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BARYCENTRIC SUBDIVISIONS

MARGARET M. BAYER

A characterization is given of simplicial polytopes that are barycen-
tric subdivisions of regular CW spheres. It is shown that barycen-
tric subdivisions of connected polyhedral complexes with at least two
facets determine the underlying complex uniquely up to duality. Con-
nections with the algorithmic theory of comparability graphs are dis-
cussed. The f-vectors of regular CW spheres are characterized.

1. Introduction. Polytopes arise in many areas of mathematics, both
pure and applied. Frequently the use of polytopes depends on an
understanding of their combinatorial, as opposed to metrical, prop-
erties. Much progress has been made in the combinatorial study of
polytopes in recent years. The best understood class of polytopes is
that of simplicial polytopes. Attempting to use simplicial polytopes
to study arbitrary polytopes leads to the study of barycentric subdi-
visions. This paper studies barycentric subdivisions of geometric cell
complexes with a focus on polytopes.

We consider all structures to be in Euclidean space; the definitions
are accordingly narrow.

DEFINITION 1 [6]. An incidence polytope is a graded partially or-
dered set with 0 and 1 satisfying the following properties:

(1) If C and D are maximal chains, then there is a finite sequence of
maximal chains, C = Cy, Cy,...,C, = D, where foreach i (0 <i < k)
C; contains C N D, and C; and C;,, differ in exactly one element.

(2) If x and z are elements of the poset with x < z and rank(z) —
rank(x) = 2, then there are exactly two elements y such that x < y <
z.

An incidence polytope is said to have dimension 7 if the maximal
chains contain » + 2 elements (including 0 and 1).

For the next definition we use the following terminology: a set in
R” is an open cell if it is homeomorphic to the interior of the k-
dimensional unit ball for some k; an open cell is regular if its closure
is homeomorphic to the closed unit ball.
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DEFINITION 2. A (finite) regular CW complex is a closed subset of
R” that is partitioned into a finite number of regular open cells, each
of whose closures is the union of some of these open cells.

Associated with a regular CW complex C is the poset of the closures
of cells, ordered by inclusion, with 0 = @ and 1 = C adjoined. If
a regular CW complex is homeomorphic to a sphere it is called a
regular CW sphere, and in this case the associated poset is an incidence
polytope.

A special type of regular CW sphere is the polytope.

DEFINITION 3. A (convex) polytope is the convex hull of a finite
point set in Euclidean space.

A proper face of a polytope is the intersection of the polytope with
a supporting hyperplane. The empty set and the polytope itself are
called improper faces. The boundary of a polytope (the union of its
proper faces) is a regular CW sphere whose open cells are the interiors
of the faces. The associated poset is a lattice, called the face lattice of
the polytope.

DEFINITION 4. A polyhedral complex is the union of a finite set of
polytopes (faces of the polyhedral complex), the intersection of any
two being a face of each.

The most basic type of polytope is the simplex, the convex hull
of affinely independent points. A simplicial complex is a polyhedral
complex formed as the union of a finite set of simplices. A face of a
simplicial complex will often be identified with its vertex set. For a
simplicial complex A and face g of A, the link of o in A is link(g, A) =
{teA: 00Ut €Aand g Nt =J}. A simplicial polytope is a polytope
all of whose proper faces are simplices.

Associated with any partially ordered set P is its order complex AP.
This is a simplicial complex with one vertex for each proper element
(element other than 0 or 1) of P, and a proper face for each chain of
proper elements in P. The one-skeleton of AP is called the compa-
rability graph of P. Comparability graphs have played an important
role in graph theory.

