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s-SMITH EQUIVALENT REPRESENTATIONS
OF DIHEDRAL GROUPS

EUNG-CHUN CHO

Dihedral groups of order 2m , for sufficiently large m9 have non-
isomorphic but j-Smith equivalent representations. That is, these
groups can act smoothly and semilinearly on a homotopy sphere with
two fixed points such that the isotropy representations at the fixed
points are distinct.

1. Introduction. Let G be a finite group. If G acts smoothly on
a closed homotopy sphere with exactly two fixed points, then the
isotropy (or tangential) representations at these points are said to be
Smith equivalent [P2]. If, in addition, the homotopy sphere X is semi-
linear, (i.e. the fixed set If* is a homotopy sphere for every subgroup H
of G [R]), then the isotropy representations are called s-Smith equiv-
alent [P2]. The main result of this paper is

THEOREM A. Dihedral groups of order 2m, m sufficiently large, have
nonisomorphic but s-Smith equivalent representations.

Theorem A is a consequence of Theorem 3.4 which gives a sufficient
condition for representations of dihedral groups to be s-Smith equiva-
lent. Theorem 3.4 is followed by explicit examples of nonisomorphic
but s-Smith equivalent representations of dihedral groups Dim of order

1 for m > 10.

REMARK. At present, we know a class of cyclic groups [P2], certain
abelian groups [Su], and generalized quaternion groups of order high
powers of 2 [Ch] have nonisomorphic but 5-Smith equivalent repre-
sentations.

Following is a brief description of the general technique given by
Petrie in [P2] and in [PR], which we will apply.

Let G be a finite group. Let V and W be representations of G sat-
isfying certain conditions, which will be discussed in detail in §3 (see
Theorem 3.4). Let Y be the unit sphere S(V+R) of the representation
F + J R , where R is the trivial one dimensional real representation of G.
If the fixed set VG is {0}, then the fixed set YG consists of two points
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p = (0,1) and q = (0,-1) and the isotropy representations TPY and
TqY are isomorphic to V.

Suppose there exist G-vector bundles E+ and E- over Y with Iso(£'+)
= Iso(J?_) = Iso(F) and a G-map h between them. Here, Iso(F) is
the set of all isotropy subgroups of V. Suppose, also that the map
h :£"+-» E- is a proper equivariant fiber preserving map such that
the fiber degree of hH: E+ —• E? is 1 for all subgroups H of G.

Suppose h is transverse to the zero section Y in 2s_. Then X =
/ z ' ^F) is a G-manifold and the restriction / = h \ X of h on X is a
G-map.

The degree of / H is 1 for every H CG and the tangent bundle TX
is stably isomorphic to f*(TY + E), where E = E+-E—

The pair (X, / ) with additional bundle data is called a normal map
(precise definition in (3.4)).

The normal map (X, f) is converted, by applying equivariant surgery,
into another normal map {Xf, / ' ) , where / ' : X1 -> Y is a G-homotopy
equivalence. The tangent bundle TX1 is stably isomorphic to
f'*(TY + £ ) and / / G : X/G -> F G is a bijection. Hence,

TPX' = TPY + EP and 7 ^ = 7 ^ + ^ .

Here, the fixed set XrG is identified with {p,q}. Thus if i*E =
(0, JF - V), where /: F G - • Y is the inclusion, then TpX

r = V and
TqX' = FT, i.e. F and W are s-Smith equivalent.

When G is a cyclic group, the G-vector bundles E+ and £L over
Y and the G-fiber homotopy equivalences can be found by applying
results from representation theory, equivariant ^-theory, equivariant
/-homomorphism, and Adam's operation [P2]. One can extend them
for cases where G is not cyclic, by applying induction construction
on the equivariant vector bundles and the equivariant bundle maps.
The induction construction on equivariant vector bundles is a map of
KH(Y) into KG{Y) which is a generalization of the usual induction
on representations

where H is a subgroup of G [ChSu].
The normal maps we construct fail to satisfy the gap hypothesis

required in the definition of normal map given by Petrie in [PR] (def-
inition given in §3). The difficulties that arise from this fact in the
process of equivariant surgery are avoided by Lemma 3.2.
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The surgery obstructions are shown to vanish by applying Ham-
bleton and Milgram's results on surgery obstruction groups for finite
2-groups [HM].

