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UNIQUENESS PROBLEM WITHOUT MULTIPLICITIES
IN VALUE DISTRIBUTION THEORY

SHANYU J1
Let H,..., H,. be hyperplanes in general position in P” with m >
2. Let 4,,..., Ay be pure (n — 1)-dimensional analytic subsets of C"

with codim 4; N 4; > 2 whenever | # j. Then any linearly non-
degenerate meromorphic maps f, g, i: C" — P" with f|4; = g4, =
hlA, and with f~'(H;)) =g "(H))=h""(H))= A4, for j = 1,..., k
satisfy Property (P) if kK = 3m + 1. Consequently such f, g, # are
algebraically dependent. If even n > rank f = rank g = rank %z = m,
then k = m + 3 suffices.

1. Introduction. Since Pdlya’s work [P1] in 1929, the uniqueness
problem in value distribution theory has been studied by Nevanlinna
[N1], Cartan [C1, C2}, Fujimoto [F1, F2], Schmid [S1], Smiley [S5,
S6], Carlson [D2], Drouilhet [D1, D2] and Stoll [S11]. One of the main
results, given by Fujimoto in 1979 [F2], is that if H; are hyperplanes
in P in general position and v; are divisors on C" whose supports
have no common irreducible components for j = 1,...,m + 2 and if
# is the set of meromorphic maps f: C" — P” with f*(H;) = v;
for j = 1,...,m+ 2, (f*(H;) is the pull-back of the divisor of H;
on P™ by f), then 7  cannot contain more than m + 1 algebraically
independent maps. This theorem is in fact a generalization of the
Cartan-Nevanlinna theorem (i.e., take n = m = 1 and replace “alge-
braically dependent maps” by “maps” in the above theorem) in 1928.

In this paper, we shall give some analogous results which are without
multiplicities. For this kind of problem, Cartan declared [C2] that
there are at most two meromorphic functions f, g on C such that
f~Ya;) = g7(a;) for four distinct a; € P!. Cartan’s proof appears
to have a gap. But some of his original ideas are used in this paper.
We also need to use some of Shiffman’s and Drouilhet’s results [S3],
[D2].

Let H,,..., H; be hyperplanes in general position in P” given by

(1.1) awo + - + @ wm, = 0
for j = 1,...,k. Let Ay,..., A, be pure (n — 1)-dimensional ana-

lytic subsets of C" with codim4; N 4; > 2 whenever i # j. Put
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A=A U---UA;. Let F: C" — P™ be a meromorphic map. Let

(1.2) F(C",P" k)
= {f:C" —» P™|f is a linearly non-degenerate
meromorphic map, f|4 = F|A
and f~'(H))=A;for j=1,...,k}

(for the definition of linearly non-degenerate, see §2) and
(1.3) F4(C" P k) .= {f € F3(C",P", k)| rank f = m}.

We say that f, g, h € F3(C", P", k) satisfy Property (P) if for each
fixed p = (po, ..., pm) € C*1 .= C™*+! — {0}, for all but at most four
values of i in the set {1,..., k}, there exist (4;, u;, v;) € C3 = C3—{0},
such that
Ailpofo+ -+ Pmfm) | Hi(Pog0 + -+ Pm&m)

al' ot +aWfm  ay g+ +al) gm

Vi(Poho + -+ Pmhm) _
al' ko + -+ + aDhm

(1.4)

where (fy,..., Sm), (&o,-..,8&m), and (hg,..., hy,) are reduced repre-
sentations of f, g, 4, respectively, and a(()’), e ,aﬁ,’,) are given by (1.1).
(The set of omitted values of i depends on p.)

Our main results are

THEOREM A. If f, g, h € Z4(C",P" , m+3) withm > 2, then f, g, h
satisfy Property (P). Consequently f, g, h are algebraically dependent.

THEOREM B. If f, g, h € F5(C",P™,3m+1) withm > 2, then f, g, h
satisfy Property (P). Consequently f, g, h are algebraically dependent.