A nice characterization of order complexes is known,; it is an easy
extension of the well-known characterization of comparability graphs
by Ghouila-Houri and by Gilmore and Hoffman (see §4). We would
like characterizations of order complexes when we restrict the posets
to the posets of cells of regular CW complexes (spheres) or to the face
lattices of polyhedral complexes (polytopes). In these cases the order
complex is known as the barycentric subdivision of the complex.
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In §2 we characterize order complexes of incidence polytopes. We
give a sufficient condition for a combinatorial manifold to be the
barycentric subdivision of a regular CW complex, and describe which
simplicial polytopes are barycentric subdivisions of regular CW
spheres. In §3 we consider uniqueness: if a simplicial complex is the
barycentric subdivision of a connected polyhedral complex with at
least two facets, then it uniquely determines the underlying complex.
Section 4 discusses the use of techniques from the theory of compa-
rability graphs to find the underlying poset of an order complex. The
f-vectors of regular CW spheres are characterized in §5.

2. Barycentric subdivisions of regular CW spheres. We first summa-
rize the situation for incidence polytopes.

A polyhedral complex is called pure if all maximal proper faces
(called facets) are of the same dimension. A pure simplicial complex
of dimension n — 1 is called n-colorable or completely balanced if its
vertices can be given labels, 0, 1,..., n, so that every facet contains one
vertex of each label. For a given n-coloring of an (n — 1)-dimensional
simplicial complex A, a face F of A is called an S-face if S is the set
of labels on the vertices of F. (An i-vertex is a vertex with label i.)

The order complex of a graded poset has a natural coloring by ranks:
each vertex of AP is labeled with the rank of the corresponding element
of P. If P is graded of rank n + 1, then AP is a pure, completely
balanced simplicial complex of dimension n — 1.

DEFINITION 5. A k-pseudomanifold is a pure k-dimensional simpli-
cial complex, such that every (k — 1)-dimensional face is on exactly
two facets and such that given any two facets F and G there is a se-
quence of facets, F = Fy, Fy,...,F, = G, withdim(F;NF; ) =k-1
for each i. A simplicial complex is a normal pseudomanifold [11] if
for every face o (including ¢ = &) the link of ¢ in A is a pseudoman-
ifold. (Equivalently, a k-pseudomanifold is normal if every face of
dimension at most k — 2 has a connected link.)

DEFINITION 6. An n-coloring by {0,1,...,n — 1} of a simplicial
complex A has the double neighbor property if and only if for any face
o of A, if dim(¢) =k, 0<i<n-1, and o contains an (i — 1)-vertex
(ifi—12>0) and an (i + 1)-vertex (if i + 1 < n — 1) but no i-vertex,
then o U {x} is a (k + 1)-dimensional face for exactly two i-vertices x.

Definition 1 can now be rephrased: A graded poset P is an incidence
polytope if and only if its order complex AP with coloring by ranks is
a normal pseudomanifold having the double neighbor property.
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DEFINITION 7. A combinatorial d-manifold is a d-dimensional sim-
plicial complex A such that for any simplex g, link(o, A) is a PL sphere
of dimension d — dim(g) ~ 1.

THEOREM 1. (i) A is the order complex of an incidence polytope of
dimension n if and only if A is an (n — 1)-dimensional normal pseudo-
manifold with an n-coloring having the double neighbor property.

(ii) If A is an (n — 1)-dimensional combinatorial manifold with an n-
coloring having the double neighbor property, then A is the barycentric
subdivision of a regular CW complex.

Proof. (i) We have already observed the “only if” part of (i). We
show the converse holds. For a vertex x of A, write A(x) for the label
on x. Define a relation < on the vertices by saying x, < x; if {x,, xs}
is an edge of A and A(x,;) < A(x;). We show < is a partial order on the
vertices of A by showing transitivity. Assume x; < x; and x; < X,
where the subscripts indicate the vertex label. We show x; < x;,. We
know i < j < k, so it suffices to show that {x;, x;} is an edge of
A. Let Fy, F,,..., Fp, be a sequence of facets containing x; such that
x; € Fy, x; € Fry, and dim(F, N F,, ;) = n— 2 for all r. Let o be the
{j,j+1,j+2,...,n}-face of Fp; note that {x;, x;} C 0. We wish to
show that x; € link(o, A). (See Figure 1.)
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FiGURE 1