For the convenience of the readers, some of the necessary results
are reviewed in §2. And the main result is proved in §3.

Historical Remark. Under certain conditions either on the acting
groups or on the representations, Smith equivalent or s-Smith equiva-
lent representations are isomorphic, as proved in [AB], [M], [B], and
[Sa]. The first example of nonisomorphic Smith equivalent represen-
tations was found by Petrie [PI]. Cappell and Shaneson gave the first
example of nonisomorphic Smith-action equivalent representations of
Z4w, n > 1 [CS2]. Here, the definition of Smith-action equivalence
is stronger than that of Smith equivalence, it requires the action to
be of Smith type (i.e., each fixed set of the sphere be either discrete
or connected). In fact, the example is also s-Smith equivalent (called
semilinear-action equivalent in [CS2]). More examples of nontrivial
Smith equivalent or s-Smith equivalent representations were found by
Dovermann [D], Siegel [Si], Petrie [P2], Dovermann-Petrie [DP], Suh
[So], and Cho [Ch]. Recently, Dovermann and Washington showed
an infinite class of small odd order cyclic groups with nonisomor-
phic Smith equivalent representations [DW]. For more background
and results, see papers by Masuda-Petrie [MP] and Dovermann-Petrie-
Schultz [DPS], and also a book by Petrie-Randall [PR].

2. This section reviews (a) an induction construction in equivariant
if-theory from [ChSu], and (b) a result on surgery obstruction groups
for finite 2-groups from [HM].

(a) Let G be a finite group and K a subgroup of G. G can be viewed
as a ^-space via group multiplication on the left. Given #-space
X, the set (G, X)K of all #-maps from G Xo X equipped with the
compact open topology is a G-space if we define an action of G by
S: f —• (gf • Sr —• f(g'g)) where g and gr are elements of G. (Since G
is finite, the compact open topology on (G, X)K is the relative topology
induced from the product topology on XG.)

If Y is a G-manifold and (E, Y, p) a jRT-vector bundle over 7, then
((G,E)K,(G, Y)K,p') is a G-vector bundle over the space {G,Y)K>
where the projection p1 is defined by pr(f) = p • f for / in (G, E)K-

Let F: Y -> (G, Y)K be a map given by (F(y))(g) = g(y). Then F
is a G-map, and the pullback F*(G, E)K is a G-vector bundle over Y,
which we call the induced vector bundle of E and denote by indf E.
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The set Vec to r ) of all G-vector bundles over Y is a semigroup
under Whitney sum, and the map ind£ is a homomorphism of the
semigroup Vectjc(y) of all A'-vector bundles over Y to the semigroup
Vecto(Y). Therefore, ind£ naturally extends to a group homomor-
phism of KK(Y) into KG(Y), which is also denoted by ind£.

If h: E - • F is a fiber preserving K-map, then the map defined by

for (y,f) in ind^ls is a G-map and preserves fiber. (Recall / is a
K-map of G into E, by the definition of induced bundle.)

For p in YG, the fiber (ind£ E)p as a representation of G is isomor-
phic to m6^{Ep) where £ is a i£-vector bundle over Y. In particular,
indf: KK(Y) -> ^ G (F ) and indf: U(IC) -> i?(G) coincide when Y is
a point.

(b) In [HM], Hambleton and Milgram determined the oriented
surgery obstruction groups L^(G) for G any finite 2-group. We will
apply the fact that the surgery obstruction group L^(G) is torsion-free,
when G is a dihedral group of order power of 2.

It is the consequence of the fact that, when G = D2n, L$(G) is
isomorphic to a direct sum of Z by Theorem A of [HM], and the
terms H*(Z/2;KQ(G)) in the Ranicki-Rothenberg exact sequence

- Lh
k+l(G) ^ Lp

M(G) ^ Hk(Z/2;K0(G)) ^ Lh
k(G) -

vanish.

