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SYSTEMS OF NONLINEAR WAVE EQUATIONS
WITH NONLINEAR VISCOSITY

AVNER FRIEDMAN AND JINDRICH NECAS

An equation of the form

‘Z o ow(p Z IAC)
ax‘ ap, axl aql

where p = Vu, ¢ = Vi, 4 = du/dt, it = 8%u/dt* represents, for
suitable functions W (p), V'(q), a nonlinear hyperbolic equation with
nonlinear viscosity and it appears in models of nonlinear elasticity.
In this paper existence and regularity of solutions for the Cauchy
problem will be established. In particular, if # = 2, or if » > 3 and
the eigenvalues of (92V/dq,0q,) belong to a “small” interval, then the
solution is classical. These results will actually be established for a
system of equations of the above type.

Introduction. Consider a system of N nonlinear equations

. d oW (p) 0 6V(q)
0.1) s Zax 9P Zaxz dgg e (1<ksN)

in a cylinder Q x (0, co0), with initial data
(0.2) ug(x, 0) = ugo(x), i (x, 0) = ugy (x)
and boundary conditions
(0.3) u=0 ifxedQ, t>0;
here Q is a bounded domain in R”,
p=(py), q=(q;) and

o ouy o ait] W = ow
Pi=%x U=%x YT o
The special case
L 40)
0.4 = Au k=1
(04) Z Ox; Oqy; ( )

has been studied by several authors. For n = 1, existence and unique-
ness of a classical solution was established in [1], [2], [6], [7]. For
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30 AVNER FRIEDMAN AND JINDRICH NECAS

general n Engler [3] has recently established the existence of a strong
solution when W (p) is a general nonlinear isotropic function, that is,
VW (p) = g(|p|®)p, and g(s) satisfies:

(0.5) _1 < ko < sg((“;) < ki < 00

in case g(s) is globally Lipschitz, the solution is classical. His results
depend in a crucial way on the assumptions in (0.4) (especially the
second one). For earlier work on weak solutions see also the references
given in [3].

For n = 2 Petcher [10] established the smoothness of the weak
solutions, in case (0.4) and 0W(p)/dp; = o:(p;), 0i(s) = 0, oj(s) >
c1ls|?if |s| > 1, a¥'(s) < ¢y|s| if |s| > 1 and ¢y, ¢, are positive constants.

Systems of the form (0.1)-(0.3) may be considered to represent
models of wave propagation in elastic material with nonlinear Hook’s
Law (corresponding to the internal energy function W) and nonlinear
viscosity (corresponding to V). In case (0.4), when n = 1 the equation
models simple shear motion of a beam (see [6]), and when n = 2
it models antiplane shear motion of a column with cross section Q
(see (4], [8]); u is the displacement from the rest position. Nonlinear
viscosity terms appear in various models of elasticity; see [11].

In this paper we consider (0.1)-(0.3) with both W(p) and V(q)
nonlinear functions. In §§1-5 we assume that

(0.6) (%z;%f,%) and (a_(%) are uniformly

positive definite and bounded matrices.

It is well known that under these conditions there exists a unique global
weak solution; our interest is to derive regularity of the solution. In
fact we prove (in §5) that the solution is classical if either n < 2 or
if n > 3 and the eigenvalues of the second matrix in (0.6) lie in an
interval (4, 4,) with A; — A; small enough.

Our proof is based on establishing estimates on

IVl oy  (in§2),
IVl  (in83), |V?ilLg,)  (in§4)
where Q7 = Q x (0, T'), and finally on

V28| o0, 1yLe))  (in §5),

for some s > 2, or for any s > 2 if A, — A; is small enough.
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Finally in §6 we consider the case where

but W(p) is a general nonlinear function of p (not necessarily isotro-
pic) satisfying nonuniform ellipticity condition, and extend the result
of Engler [3] by proving the existence of a strong solution for this case.
1. Existence and uniqueness. Let N, n be positive integers and let
p= (P ,DPN), 4 = (41, ,4n) Where py = (Dr1,---» Pin)s Gk =
(Pr1,- - > qrn) are variable points in R”. We are given two functions
W =W(p), V=V(q) fromR" intoR!,

satisfying the following conditions:

(1.1) W and V belong to C2(R™Y),
% 0w x x
(12 At < 33 2Pkt G 0 <y <ha <o)
kl=11ij=1 OPiiOpij

(13) AP < EZE:Bﬁ”&a < AP (0< A <4 < 00)
kllljlq q

for all p,q and R™" and &2, real, where

N n
D IPI (4R

k=1 i=1
Let Q be a bounded domain in R* with C2 boundary 9Q; for any
T> 0 we set
Qr={(x,T);x€eQ}, Qr={x1t;x€Q, 0<t<T}

We write 8/8¢t also as “* ”, i.e., # = du/dt, it = 8%u /012, etc.
Consider the system of N nonlinear partial differential equations

n
B o oW (p) 0 9V(q) .
14 Zapk, T Zax, dg Jk mOr

(1<k<N)
where p; = Vuy, g = Vi (thus py; = 0uy /0x;, qi; = 0uy [9x;), with
initial conditions
(1.5) ug(x, 0) = uyo(x),