Let J be the subcomplex of A with maximal simplices the {0, 1,...,
Jj — 1}-faces of A. Let Gy, Gs,..., G; be the maximal subsequence of
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(FynJ)7 , with no adjacent repetitions. Assume x; ¢ link(g, A). Since
x; € Gy, G, is also not in link(g, A). But G; is in link(g, A), so there is
a greatest index s such that G; is not in link(g, A). Let T = G; N G4,
let y = Gs\1, and ¢ = A(y) < j. Since 7 C G;y; C link(g,A), g U T is
a face of A. So by the double neighbor property there are exactly two
g-vertices x such that ¢ Ut U {x} is a face of A. So these two vertices
with y give three g-vertices w such that tU{x;, w} is a face of A. This
contradicts the double neighbor property.

Therefore x; € link(g, A). But x; € g, so {x;, x;} is an edge of A.
So we have shown that < is a partial order, and A = A(P), where P
is the set of vertices of A with this partial order. The properties of
A(P) translate back to P to show that P with 0 and I adjoined is an
incidence polytope.

(il) Now suppose A is a combinatorial manifold (with n-coloring
having the double neighbor property). It is therefore a normal pseu-
domanifold, so it remains to show that the poset P constructed above
is the face poset of a regular CW complex. We use the characterization
of these posets, due to Bjorner [4]. For any x € P (0, x) is the set of
elements y of P for which 0 < y < x. We get a partially ordered set by
restricting < to (0, x). A(0, x) is isomorphic to link(a, A), where o is
a face of A corresponding to a saturated chain x < x; < X3 < -+ < X
of P. Since A is a combinatorial manifold A(0, x) is homeomorphic
to a sphere. This is the condition needed for P to be a CW poset. So
by [Proposition 3.1, 4] P is isomorphic to the face poset of a regular
CW complex. So A is the barycentric subdivision of a regular CW
complex. ]

We can ask for an analogous theorem for (normal) pseudomanifolds
with boundary. The natural change in hypothesis would be to replace
“exactly two” by “at most two” in the double neighbor property. The
resulting hypothesis is too weak. As can be seen in the proof of The-
orem 1 we need a quite restrictive condition for an n-coloring of an
(n — 1)-dimensional normal pseudomanifold A with boundary to be
an order complex: for any fixed {i — 1,i + 1}-edge e of A there is a
constant ¢ € {1, 2} such that for any face F containing e but contain-
ing no i-vertex, there are exactly c i-vertices x for which F U {x} is a
face of A.

The requirement in Theorem 1 that the pseudomanifold A be nor-
mal cannot be dropped. We defer an example until the discussion of
uniqueness in the next section.
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For pseudomanifolds the double neighbor property is equivalent to
a subset of the generalized Dehn-Sommerville equations. Let A be an
(n — 1)-dimensional simplicial complex with a coloring by {0, 1,...,
n — 1}. Write fg(A) for the number of S-faces of A, and define the
extended f-vector of A to be (f5(A))sco,1,...n—1} € N?". The following
equations, known as the generalized Dehn-Sommerville equations, are
satisfied by the extended f-vectors of the barycentric subdivisions of
regular CW spheres (or, more generally, of the order complexes of
Eulerian posets):

k-1

Y DT fsuy(P) = (1= (=14 fs(P)

Jj=i+1

whenever S C {0,1,....,.n—1}, {i,k} CSU{-1,n},and i< j< k
implies j ¢ S.

When A is known to be a pseudomanifold the generalized Dehn-
Sommerville equations with k — i = 2 are equivalent to the double
neighbor property. Note also that a certain subset of the generalized
Dehn-Sommerville equations (written As = A in [1]) hold for the ex-
tended f-vectors of all n-colored (n — 1)-dimensional spheres. These
two subsets of the generalized Dehn-Sommerville equations do not
generate all the generalized Dehn-Sommerville equations. However,
by Theorem 1, for n-colored (n — 1)-spheres the double neighbor equa-
tions imply the entire set of generalized Dehn-Sommerville equations
(see [1] for more on the generalized Dehn-Sommerville equations).

COROLLARY 2. Let A be a simplicial n-dimensional polytope. The
Jollowing are equivalent.