3. Main result and the proof. Throughout this section, G is the di-
hedral group D2d, with 2d = 2k, i.e. the group generated by two gen-
erators x and y with relations

xld = y2 = 1, y~lxy = x"1,

K is the subgroup generated by x, and H the subgroup generated
by x2. The cyclic subgroup K is also viewed as a subgroup of the
multiplicative group C* of nonzero complex numbers by identifying
the generator x with a primitive 2dth root of unity.

The representation ring R(K) is isomorphic to the polynomial ring
z[t]/(t2d - 1), where t is the representation with the underlying vector
space the complex plane C on which K acts via complex multiplica-
tion.

Let
V1 = axt

l + a2t
2 + • • • 2d1
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be a complex representation of K such that

(3.1) V'K = 0 and Iso(F') = {l,H,K}.

The condition (3.1) is equivalent to the explicit condition on the co-
efficients a,'s of V

(3.1') fl^^O and ar = 0 when r is even but r / d.

Let V be indf F', the representation of G induced from V\ and 7
the unit sphere S(V+R) of V+R, where i? is the trivial representation
of G. It is easily checked that VG = VK = 0 and 7 G = 7 * = {p, g}
where /? = (0,1) and q = (0,-1) .

A representation V of G is called stable if for each M in Iso(F), the
set of all isotropy subgroups of V, and each nontrivial representation
X of M, either the multiplicity mx(V) of / in F is zero or

dxmx(V) > mx(V) = dim* FM .

Here dx is the real dimension of Dx, the algebra of real endomor-
phisms of x [P2].

A G-space X is said to satisfy the gap hypothesis if either XA = XB

or the dimension of XA is less than half the dimension of XB for all
subgroups A and B of G with B QA.

DEFINITION IV.2.1 [PR]. A normal map rel. C, (X,f, b), where / :
X —• 7, and F satisfies the gap hypothesis, consists of

1. A closed manifold X with Dim(X) = Dim(F), where Dim(X)
is a map of II(X) = the set of components of fixed point sets into Z
given by Dim(X)(a) = the dimension of the component Xa of XM for
some subgroup.

2. / : X -> Y is a G-map such that / : n(JT) -> 11(7) is bijective
and d e g / M = 1 for all MCG.

3. There is a stable (/-vector bundle isomorphism b: sTX - •
f*s(TY + E) for some virtual G-vector bundle E over 7 .

4. / M is a homotopy equivalence for every M in C.
5. dim YM is either 0, 1 or greater than 4 for all subgroups M of G.

To construct a normal map in Theorem 3.1 we need following con-
dition (3.2)

(3.2) The virtual representation z' = W - V1 belongs to R(K; V11),
where V" = V' + tdV, and belongs to 2dI(H). Here I(H) is the kernel
of the map

res// x fix//: R(K) -> i?(77) x
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where A is a numerical function depending upon

/ = I(S) = Ker(resj/ x fix*)

and V given by

(3.3) A(/, V') = a(V) + b(I) + c(V') + d(V), where

Hi) = 2,

Here, Ar = E(s,2rf)=r ^ f o r r <

and (n) is the least integer greater than or equal to n.

REMARK. The formula (3.3) is chosen to satisfy the condition of
the Theorem 5.19 of [P2], where A is given more generally in (5.12)
as follows:

(Here fi{x) is the highest power of 2 dividing x.)

b(I) = 1 if\K/S\ = 0 (mod 8),
= 2 if 2 < \K/S\ and \K/S\ / 0 (mod 8).

c(Vr) = 0 if the dimension of V' is odd,

= 1 if the dimension of V9 is even.

d{y') = whichever of dim VfH + 1 or dim V/H is odd.

(For the discussion of the formula, see 4.2, 4.3, and 4.4 of [P2].)

THEOREM 3.1. Let V1 be a representation ofK satisfying the condi-
tion (3.1) and W a representation ofK satisfying the condition (3.2). If
V is stable, then there is a normal map (X, / ) rel C, where f:X^Y,
such that TPX = ind^F' and TqX = indf W\

Here C is a closed family of subgroups of G containing H.