U (x,0) = ug (x) for x € Q
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and boundary conditions

(1.6) Uu(x,t)=0 forxedQ, 0<t<T
We assume that
(1.7) fi € L*(Qr) VT>0,
Uk, Ui belong to Wl3(Q).
DEFINITION 1.1. A function u = (uy,..., uy) is called a weak solu-
tion of (1.4)-(1.6) if
(1.8) ueC(0,Ty]; Wol'z(ﬂ)),

u e L%((0, T); Wy A(Q)),

ite L((0, T); w~12(Q))
where W~12(Q) is the conjugate of Wy-3(Q), if (1.5) is satisfied (ob-
serve that # € C([0, T]; W~12(Q)) and thus #(x, 0) is well defined

in the trace class W~12(Q)), and if (1.4) is satisfied in the following
sense:

[l s )

for any ¢ € L2((0, T); WX (Q)).

THEOREM 1.1. There exists a unique weak solution u = (u,,...,uy)
of (1.4)—(1.6); further, if uyy, uy, belong to W22(Q) then
(1.9) ue CY(0,T); W) 2(Q)).

Indeed, existence and uniqueness have been established, for in-
stance, in general Hilbert space framework in [5; Chapter 7, Theorem
1.2}, and (1.9) follows from [S; Chapter 7, Theorem 3.2].

By taking a sequence T,, 1 oo and the corresponding solutions u =
ur,, and extracting a convergent subsequence, we obtain a solution u
of (1.4)—(1.6) for all T'> 0; by Theorem 1.1, the solution is unique.

We conclude this section with a conservation law. Multiplying (1.4)
by u,, integrating over Q; and summing over k, we get

[ -5 [ o+ [ 3 T2

/ aV(q) i=Z//Q‘fkuk’
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and the third integral on the left-hand side is equal to

[ #7w=[ ww-[ wo

Since, by (1.2), (1.3),

ov 1
110) S EDg > 3P -c Wip) 2 GhisP-

we obtain the estimate
(1.11) / |u|2+/ |Vul2+// Vi’ < C  (C=C(T))
Q{ Ql QT

for0<t<T.
In §§2-5 we assume that

(1.12) W (p) and V(q) belong to C3,

(1.13) frewWlr(Qr) VT>0, 1<r<oo,

(1.14) Uro, U, belong to W2Q)N W3 (Q) V1 <r< oo,

and derive additional regularity results for the weak solution (which
already satisfies (1.8), (1.9) for all 7 > 0); in particular, the solution
will be shown to be classical in case n < 2.

2. Vitis in LS.
LEMMA 2.1. Suppose v is a weak solution of
n -
. ofi .
v—yAv—f0+§5£ in Qr,

v = 0 on 8,Qr, the parabolic boundary of Qr, f; € L4(Qr) for some
1<g<ow(0<i<n),0<y <y<y <o (7 constants). Then,

Jorevery0<t< T,
l/q n l/q
< .4
wl) =l (gr)

ey LS|

where Cg is a constant dependent only on Q, yo, 71, T and q.

Proof. Consider first the case Q = {x, > 0}. Let u; be the solutions
of

- yAu; = f; in Qr,
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u;=0 on{x,=0}x(0,7)if0<i<n-1,

M _ 0 on {x,=0}x(0,T),

Xn
ui(x,0)=0 if xe€Q, 0<i<n
Then n

_ Ou;

V=uUuy+ I=Zl a—x1
Each u; (0 < i £ n— 1) can be represented by means of Green’s
function, and u, can be represented by means of Neumann’s function.
Applying L7 parabolic estimates to the u; [9; IV, §3] the assertion
(2.1) follows. In order to extend (2.1) to general domains Q, we use

partition of unity and proceed as in the derivation of L7 estimates for
parabolic equations in non-divergence form (see, €.g., [9]).

From now on we assume that (1.12)—(1.14) hold, and set

82V (q) (p) = 32W(P)-
8ar0q;° M OPkiOD|;

(2.2) 43(q) =

THEOREM 2.2. For any T > 0 there exist constants py > 2 and C> 0
such that

(2.3) Ié[//e |vuk|S+/QT |vak|~*] <C if2<s<ps

Proof. We first proceed formally, assuming that the solution is smooth.
Let z; = u;. Differentiating (1.4) in ¢ we get

(2.4) zk—Zax ( az,) Zax ( B( au],_)’

and, by (1.12)~(1.14),
(2.5)  zi(x,0) belongs to W 2(Q)NW!7(Q) forany 1 <r< oco.

