.; here l/r' + \jr = 1.

THEOREM 6.1. Assume that (1.12)—(1.14) and (6.2), (6.3) hold. Then
there exists a function u = (wi,. . . , uN) which is a strong solution of
(6.1), (1.5), (1.6) in QT, for every T> 0.

Proof. We begin by introducing a family of truncations of W. For
any small e > 0, let M = [1/e] (the largest integer < 1/e), and define

(6.4) WB{p) = W(p)r,e(\P\) + C0M
r-2\p\2Xe(\p\) + e\p\2

where rje(Ms) = <f>(s), Xe(Ms) = y(s), 4> e C3(Rl), c/)(s) = 1 if s < p,
(f){s) = 0 if s > y and y/ G C3(R), y/{s) = 0 if s < a, y/{s) = 1 if s > P,
y/f{s) > 0 if a < s < 0, and

(6.5) 2\//{s)+si//'(s)+s21//" (s)>0 ifa<s<p.

We can choose, for instance

and take ^o(^) = (/̂  — cos(\/21og.s'))+/(l + fi) if a < s < P, where JLL
is a sufficiently small positive constant, and then mollify \f/Q and shift
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it slightly to the left to obtain a function y/ satisfying all of the above
conditions.

Using (6.5) we compute that

and, therefore, if Q is chosen large enough (independently of e),

(6.6) A,r. (

where Ai, A2 are positive constants independent of e and

(6.7)
{8 + yM)r~2 + e if \p\ > yM.

We can also easily verify that

(6.8) '^^

(6.9)
dWe(p) <c[we(p)re(p)]1?2,

and, as e —> 0,

(6.10) WB{p)~+W{p) ii

Consider the system

(6.11) iik~ ]xt dpki

Since We is a C3 function, we can apply Theorem 5.4 to conclude that
there exists a function ue = (u\,...,ue

N) which is a classical solution
of (6.11), (1.5), (1.6) in QQQ. We shall proceed to derive estimates on
ue which are independent of e, and then complete the proof of the
theorem by taking e -> 0.

First, analogously to the derivation of (1.11) we have

(6.12) \ t \ue\2dx+ f We(Vue)dx+[[ \Viie\2dxdt<C

We introduce a function r\ e C2(Q) satisfying:

(6.13) a dist(x, dQ) < rj(x) < c2 dist(;c, dO)

where c\9 C2 are positive constants.



52 AVNER FRIEDMAN AND JINDRICH NECAS

LEMMA 6.2. For any T> 0,

(6 14) Tff T dlw^pE) a V dluS n2

+ ff |VV|V < C
JJQT

where ps = Vwe and C is a constant independent ofe.

Proof. We shall prove that

(6.15) W / (T-t)Td2W^ °2< d2u< ,2
^JjQr ) fa 9P^Plj dXidXm dXjdxm *

f t \VuB\2rj2

JJQT

\Vue\2+ ff \Vue\2+ ff W,(y

+

where C\ depends only on the initial data and on /^. Since the right-
hand side of (6.15) is bounded for every T> 0 (by (6.12)) and since
(6.15) holds for any T> 0, the assertion (6.14) then follows.

To prove (6.15) we multiply (6.11) by rj2(d2ue
k/dx2

l) and integrate
over Qt, then sum over k, m, and integrate once more in t. We com-
pute the separate terms, dropping usually the index e. First,

.. d2uE ff .. d2uk 2 f x^ d u k 2 f

Integrating over (0, T) we find that

pT p p i32«*

(6.16) / dt y^ / / i*k o tf2 is bounded by the

right-hand side of (6.15).



NONLINEAR WAVE EQUATIONS 53

Next,

=-11,
JJQ, dPkidPij dXidXm dXjdxm

_ ff ^dW d2u
d2uk

In view of (6.8), (6.9), each of the last two integrals is bounded by
1/2

d2W d2uk d2ut

dXidxm dXjdxm JJQ,
W

for any small positive constant fi. Hence
T

d2w d2ui

[f
JJQT

c[f w
JJ

where |/2| < 1/2 and C is a constant bounded independently of e.

Finally,

Integrating over (0, T) we obtain

(6.18) -fTdtJ2[[ Auk^r,2 = -\ If
nUc QT

where Ie is bounded by the right-hand side of (6.15).
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Combining (6.18) with (6.17), (6.16), the estimate (6.15) follows.

COROLLARY 6.3. For any h, k, I, i, j, m, s

d2WE(6.19)
dpfodpij dxmdxs

L"(QT)

Indeed, by (6.6), (6.8) and Lemma 6.2, the left-hand side of (6.19)
is bounded by

{ff r^) l v V l^ 2} r
/

Consider the functions v\. = u\r\. Clearly

where

(6.21) a =

By (6.12) and Corollary 6.3,

(6.22) \\Gk\\L,{QT) < C,

and, by U' parabolic estimates [9],

(6.23) ff \ve
k\

r'+[[ \V2vir
JJQT JJQT

Using the estimates (6.12), (6.14), (6.23), we can extract a sequence
e = em -+ 0 such that i)e -• ii, V2ve -• V2v weakly in Lr\QT) for any
T> 0 and, further, since

(6.24) l | V ( Q r )

we may suppose that Vve -> Vv in Lr'(QT) and a.e. But then we have

dwe(Pe)

and strongly in LS(QT) for some s > 1 (by (6.8), (6.9) and (6.12)).
Hence, by Corollary 6.3,
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Since, by (6.24), p = Vw e W{£(QT)9 the distribution derivative in
(6.25) can be identified with the function

dpkidpij dxtdXj

One can now easily check that u satisfies all the properties of a strong
solution.

REMARK 6.1. All the results of §§1-5 extend to the case where
W = W{x, u,p),V = V(x, u, q)\ the results of §6 extend to the case
where Aw is replaced by any linear elliptic operator Lii with smooth
coefficients.
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