Proof. Theorem 5.19 of [P2] proves that if z1 satisfies the condi-
tion (3.2), there exists an element E1 in KK(Y; V") with Jv»(Ef) = 0
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and i*p(E') = (0, z'), where p is the obvious map of KK{Y\ V11) into

Here, KK(Y) is the Grothendieck group associated to the semi-
group V e c t o r ) of all A'-vector bundles on Y under Whitney sum.
And KK{Y\V") is the Grothendieck group associated to the semi-
group V e c t o r ; V") of all ^-vector bundles E over Y with Ey < V"
at every point y of Y. Ey < V11 means Ey is a subrepresentation of
nV" for some positive integer n. This is equivalent to the fact that
every irreducible real representation of Ky occurring in Ey occurs in
V". And /* is the map induced from the inclusion i: YK —• 7 .

For our case, extra technical conditions required in Theorem 5.19
of [P2] are trivially satisfied because of our choice of V" and of the
group K being of order power of 2.

Now apply the induction construction on Er to find

E = ind%Ef in KG(Y;V)

such that

Jy(E) = 0, i\E = (0,2A indg z') = (0,2Az).

Here V is ind£ V".
The normal map (X, f) with / : X —• Y is constructed by the trans-

versality argument as in Theorem 5.19 of [P2]. •

The normal map {X, f) constructed in Theorem 3.1 fails to satisfy
the gap hypothesis as required by the definition of the normal map.
It does satisfy the gap hypothesis at every level, but not at XL < XH

and at XM < XH, where L is the group generated by x2 and y and
M the group generated by x2 and xy. In fact, we have

dim XL = 1 /2 dim XH and dim XM = 1 /2 dim XH.

Since the purpose of the gap hypothesis is to provide imbeddings when
a series of surgeries is to be performed, if the normal map (X, f) can
be arranged so that no surgery inside or on XH is necessary then
(X, f) does not have to satisfy the gap hypothesis at XA < XH for
any subgroup A > H. The arrangement is possible by the following
lemmas, which will allow us to assume XH = YH and the map fH =
/ | XH is the identity map.

Let n = dmiR VrH, and z' and Ef are related by

rp(E') = (o, z')

as in the proof of Theorem 3.1.
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LEMMA 1.2 [CH]. Ifz'H = 0 then the element 2nE'H of

KK/H(YH; V"H)

is zero.

REMARK. TO compare with the original statement of the lemma in
[Ch], notice dim* VlH = ^

Since Jyu{E') = 0, there is a AT-fiber homotopy equivalence

where E' = Ef
+~EL.

Let 0i be 2nQ: 2nE\ -> 2nE'_. Then by the previous lemma, we
may write

= YH xA

for some A in R(K/H).
Hence 0 ^ is a K/H-map of 7 ^ x A into itself and can be viewed

as an element of o)Q
K,H{YH). By definition,

G>G\X9 Y) = [(S^X+.S1 A 7+), (F,id)f.

Here, [A,B]G denotes the set of G-homotopy classes of base point
preserving G-maps of A into B, X+ is the one point compactification
of X, F = lim_^ei?(G:) M(W), and M(W) is the identity component
of the space of self maps of the unit sphere S (W). M(W) is a G-space
ivia

for / in M{W) and g in G [P3].
Let R- denote the real one dimensional nontrivial representation

of K/H. (Recall that K/H is isomorphic to Z2.)

LEMMA 3.2. 0 f is in co°K/H(YH,S(R-)) and 22w0f = 0.