Let

(2.6) _ )“1;_’12

and rewrite (2.4) in the form

0z
@7 H-Azn=-Y o i, (M0i%u = A (@) 35 + G
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where
238) 6= Fe- ¥ 5 (B0
In view of the choice (2.6), we have
B A < Sy - A(aNERe < 20 M

where |2 = 3 ;(€¥)2. Since 4} = 4]} by (2.2), the matrix 4, 5 = 4}
where a = (i, k), B = (J, 1) is symmetnc i.e., Ayp = Ap,. Hence (2. 9)
implies that for any real vectors & = (&), £ = (¢k),

(2.9)

(210) [ (6i8u - Ah(@ekeh)| < 402 — Ak IEl.
Consider the linear parabolic system
: ) i
211)  Ze-yAze= -3 a—[(yaijakz — 45 (@)hy]

+ Z o, 8k + 8o 1inQr,

(2.12) zx =0 ond,Qr

where ¢ = Vu, and G = (b, 8,) (1 £ Lk < Nand 1 < j < n,
0 < i < n) is any vector with components in L5(Qr). We introduce
the norm

@13) el ={ f[ [t ML lsl] 1

where M 1is a positive constant to be determined.

For any G, there is a unique solution z = (zy,..., zy) of (2.11),
(2.12). We denote the vector (Vz,,...,Vzy) by Vz and set Vz = SG;
we also define the norm

2.14) vzt ={ /[ ¥ war)

Then S is a linear mapping from LS into L® (with the norms defined
by (2.13), (2.14)), and by Lemma 2.1

(2.15) IS|ls < As < 00

where A; is a constant depending on s, as well as on A, 4;, T and €.
We claim that

Ay — 4

(2.16) IS1l2 < 5 1

1.
FRE
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Indeed, if we multiply (2.11) by z; and integrate over Q;, we get, after
summing on K,

2, // vz, 2
/QTZ|zk| [ Zivad
ij 0z
= [ S0susa— i@ gk

S (EEwt])+ ff, Saon

k=1 j=1

In view of (2.10), the first integral on the right-hand side is bounded
oz

by
N 172
s0a=2) [[[ (Zint) (Z <L )
= ga-w{[[ Tt [[ war).

Recalling (2.6) we obtain

[ (Ziwa)

/122+_ ;/111 / / (X tmP)

21172

T el (B | [, Trat]”
+C _//QTZ|gko|2]l 2[//&2213]1/2-

Since

// |zk|zsc?// V2l
Or Qr

the assertion (2.16) now follows provided M is chosen sufficiently
large (depending on the constant C in (2.17)).
By the Riesz-Thorin theorem, log ||S||;,4 is a convex function of S,
0 < B < 1. Hence,
l-a

a —a 3 1
ISlls < ISHSNISNg ™ if ~ = ——+

Qa
" >2; 0_<_aSl-
% 3 ]
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Using (2.15), (2.16) we conclude that

Ay —Ar\” l—a o1l l1-a o
(2.18) ||Sl|s5(12+ll) (Ag,) ~* =Y 1f§— + 5

notice that 9; < 1 if s — 2 is small enough.
In view of (2.7), (2.8), the functions Z;(x,t) = z,(x,t) — zx(x,0)
satisfy a system of the form (2.11), (2.12) with

oz i

hlj:é;c?' gka_EBlg(p)axj (7> 0),

go=fr+ &
and g; depending on the data z;(x, 0). By (2.18),

[ 192 < sty [ (St + el
<@ [ 2+ oy f[ ek

where U; < 1. Hence

//Qllvzls < %//@ZI%P-

Recalling that z; = i, we conclude that

(2.19) //Q’ZWizkls < c+c//Q’Z|vuk|s

provided ¢ = T and s is such that ¥; < 1; this estimate is valid also
for any ¢ € (0, T'), since 4,4, and 3, are independent of ¢.

Set
0= [ S 1wt
Since .
Vi (x, 1) = Vi (x, 0) + / Vil (x, 7) dt,
we have ’

//QIIdelsSC+C/0t¢(‘r)d‘t.

Substituting this into (2.19), we get

t
o)< C+ C/ o(1)dz.
0
Hence, by Gronwall’s inequality, ¢(¢) < C, and (2.3) follows.
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So far we have assumed that the solution was smooth enough. In
order to prove (2.3) rigorously, we approximate the initial values by
smooth initial values, say u},, u%, (2 — 0) in CZ(Q). By a fixed point
argument one can prove that (1.4)-(1.6) with initial data u} 0’ uil hasa
classical solution in Q, if ¢ = g, is small enough; 6; — 0if A — 0. The
unique weak solution uﬁ asserted in Theorem 1.1 which corresponds

to the data u}co, u}d must coincide with the classical solution for ¢ < g,
and, as A — 0,

(2.20) ut =, in CI([0, T]; Wy 2(Q)).
We now work with finite differences in time; that is, setting

up(x, t+h) —u(x,t)

h
and finite-differencing (1.4) in time, we obtain a system similar to
(2.4) with A} replaced by

Zi(x, t) = Apuy(x,t) =

i I g2y

Al v ————(Vu(x,t) + ©(Vi(x, t + h) — Vu(x, t))) dr

and similarly B,’c’, replaced by f?,’(’, and f, replaced by A, f;. Since ul
is smooth in @ ;, (2.5) is satisfied.
Proceeding as before, we deduce that

(2.21) Z//Q AL (Vi) < C+CZ/Q|A,,V1'4(x, 0)f.