(1) A has an n-coloring having the double neighbor property.

(2) A has an n-coloring whose extended f-vector-satisfies the gener-
alized Dehn-Sommerville equations.

(3) A is the barycentric subdivision of a regular CW sphere of dimen-
sion n— 1.

It is not difficult to show that the barycentric subdivision of any
polytope can be realized as the boundary complex of a simplicial
polytope (see [9]). So the class of objects described in the corollary
includes the barycentric subdivisions of all polytopes. The corollary
gives us no idea, however, how to distinguish barycentric subdivisions
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of polytopes within the class of barycentric subdivisions of regular
CW spheres. This is an important open question.

3. Uniqueness of barycentric subdivisions. We next consider the
question of uniqueness: does a barycentric subdivision determine the
underlying regular CW complex? The answer in general is no. This can
be seen in a trivial way because the order complexes of any poset and
its dual are the same. But this is not all that can go wrong. Below are
two face posets of essentially different regular CW spheres, each having
the double bipyramid over a hexagon as its barycentric subdivision.

The situation is much better when we restrict ourselves to face lat-
tices of polyhedral complexes.

THEOREM 3. Let P be the face lattice of a connected polyhedral com-
plex with at least two maximal faces, and let P* be its dual poset. If Q
is a poset with A(Q) = A(P), then either Q = P or Q = P*.

To prove Theorem 3 we need to look at techniques from the theory
of comparability graphs (see [10, 12]).

Let G be a graph with vertex set V' and edge set E. Let E, be
the set of directed edges of G, that is, E. = {(x,y): {x,y} € E}. A
directed edge (x, y) is called an orientation of the (undirected) edge
{x, y}; an orientation of G is a function g: E — E,. The function g
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is called a transitive orientation if g(E) is a transitive relation. (Note
that g a function and g(E) transitive imply g(E) is antisymmetric
and acyclic.) Clearly, finding a poset of which G is the comparability
graph is equivalent to finding a transitive orientation of G.

We define an equivalence relation on E,. We say that (u, v) directly
Jorces (w, x) if and only if either u = w and {v,x} ¢ E or v = x and
{u,w} ¢ E. Then (u, v) forces (w, x) if and only if there is a sequence
of directed edges (u,v) = (ug, Vo), (#1,v1),--., (Uk, Vx) = (w, X) such
that for all i, 0 < i < k-1, (u;,v;) directly forces (#;;,V;+1). This
relation is clearly an equivalence relation; the equivalence classes are
called implication classes. Furthermore, if g is a transitive orientation
of G and g(E) contains one element of an implication class, then g(FE)
contains the entire implication class. The forcing relation is defined
whether G is a comparability graph or not. G is not a comparability
graph if and only if some implication class contains both orientations
of some edge of G.

A graph G is called uniquely partially orderable if and only if it has
exactly two transitive orientations, each being the reverse of the other.
This is equivalent to the existence of exactly two implication classes,
each being the reverse of the other. (The image of each transitive
orientation, in this case, is a single implication class.)

Proof of Theorem 3. We show that the one-skeleton of A(P) is
uniquely partially orderable. Then any poset having the same order
complex (and so the same one-skeleton of the order complex) must be
the same as the face lattice of P, up to duality.

The proof is by induction on the dimension of P. Suppose P is
a one-dimensional, connected polyhedral complex with at least two
maximal faces. That is, P is a connected graph with at least two
edges. Let G = A(P) and label the vertices of G with the dimensions
of the corresponding faces of P. Note that no edge of G has two
vertices of the same label. Choose any edge ¢y of G. If e is any
edge of G then by the connectivity of G there is a sequence of edges
ey, er,...,e, =e, where foreach i, 0 <i < k-1, ¢; and ¢;, intersect
in exactly one vertex, and their noncommon vertices have the same
label and thus do not lie on an edge of G. So foreach i,0<i<k-1,
an orientation of e; forces an orientation of e;,;. Thus there are at
most two implication classes, one containing each of the orientations
of ep. Since we know A(P) has a transitive orientation (given by P),
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we conclude that there are exactly two implication classes, and they
are the reverses of each other.