Proof. Since 0i is a AT-fiber homotopy equivalence, the fiber de-
gree of 0f is 1 for every subgroup A of K. S(R-) is contained
in YH because R- is a subrepresentation of VrH. Of restricted on
the fibers over S(R-) is Ay/7-homotopic to the identity, i.e. it lies in
aftKjH{YH,S(R-)). The second part follows from the Mayer-Vietoris
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sequence arising from the decomposition of YH into the union of
upper and lower hemispheres

-> co-l
/H(S(V'H),S(R-)) - a>°K,H{YH,S{R-)) -

-> co°K/H(D+(VfH),S(R-)) 0 a>°K/H{D-(V'H),S(R-)) -

and the fact that

< / / f (S (* - ) ) = appoint) = n^iS1) = Z2

and that every element in

co-K
l
/H(S(VfH),S(R-))

is killed by 2n~l (Lemma 3.9 [P2]).

By previous two lemmas, we may assume E'+ = E']1 and 0 : E'+
E'J? is the identity by replacing E1 by 23nE' and 0 by 23"0.

Now it follows easily from the definition of the induction that

and (ind£ &)H is the identity map.
The normal map (X, f) rel. C is G-normally cobordant rel. C to

(Xf, / ' ) rel. CU{1} if and only if the obstruction ai(f)L^(G, w) van-
ishes [P2]. Here m = dimX and w: G —> Z2 is trivial. By Theorem
A of [HM] reviewed in §2, the group L^Cw) is torsion free, and
G\ ( /) is detected by the map Sign, i.e.

ox (/) = 0 if and only if Sign^ (/)) = 0.

LEMMA 3.3. Sign(<7i(/)) = 0.

Proof. By the definition of the induction on equivariant vector bun-
dles, res//2s' = 0 implies resji/ E = 0 and resL E = 0, where L = {H, y),
M = (H, xy), and £ = indf £'. Since

F) and resL F = resMF = 0.

Sign(#, X) = Sign(g, Y) for g in L U M.
If ^ is not in LuM, g must be an odd power of x, hence it generates

K. Since Y* = YK = {p, q} and both TPX and TqX contain ^,

= o.
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The number (TpX)(g) is given by

ms

when TPX = Ylmsts-

THEOREM 3.4. Let G be the dihedral group D2d, Id = 2k, K the
cyclic subgroup of index 2, and H the index 2 subgroup ofK. Let V
and W1 be representations ofK such that

(3.4) V1 satisfies (3.1) and zf = V - W1 belongs to 2A'I(H) where
I{H) = Ker(res// x fix//),

defined in (3.3).
IfV = ind£ V is stable, then V and W = ind£ W are s-Smith

equivalent.

Proof. By Theorem 3.1 and the following lemmas, there exists a
normal map (Xffb) such that XH = YH, fH: XH -+ YH is the
identity, and TPX = V, TqX = W. It is obvious that Iso(7) = Iso(F)
is contained in C U {1}, where C is a closed family of subgroups of
G which contain H. Since O\{f) vanishes (Lemma 3.3), the normal
map (X, / ) is cobordant rel. C to a normal map (X1, / ' ) rel. C U {1},
i.e. a G-homotopy equivalence / ' : X1 —> Y. n

When the order 2k+l of the group G is sufficiently large, then there
are representations V and W of K satisfying the conditions of The-
orem 3.4 such that the induced representations V and W are distinct.
Hence our main result Theorem A given in §1. The dimension of V
(and of W) and the order of G are large due to the divisibility condi-
tion in (3.4) involving A which depends upon the order of G and the
representation.

The following examples of nonisomorphic s-Smith equivalent rep-
resentations of D2k are some of the simplest kinds that can be found
by our method.

EXAMPLE. 1. Let G = D2d, d = 210. (Note |G| = 212.)
Let

W1 = dtd+r + td, where r is odd.
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Then the induced representations

td,

are .s-Smith equivalent. Obviously, V and W are not isomorphic. Let
Tr = ind£ f and A + B = ind£ f*.

In matrix form they are as follows
e2nri/2d Q

0 e-2*n/2d

\

• ( ! * ) •

= -1 and £(*) = -1 B(y) = 1.

EXAMPLE 2. Let G = D2^? d = 2n.
Let

^z = 2
l0(tr+d + ts+d) + td

where r and 5 are odd. Then the induced representations

W = 2l0{Tr+d + Ts+d) +A + B

are s-Smith equivalent and V / W.
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