As h — 0 the right-hand side converges to
(2.22) c+cy / Vit (x, ).
Q

Since, in view of (1.14), we can choose the approximations u;*co, u}d
such that the right-hand side of (2.22) is bounded independently of 4,
it follows from (2.21) that

> [[ widrsc

where C is a constant independent of 4. Letting A — 0 and recalling
(2.20), the assertion (2.3) follows.
The proof of Theorem 2.2 yields:

COROLLARY 2.3. For any 2 < pgy < qq, if Ay — Ay is sufficiently small
50 that By, < 1 (Bp, as in (2.18)), then (2.3) holds for all 2 < s < py.
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3. Vyisin L2.

LEMMA 3.1. There exists a constant C such that
N
(3.1) SA[[ wui+ [[ vur)sc
k=1 Qr Qr

Proof. We first establish that V2u and V2u belong to L2(Qx (0, T))
where Q is any compact subdomain of Q. We shall begin be deriving
a priori estimates, assuming for the moment that V2 and V2 are
indeed in L2.

Let Br and Bg/, be two concentric balls with radii R and R’ respec-
tively, R < R’, and Br. C Q. Let 7 be a cut-off function: n € C5°(Br1),
n = 1 in Bg. Fix any integer m, 1 < m < n, and set z; = Au /0x,.
Differentiating (1.4) with respect to x,, we get

(32)zk—23< qaz’) afk+23x(u aig;,:)

The functions Z; = nzk satisfy:

(3.3) Zk— 5 5%, ( gf’ )

i.J.l
ij v our
—§6x (85 (1)) +
where
aF 02
(34) Fe=nz* Z T 41 o

B Z ax; (Akﬂx; z2) ) = . ﬂx, == Az

_ Nx g oy
2 n k’ax ( 6xm> Zax ( % )

Nx, ﬂx, ij aul
+2 = B By

Multiplying (3.3) by Z; and integrating over Q;, we get, after sum-
ming over k,

! , | ) 0z, 02,
(3.5) -2-2/ zk—EZ/ zk+2// A o

‘Z// kfax,< axm) 862‘*2// Bz
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Recalling that Z; = nz; and using (1.11) and (3.4), we easily estimate

\Z/ F.Z, <C+CE// |VZ||z|+CZ// ( )

where |z|2 = 3" |z¢|?, [VZ|2 = Y |VZ;|*. Hence

(3.6) IZ / /Q £z,

sc+c[//'|v2|2]12 LZ//Q\ (6xm> ]/2.

Substituting this into (3.5) and using (1.2), (1.3), we easily obtain,
after using the Schwarz inequality,

en  Xff lVZk'2<C+Z//‘ (axm)

Since 94 5 /o
Uy k
Ze=Mg = a (axm)

we have
ou \|* 6uk0) /
v (ﬂm) = ‘V ( Zk(x S) ds
Ouro 2
2|V (= + 2T |Zk(x,s)l ds.
Substituting this into (3.7) and setting

s0=3 [ /Q 9z

|z

we obtain t
$(t) < C+C / é(s) ds.
0
Hence, by Gronwall’s inequality,

(3.8) ;//TV("%)ZSC'

and then also

(3.9) %://Tv(n%)zsc.
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In order to prove (3.8), (3.9) rigorously, we work with finite differ-
ences, replacing du; /9x,, by
ur(x + hey, t) — up(x, t)
h
where e, is the unit vector in the x,-direction. Then, with z; =
Ah iy, Z, = nz;, the relations (3.2)—(3.4) hold with minor differences,
namely, AZ( D) is replaced by

1 92y
A7 =
M 0 94xi0q

(D) (x, 1) =

(Vu(x t)+ t(x + hep, t) — Vu(x, t))dt

and similarly for B,’cf, and 8f; /0x, is replaced by A% f;; notice that
Vz; and Vi belong to L2(Q7) (by Theorem 2.2). We can now pro-
ceed as before (but this time rigorously), to establish analogously to
(3.8), (3.9), that

SUEED> I /Q Vi) + [ /Q , vrahml?| < C:

C is independent of 4. By standard lemma in calculus it follows that,
in Bg x (0, T) (where n = 1), the derivatives

oug o O

xm’ OxXm
exist and belong to L%(Bg x (0, T)), and

(3.11) ; [/OT/B / /B

] <C;
this holds for every 1 < m < n.

We next proceed to extend the interior estimates (3.11) to the bound-
ary, replacing Br by Br(xg) N Q where Br(xp) = {x € R, [x — x| <
R} and x; is any point on Q. Suppose dQ N Bg,(xp) (for some
0 < R < Ry) is given by x, = h(xy,...,x,—1) with & € C2, such
that x, > h in Q N Bg,(xp). Take for simplicity xo = (0,...,0) and
introduce new variables

81'4k
me

c’)xm

xi=x; ifl1<i<n-1,
Xy =Xn—h(X1,...,Xn-1);

it will be convenient to write x; = A;(x). Setting

Ur(x', 1) = wi(x, 1),
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(1.4) becomes
. = 0 (0 OW(P)\ ~~ 0 [0h8V(Q)

where P = (Py,...,Py), @=(Q1.....ON), Pc = (Pi1--., Pin), Ok =
(Qkts -+ Okn)> and

n
U Bk, oUy Ok,
Pa= 2 oy Qi Z B, B

As before we first proceed formally, dlﬁ'erentiating (3.11) in any
tangential direction x,, (1 < m < n —1). Setting z, = 0U/0xm,
Z = nz; where n(x') is a cut-off function n € C§°(By), n=11in B,
for some 0 < p < p', and defining