Now assume that for any connected polyhedral complex D of di-
mension less than 4 with at least two maximal faces, the one-skeleton
of A(D) is uniquely partially orderable. Let P be a d-dimensional
connected polyhedral complex having at least two maximal faces. Let
G be the one-skeleton of A(P), and label the vertices by the dimen-
sions of the corresponding faces of P. Let P’ be the (d — 1)-skeleton
of P, and (@ the (labeled) one-skeleton of A(P’). The graph @ is
the subgraph of G induced by all vertices with labels other than d.
The (d — 1)-dimensional polyhedral complex P’ is connected and has
at least two maximal faces. So by the induction assumption, ¢ is
uniquely partially orderable. It remains to prove that an orientation
of ¢ forces an orientation of G.

Choose a d-dimensional face F of P, and let v, be the correspond-
ing vertex of G. Since P is connected and has at least two maximal
faces, F contains some vertex (vo) that is on an edge (v;) not con-
tained in F. Thus {v;,v,} is not an edge of G, so an orientation of
{vg, v} directly forces an orientation of {vg,v;} (both are edges of
G). Now we show that an orientation of {vy, v,} forces an orientation
of all other edges containing v,;. The edges of G containing v; are
exactly the edges {w, v;} where w corresponds to a proper face of F.

We use the following observation. For any k-dimensional face H
of F, 0 < k <d -2, there is a (k + 1)-dimensional face of F not
containing H. Therefore we can order all proper faces of F so that
no two consecutive faces are incident: simply list the faces in order of
increasing dimension, making sure that the last k-dimensional face is
not contained in the first (k + 1)-dimensional face.

In the corresponding order of the vertices of A(F) no two consec-
utive vertices lie on an edge. Find such a list starting with vg: vg =
wp, Wy,..., Ws. Then for each i, 0 < i < s — 1, an orientation of
{w;,v,} directly forces an orientation of {w;,,v;}. So an orienta-
tion of each edge containing v, is forced by an orientation of {vg, v;},
which is itself forced by an orientation of . So an orientation of a
single edge of G’ forces an orientation of all edges of G. So G is
uniquely partially orderable. o

It is clear why the connectedness hypothesis is needed in Theorem
3. What happens if we allow P to have only one maximal face? Then
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P is a (filled in) polytope. Its face lattice looks like

Note that if Q is self-dual then we get four posets, between any two of
which there is an inclusion-preserving or inclusion-reversing isomor-
phism.

We now return to the question of weakening the hypothesis of The-
orem 1. We describe here a 5-colored 4-dimensional pseudomanifold,
having the double neighbor property, that is not an order complex.
Let P be a 5-dimensional polytope that has two 2-dimensional faces
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F and G with the property that any facet containing G is disjoint from
F. Let A be the pseudomanifold obtained by identifying the vertices
vr and vg of A(P). The link of v = vFp = vg in A is not connected.
The identification of the two vertices preserves the double neighbor
property of the natural 5-coloring. With this coloring A is not an order
complex: the 2-vertex v is adjacent to a 0-vertex (corresponding to a
vertex of F) and to a 4-vertex (corresponding to a facet containing G)
that are not themselves adjacent. Suppose A has a different 5-coloring
having the double neighbor property. Label A(P) in the corresponding
way: vr and vg take the label of v, and all other vertices take the la-
bel they have in A. This coloring of A(P) satisfies the double neighbor
property. By Theorem 3 it must be the “dual coloring.” In particular
the vertex v of A has label 2, and the same vertices adjacent to v (but
with labels switched) prevent A with this coloring from being an order
complex.