A = E M §x; By Z ki 8x, ox;’

we find that

7 - S 2 | )22
(3'13) Zi IXJ: Bxll (Ak[(Q) ax;)

8 [ aij, o & (.0, -
=YY" = | BY(P)o— <n——’)) +Fy
; ox! ( Kot \ 7 ax,

where F) is defined similarly to Fj in (3.4); the difference is that
A;(JI,BU are replaced by ;c’l, Bkl, that u; is replaced by U, and that the
variables x; are replaced by the variables x.

Multiplying (3.13) by Z; and integrating over (Xx, t), and proceeding
as before, we arrive at the analogs of (3.8), (3.9). If we work with
finite differences A%, (instead of with 8/0x,,), then we can establish
rigorously the analogs of (3.10) and (3.11); thus

Vaa, Ur and VaamU
belong to L%(B, x (0, T)) and
(3.14) Z/’/ [v— 2+‘viuk 2] <cC
— Jo JB, Oxy, B

Q<m<n-1).
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It remains to consider the normal derivatives 8(VUy)/dx),
d(VUy;)/0x!. Since we have already proved that V2uy, V2u, V2u
are locally in L2(Qr), the same is true of V2{/;, V2U,. Hence we can
apply the /9x] differentiation to dW/dpy;, dV/dqy; in (3.12), thus
obtaining the relation

%y, 02U )
Uk_Z lléaxllaxl Z ;cjlaxla)é —fk lanX(O,T).

In view of Theorem 2.2 and (3.14), we can estimate the L2(B,x(0,T"))-
norm of {/; and of

42U, a2 U1 . .
ax,'.ax;.’ BxID% for all (i, j) # (n, n).
It follows that
L U1
(3'15) Z l'cllna(x Z kI a(x:')Z k

where

(3.16) Z/T/ 2 <C

By ellipticity, the matrix (B nyN ki1 18 uniformly positive. Hence we
can solve from (3.15),

8Uk

(3.17) 300) Z "’a(x;,)2

where g, is another function, still satisfying (3.16), and ay; are uni-
formly bounded functions. Setting

=2/,

we easily deduce from (3.17) that

s(1)< C+C! /0 $(s) ds

=1

k

. 2
*Uy
9(xy)?

and therefore
.2

a%U,

d(x))?

‘ 82U, |
d(x})?
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Combining this with (3.14) we find, after going back to the variables
x;, that (3.11) holds with Bg replaced by Bgr(xg) N Q (for R small
enough), for all 1 < m < n. This completes the proof of Theorem 3.1.

4. V2u is in LS. In this section we prove:

THEOREM 4.1. For any T > 0 there exist constants py > 2 and C > 0
such that

N
@) 3 [// |v2uk|S+/ |V2uk|s] <C if2<s<po
k=1 QT QT

Proof. We first establish the assertion of the theorem in Qg x (0, T')
where g is any compact subdomain of Q. We begin by taking any
two concentric balls Bg, Br: with R < R’, Bg: C Q as in the proof of
Theorem 3.1, and introducing the functions z; = duy /0xm, Z; = Nz
as before. We assume for the moment that Vz, is in L*(Qr). By
(3.3), (3.4) we have,

4D Zi-182i ==Y o (00,00 - @) Gt) + G
i,j.l

where y is as in (2.6) and
0 ij, O ou )
“3)  G=Y 5 (B”(p)———— (néx—’)) +n Sl
=D Mg ax Z Bx; (4%, 21)

0o} aul aul
LY ’Zax xXm Zé?x ( K% )

Let n
p = i > p = i
p p— ifn>3, p=o0 ifn<2
Set
321 a 6141
(4.4) k= '1 E Mx, gy (@) 5=~ D 1x By (P)5— 5%, B

il
A e UL,
i1 = — Z @)y, 2 — ZB () g

By Theorem 3.1 and Sobolev’s 1mbedd1ng,

(45) // h]% <C, // Igjk,llr <C Vr<p.
Qr or
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Let U, and V}, be the solutions of

(4.6) Uk — yAUx =k in Qr,
U =Zy(x,0) ond,0r,

and
. 0 .
(4.7) Vi— AV =) 3 8kt in Or,
J
Vk =0 on apQT.

By L2 estimates for the heat operator,

g//grlvakﬁsc//&mklz

+C Y N1Zi(, 0)llwa@) < C  (by (4.5), (1.14)).

Consequently, by Sobolev’s imbedding,

(4.8) // IVU,[' <C Vr< p.

Next, by Lemma 2.1 and (4.5),

(4.9) / /Q VWil <3 / /Q gl <C Vr<p.
T ] T

Consider the functions Z; = Z; — Uy — V. From (4.2), (4.3) and
(4.4)-(4.6) we see that the Z satisfy:

. i 9 i W02
(4.10) EZ’C —yAZ, = — Z 3_x, <(y5,-j5k1 - A;c]l(q))aj)

a . .
+Z§;}gkj in Qr,

(4.11) Z,=0 ond,Q0r
where

. o O(U; +V;
(4.12) 2= — S (066 — All(q) 2 LT

6xj

ij v our



46 AVNER FRIEDMAN AND JINDRICH NECAS
In order to estimate VZ; we consider, more generally, the system

(4.13) Yi— yAY = Z ((75115k1 A (@)hy)
tjl

o )
+ Z a—xj‘gkj in Qr,

(4.14) Yy =0 ond,Q0r,

and proceed as in §2 to define an operator S mapping vectors G =
(hyj, 8j) into vectors VY = (VYy,...,VYy) where Y,..., Yy is the
solution of (4.13), (4.14); we use the L° norms

j61={[[, (St + M Tlet)}

rori={/ [ T2|VYkIS}1/s.

IS]ls < 4.,

where A; is a constant. Using (2.10) we can derive the same estimate
(2.16) as before, provided M is sufficiently large, and then (2.18) also
holds. Recalling (4.10)-(4.12) we deduce that if py > 2, pg — 2 small
enough, then

@ Tff warscT [ g vass<m
T T

This inequality can also be established with Q7 replaced by Q;, for
any 0 < ¢t < T. Substituting g;; from (4.12) and using (4.8) (4.9), we
get

(4.16) Z/ IVZk|S<C+E/” (axm)

Hence, by Gronwall’s inequality (cf. the argument following (2.19)),

Z//QTIVZkISSC-

V(i) =/,

By Lemma 2.1

2<2< po.

It follows that

(4.17) ;/f

<C

v (rssz)|
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In deriving (4.17) we have assumed that V2u;,V2u; belong to LS.
In order to derive (4.17) without making this a priori restriction,
we work with finite differences, as in §3, and establish (4.17) with
8/0x,, replaced by A% . It then follows that V2i,;, V2u; belong to
Ls5(Qy % (0, T)) for any compact subdomain Q of Q, and (4.17) holds.

In order to derive the L’ estimates near the lateral boundary of
Qr, we apply the same arguments used in the derivation of (4.17) to
the system (3.3), and thus derive L estimates, which extend the L2
estimates of (3.14). Finally, using (3.17), we can estimate the L® norm
of 82U, /8(x},)?, 82U, /O (x})? near the boundary. This completes the
proof of Theorem 4.1.

Analogously to Corollary 2.3 we have:

COROLLARY 4.2. For any 2 < pgy < qq, if 4 — 4, is sufficiently small
so that Op, < 1 (8, as in (2.18)) then (4.1) holds for any 2 < s < py.

5. Additional regularity.

LEMMA 5.1. If pg > 2 and py — 2 is sufficiently small, then
(5.1) sup Z/ lup|°ds < C V2<s<pg

O<t<T

Proof. Multiplying (2.4) by |Z;|%z; (e = s — 2 > 0) and integrating
over Q;, we obtain

1/ . s l/ . s
— [ |l -~ i
P Q,| k| p Qol k|
. au ou
=+ [[ 3 a@5 ! Geti®
i 6u 6u o
—<1+a)//QZB,3( S ol / Felilig.

By Theorems 2.2, 4.1,
|Vu||Vu| and |Vu||Vi|

belong to L"(Q;) for some r > 1. Choosing s = 2r and using Holder’s
inequality, we get

iR < C+C // g |
>/, 2|1,

and (5.1) then follows by Gronwall’s inequality.



48 AVNER FRIEDMAN AND JINDRICH NECAS

THEOREM 5.2. There exists a py > 2 such that

(5.2) sup 3° / V2 <C V2<s<ps
O<i<T & Q

Proof. Notice that

(53 3 /Q V2 < C+C T / /Q V2 < C' (C' constant).

We can write (1.4) as an elliptic system

a BV(q) 2
(5.4) Zaxl aqkl 8k

where, by (5.3) and Lemma 5.1,

(5.5) Z/ﬂ 18l < C

if 2 < s < po for some p; > 2. We now argue as in §4; we set
2z, = 0uy/0xm, Z; = Nz (n a cut-off function for Bg/), differentiate
(5.4) with respect to x,,, multiply by n and integrate over ;. We
obtain, analogously to (4.2),

P .74 .
~VAZ ==Y (E}: (75i15k1 - A;CJI(Q)E) + G

where the L4(€,)-norm of G} can be estimated using (5.5). We then
deduce, as in the parabolic case, that (2.18) holds and, consequently,

/ VZ/[f<C V2<s< po
Q,
Thus

O<i<T

Similarly we obtain the corresponding estimate with Bi replaced by
Br(xp) N Q, where xo € €2, and (5.2) follows.

sup 3 /B V2 (x, ) <C if Brc Q.

THEOREM 5.3. If n < 2 then Vuy and Viy are Holder continuous
in Qr; consequently (uy,...,uy) is a classical solution in Qr for all
T>0.