4. Computational questions. Theorem 1, with its constructive proof,
seems to give a nice method of finding the underlying complex of a
barycentric subdivision. It is only practical, however, if we are given
a correctly labeled complex A. If an (n — 1)-dimensional manifold is
n-colorable then it is easy to find an n-coloring (see [8] for a simple
colorability criterion), and it is unique up to permutation of the labels.
We don’t want to test »n! label permutations until we hit on one having
the double neighbor property. If we restrict ourselves to the case where
A is a simplicial polytope, we could perhaps devise a strategy using the
full set of generalized Dehn-Sommerville equations to find the correct
permutation of the labels. Fortunately, we can instead turn to a known
algorithm for comparability graphs.

First observe that the comparability graph of a poset P determines
the order complex of P. For C is the set of elements of a chain in a
poset P if and only if every pair of elements in C is comparable. In
the comparability graph G this simply says that the vertex set corre-
sponding to C forms a clique (set of vertices, every pair of which is on
an edge). So the order complex A(P) is the simplicial complex with a
k-simplex for every clique of size kK + 1 in G. This gives the following
easy characterization of order complexes (observed in [15]).

A missing face of a simplicial complex A is a subset of the vertices
that does not form a face of A and that is minimal with respect to this
property.
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PROPOSITION 4. A simplicial complex A is the order complex of some
poset if and only if the one-skeleton of A is a comparability graph and
A has no missing faces of cardinality three or greater.

Note also that if G is the comparability graph of a poset P then any
simplicial complex having one-skeleton G is a subcomplex of A(P).

Algorithm 5.2 in [10] determines whether a graph is a comparabil-
ity graph and, if it is, the algorithm produces a transitive orientation.
The algorithm can also determine whether a graph is uniquely par-
tially orderable. Furthermore, the time and space requirements of the
algorithm are polynomial in the number of vertices or edges of the
graph.

We then have the following method for determining if a simplicial
complex A is an order complex. The algorithm is polynomial because
comparability graphs are perfect; maximum cliques can be found in
linear time ({10]).

(1) Apply the comparability graph algorithm to the one-skeleton G
of A.

(2) If G is not a comparability graph, then A is not an order complex.

(3) If G is a comparability graph, compute the number of cliques
of G and compare with the number of faces of A. If they are unequal
then A is not an order complex.

(4) If G is a comparability graph with the same number of cliques as
faces of A, then A is the order complex of any poset with comparability
graph G.

(5) If G is not uniquely partially orderable, then A is an order com-
plex, but it is not the barycentric subdivision of a connected polyhedral
complex with at least two maximal faces.

5. f-vectors of regular CW spheres. A main open question in the
study of polytopes is how many faces of each dimension polytopes
may have. For a regular CW complex P let f; be the number of i-
dimensional cells (or faces), with the convention that f_; = 1. The
f-vector of P is then f(P) = (fo, f1,..., fn). We are far from a char-
acterization of f-vectors of polytopes. A characterization of the f-
vectors of simplicial polytopes was conjectured by McMullen [13] and
proved by Stanley [16] and Billera and Lee [2]. Bjorner and Kalai
[S] characterized the f-vectors that could be realized by simplicial
complexes or regular CW complexes with given homology ranks. The
following theorem is related.
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THEOREM 5. Let f = (fo, f1,...,fa) € N*1. The following are
equivalent:
(1) f is the f-vector of a regular CW sphere of dimension n;
(ii) f is the f-vector of a regular CW sphere of dimension n having
polytopal barycentric subdivision;

1 (iil) X7 (~1)"~ifi=1land for 0<j<n—1,YI__ (-1))~if; >

Proof. We show that (i) implies (iii) and that (iii) implies (ii). As-
sume f is the f-vector of a regular CW sphere P of dimension n.
For any j, 0 < j < n, the sum Y°7__,(—1)"""f; is the rank of the jth
homology group of the j-skeleton of P. For j = n this rank is 1. For
J < n this rank is positive, because P has some (j+1)-dimensional cell,
and the sum of the j-dimensional cells in its boundary is a nonzero
cycle.