Proof. From Theorem 5.2 and Sobolev’s imbedding it follows that

(5.6) |Vi(x1,t) — Vi(x, 1) S Clxy — x> (a=1-2/s).
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We next prove that, forany 0 <t <t, < T,
(5.7) |Vu(x, t2) - Vi(x, 1) < Cla -1 (B =(1-2/s)(1-1/s)).

Let p = (t — t1)? (y = 1 — 1/s) and consider first the case where
B,(x) is contained in Q. Let

0%u
vx0) = gl (0= £ o.0dy
X

[

where f means the average. Then

2
lo(x, t2) —v(x, 1) < Y lo(x, 1) — v, (x, 1) + [Up (%, 82) — v,(x, 1)

i=1

t
< Cp* +|B,|™! / /B o0l oy (56)
1 px

1/s
< Cp® + |ty — 1|7 1/5|B,| 71/ (//Q |'Utls)
T

+ Clty — 1,[P1=2/9) 4 C|ty — 1|}~ 1/s=21s

by Theorem 2.2, and (5.7) follows. In case B,(x) is not contained in
Q, we work with

][ v(y,t)dy instead of v(y,t)dy.
B,(x)nQ B,(x)

The Holder continuity of Vu follows from (5.6), (5.7). The Holder
continuity of Vu follows from that of Vi, and thus the proof of The-
orem 5.3 is complete.

Using Corollaries 2.3, 4.2 and an extension of Theorem 5.2 to any
Do (po > n) if Ay — A; is small enough we also have:

THEOREM 5.4. Let n > 3. If A, — 4, is small enough then Vu, and
Viuy are Holder continuous in Qr and, consequently, (uy, ..., uy) is a
classical solution in Q.

6. General W and linear viscosity term. In this section we consider
systems of the form

. “. 9 W :
(6.1) ) :la_xi apE:)—Au=fk (1<k <N)
=
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instead of (1.4), but replace the condition (1.2) by a much weaker
condition which allows quite general nonlinear growth for W, namely:

5 - 82 W(p
6.2) (0 +]|p])3E)R <
(62) L +1ply e < kIZI ,Z T
J=1
< 22(6 + pI) 2IER,
where 0 < 1) <1y < 00,6 >0, r>2.

We also suppose that
ow (0

(6.3) W) 20, =5--

then W(p) > 0 if |p| > 0.

DEFINITION 6.1. A strong solution # = (uy,...,uy) of (6.1), (1.5),
(1.6) in Q7 is a function u satisfying: (i) the first two relations in
(1.8) hold; (ii) W(Vu) € L*®((0, T); L'(Q)); (iii) (6.1) holds in the
distribution since in Q7 and (1.6) holds in the trace sense; finally, (iv)

the functions
9 oW (p)

0x; Opy;
belong to Lloc(QT) and (6.1) holds pointwise a.e.; here 1/r' +1/r = 1.

i, Vi,

THEOREM 6.1. Assumethat (1.12)-(1.14) and (6.2), (6.3) hold. Then
there exists a function u = (u,,...,uy) which is a strong solution of
(6.1), (1.5), (1.6) in Qr, for every T > 0.

Proof. We begin by introducing a family of truncations of W. For
any small ¢ > 0, let M = [1/¢] (the largest integer < 1/¢), and define

(6.4)  Wi(p)=W(p)n:(|p|) + CoM 2| p|*x:(|p|) + €l p|?

where 7o(Ms) = ¢(s), xe(Ms) = y(s), € C}R), ¢(s) = 1 if s < B,
#(s)=0if s>yand w € C3(R), w(s) =0if s < o, y(s) = 1if s > B,
p'(s) >0ifa<s< B, and

(6.5) 2u(s) +s¥'(s) + s*y"(s) >0 ifa<s< B
We can choose, for instance
Q= en/(4\/5)’ B = en/\/f, y=F8+1

and take wo(s) = (4 — cos(v2logs))t/(1 + p) if & < s < B, where u
is a sufficiently small positive constant, and then mollify g and shift
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it slightly to the left to obtain a function y satisfying all of the above
conditions.
Using (6.5) we compute that

az(xs(lpl)lplz),k /
>0 if < BM
3 Bk Pl < B

and, therefore, if C; is chosen large enough (independently of &),

(6.6) MTe(p)IEP < Z%pr(” )é"é’ < ATe(p)IE

where A;, A, are positive constants independent of ¢ and

(6+Ipl)y2+e if [p| <M,
6.7 I =
(67 D= { s sayrre itipis e
We can also easily verify that
(6.8) ()" /%) < C(1 + We(p)),
oW,
(6.9) ]-—Q’l < CIWu(pTa(p)]2,
ODxi
and,as ¢ — 0,
(6.10) We(p) — W(p) in G} (R™).
Consider the system
0 We(p) ..
- —_ = <k< .
(6.11) iy, Zax, B0 A =f, (1<k<N)

Since W, is a C? function, we can apply Theorem 5.4 to conclude that
there exists a function uf = (u,..., u5) which is a classical solution
of (6.11), (1.5), (1.6) in Q.. We shall proceed to derive estimates on
u® which are independent of ¢, and then complete the proof of the
theorem by taking ¢ — 0.

First, analogously to the derivation of (1.11) we have

(6.12) 1/ |u*’|2dx+/ We(VuE)dx+/ \VifPdxdt < C
2 Q, Qx QT
We introduce a function n € C%(Q) satisfying:

(6.13) c; dist(x, Q) < n(x) < ¢ dist(x, 8Q)

where ¢, ¢, are positive constants.
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LEMMA 6.2. For any T > 0,

O W, (pt) 0%ut 02%ut
6.14 / / : 2
(6.14) ; . ,Zz BDiOD1; 0%, 0% OX; 0% |

+/ IV2ut’n? < C
Or
where p¢ = Vu® and C is a constant independent of ¢.

Proof. We shall prove that

2 2,,€ 2,8
(6.15) Z// (T-0Y 0 We(p®) 0°up 0%y 7
m QT i,j,k,

f OPiiOp;; 0xi0Xy OX;0Xp

+/QT |Vt |*n?
<c{0<§t;T/ Vue + // Vit|? + / Wg(p)+C1}

where C; depends only on the initial data and on f;. Since the right-
hand side of (6.15) is bounded for every T > 0 (by (6.12)) and since
(6.15) holds for any T > 0, the assertion (6.14) then follows.

To prove (6.15) we multiply (6.11) by #?(8%uZ /0x2%) and integrate
over Q;, then sum over k, m, and integrate once more in . We com-
pute the separate terms, dropping usually the index &. First,

. 02 Uy 2 _ / auk 2 / Buk 6uk 2
mz/ /Q “eoxz 0x2, 1 E ax,,, Z xm axm
Oy Ouy. n?
+ // Z axm axm 2/ Zuk ’7’1xm
+2/ Zuk rmxm +2// uk—'lﬂxm

Integrating over (0, T') we find that

T 2
(6.16) / aty / / it 24k 42 5 bounded by the
0 mk? e Xy
right-hand side of (6.15).
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Next,
-5 [, T (o) S
mk 0x; \ Opki axrzn
____// Z 9w aZuk aZul ,72
0. <~ ODkiOpy; 0X;0Xm OX;0Xm

—//ZaW 8%uy //Zawazuk
0, & 0j Oxd00m P T Bpi 0%, T

In view of (6.8), (6.9), each of the last two integrals is bounded by

¢ {/ o ()| V2ul*n? }1/2 {//‘ We}l/z

W 62uk 32141 2
<
S# //Q, Z ODk;iOD1j OX;0Xm OXj0Xm "+ Cu //Q, “

for any small positive constant 4. Hence

(6.17) —/ dtZ//Q‘Zaxl (apk,)%%”z

aZW 62uk 32141
=—(1-ji T -t
(1-2) / /QT( )Z OpiiOpij Ox; dxpm Ox;0xm

+C w
Or
where |ji| < 1/2 and C is a constant bounded independently of e.

Finally,
-3 [, din
//IZVukV(a uk)n +2// ZVuka uann
/Z B "*2/2’ 5
—2// ZVukV( )mlx,,,+2// ZVuka—nVn

Integrating over (0, T') we obtain

62u
(6.18) -/ dtZ/ Ny S e = 2// V2l + I,

where I, is bounded by the right-hand side of (6.15).
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Combining (6.18) with (6.17), (6.16), the estimate (6.15) follows.

COROLLARY 6.3. Forany h, k, 1, i, j, m, s

8w, o
ODpx;OD1j OXmOX;s 1

<C
Ln(Qr)

Indeed, by (6.6), (6.8) and Lemma 6.2, the left-hand side of (6.19)
is bounded by

([ o (v mio) s

Consider the functions v§ = un. Clearly

02Wy(p:) %4
OpiOp;; 0x;0x;

(6.19)

(620) i -Avk=fin-3

n+ g = Gy

where

(6.21) &k = —(An)u, — 2VnVu;.
By (6.12) and Corollary 6.3,

(6.22) Gkl @y < C

and, by L" parabolic estimates [9],

(6.23) // T // V28|
Or Qr
sc( [[ 16+ [ |v2vz|") <c
Or Qo

Using the estimates (6.12), (6.14), (6.23), we can extract a sequence
& = &y, — 0 such that #° — ¥, V29°® — V2v weakly in L"' (Qr) for any
T > 0 and, further, since

(6.24) ”V'UB“ W (Qr) < C

we may suppose that Vo? — Vv in L™ (Qr) and a.e. But then we have
OWe(pe) _ OW(p)
ODki ODki
and strongly in L5(Q7) for some s > 1 (by (6.8), (6.9) and (6.12)).
Hence, by Corollary 6.3,

0 oW(p)
Ox; Opy;

a.c.

(6.25) € L{,(Qr)-




NONLINEAR WAVE EQUATIONS 55

Since, by (6.24), p = Vu € W' (Qr), the distribution derivative in

loc

(6.25) can be identified with the function

) 8*W(p) 8y
OpriOpyj Ox;0x;

One can now easily check that u satisfies all the properties of a strong
solution.

REMARK 6.1. All the results of §§1-5 extend to the case where
W = W(x,u,p),V = V(x,u,q), the results of §6 extend to the case
where Au is replaced by any linear elliptic operator Lu with smooth
coefficients.
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