We now prove (iii) implies (ii) by induction on #. If n = 0 the
only vector satisfying (iii) is (2). This is the f-vector of the boundary
of an interval, which is its own barycentric subdivision. So assume
(iii) implies (ii) for vectors (fy, fi,-.., fa~1). Suppose the vector f =
(fo. fi,-.., fu) € N**1 satisfies -7 (-1)*"'f;=1and, for0< j <

n—1,30_ (—1y-ifi > 1. Let

n-2
L= 3 ()41 >2, andlet f' = (fo, fi.eer. fuoas Fioy).

i=—1

Then f” satisfies (iii), so by the induction assumption there is a regular
CW sphere P’ of dimension n — 1 having polytopal barycentric sub-
division. Adjoin two n-cells to P’/ to form an n-sphere with f-vector
(fo, f1,-+, f4_1,2). The barycentric subdivision of this sphere is a
bipyramid over the barycentric subdivision of P’, and hence can be
realized as a polytope.

Now repeat the following operation f, — 2 times, adjoining f, — 2
(n— 1)-cells and f,, —2 n-cells. Choose an (n — 1)-cell C of the regular
CW sphere. It is contained in the closures of two n-cells D, and D,.
Form a new regular CW sphere by replacing C with two copies of
C surrounding a new n-cell, one copy of C contained in the closure
of each of D, and D,. The effect in the barycentric subdivision is
to perform stellar subdivisions on the two edges joining the vertex
corresponding to C with those corresponding to the n-cells D;. The
result of a stellar subdivision can be realized as a polytope. Since
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v+ fa—2= fy—1, we have constructed a regular CW sphere with

f-vector (fo, f1,..., f») and with polytopal barycentric subdivision.O

Observe that in each dimension there is a unique least f-vector
of a regular CW sphere: (2,2,...,2). A regular (n — 1)-dimensional
CW sphere having two cells of each dimension has as its barycentric
subdivision the n-dimensional crosspolytope. This is the minimal n-
colorable simplicial sphere (for more on colorable complexes see [3]).

The equivalence of (i) and (ii) in Theorem 5 says that spheres with
polytopal barycentric subdivisions cannot be identified by their f-
vectors. (We do not know an example of a regular CW sphere whose
barycentric subdivision is not realizable as a polytope.) A similar ques-
tion for simplicial spheres (not necessarily barycentric subdivisions)
is open—it is not known whether the set of f-vectors of simplicial
spheres is the same as the set of f-vectors of simplicial polytopes.

6. Related work and open questions. Dress [7] studied barycentric
subdivisions from a slightly different perspective. Consider the Cox-
eter group

T = (00,01, ...,0,_1|07 = (0;0;)* = 1
fori,k=0,1,...,n—1and |i — k| > 2).

For an n-colored (n — 1)-dimensional pseudomanifold A, and a facet
F of A, define o;(F) to be the facet of A differing from F only in the
i-vertex. If A is the order complex of a poset, this defines a Z-action
on the facets of A. In a vein similar to this paper, Dress considered
the reverse question. He determined under what conditions a set Q,
having a Z-action, is isomorphic (as a X-set) to the set of facets of a
pseudomanifold that is the order complex of some poset. He further
studied the relationship between the action of a group on a poset and
the action of the group on the facets of the order complex.

Besides the characterization of face posets of regular CW complexes,
several interesting and related topics are covered in [4]. There Bjorner
discusses shellability of regular CW complexes and the realization as
regular CW posets of certain partial orderings, such as Bruhat order
and the poset of intervals of the face lattice of a polytope.

Many open problems remain. The greatest of these is to characterize
barycentric subdivisions of polytopes (among barycentric subdivisions
of regular CW spheres). A characterization of the extended f-vectors
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of (barycentric subdivisions of) regular CW spheres would also be
desirable.

The class of incidence polytopes is one generalization of the face
posets of regular CW spheres. Another is the class of Eulerian posets
(see [17] for the definition); for these posets the generalized Dehn-
Sommerville equations hold [1]. We would like a characterization
of barycentric subdivisions of Eulerian posets—it is not enough for
a simplicial complex to have an n-coloring satisfying the generalized
Dehn-Sommerville equations.

The author would like to thank Anders Bjorner for discussion help-
ful to this work.
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