REMARK. By [D1], if &£ > m + 3, 4(C", P™, k) contains at most
one map. By [S5, S6], if £ > 3m + 1, F5(C", P™, k) contains at most
one map.

As generalization of Theorem A, we have Theorem C as follows.

Let ¥V c PM be a connected complex submanifold with dim V' =
m > 2. Assume that V is not contained in any hyperplane of P¥.
Let Hy, ..., Hy be hyperplanes of PM such that D; := H;NV are pure
(m—1)-dimensional smooth analytic subsets of V. Let Dy, ..., D, have
normal crossings in V. Let A4;,..., Aj be pure (n — 1)-dimensional
analytic subsets of C" with codim4; N 4; > 2 whenever i # j. Put
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A = A{U---UA. Suppose k is an integer such that K,y @ (H{V)k~2 > 0
and k > 5, where Ky is the canonical bundle of V' and H is the
hyperplane section bundle on PM_ Let F: C" — V be a meromorphic
map. Let

(1.5)  Fe(CVk)
:={f:C" - V is meromorphic|rank f = m,
flA=F|dand f~(D;)=4; for j=1,...,k}.

Since f: C" — V can be regarded as f: C" — P™ by composing
with the inclusion map: V — PM. So, F-(C",V,k) = F(C", V,k) N
F3(C", PM k). We say f, g, h € F-(C", V, k) satisfy Property (P) if f,
g, h as maps in F3(C", PM k) satisfy Property (P).

THEOREM C. If f, g, h € F-(C", V k), then f, g, h satisfy Property
(P). Consequently f, g, h are algebraically dependent.

REMARK. (i) When ¥ = PM, Theorem C is Theorem A.
(ii) By [D2], if Ky ® (H|V)K=2 > 0, then S-(C", V, k) contains at
most one map.

The author would like to thank his advisor, B. Shiffman, for encour-
agement and assistance. The author also would like to thank Professor
W. Stoll for giving very careful and helpful corrections and suggestions
for my manuscript.

2. Preliminaries. We give or review some notions and definitions
(cf. [S7, S8]).

DEFINITION 2.1. (For meromorphic maps.)

(a) Let X and Y be connected complex manifolds. Let S be a
proper analytic subset of X. Then X — S is dense open in X. Let
f: X —S — Y be a holomorphic map. The closed graph of f is the
closure I'(f) := {(x, f(x))|x € X — S} of the graph of f over X —
Sin X xY. Let n: T(f) — X and f:I'(f) — Y be the natural
projections. The map f is said to be meromorphic on X if I'(f) is
analytic in X x Y and n is proper. Let #P be the cardinality of P.
The indeterminacy Iy := {x € X|#f(7t“(x)) > 1} is analytic and
contained in §. Codim /I, > 2. We can assume S = I;. In this paper,
we always assume that Y is algebraic and compact.

(b) Let V be a complex vector space of dimension m + 1. Put
V. = V — {0}. Then C. = C — {0} acts by multiplication on V..
The quotient space P(V') := V. /C, is the projective space associated
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to V. Let P: V., — P(V) be the residual map. If 4 C V, define
P(A4) := {P(a)|0 # a € A}. Let S and X be as in (a). Let f: X —
S — P(V) be a holomorphic map. Let x € X and U be an open
connected neighborhood of x. A holomorphic map ¢,: U — V is
called a representation of f at x if ¢y # 0 and if f(z) = P(¢,(z)) for
all z € U~ S with ¢,(z) # 0. The representation is said to be reduced
if Codim ¢}1(0) > 2. The map f is meromorphic if and only if there
is a representation at every point of X. The representation is global if
U = X. If X =C", there is a global reduced representation. So, maps
in F(C",P™, k) have global representations.

(c) We have assumed that Y is an algebraic compact manifold. A
meromorphic map f: X — Y is called algebraically non-degenerate if
the image of f is not contained in any proper analytic subset of Y. If
Y = P™, then f is called linearly non-degenerate if the image of f is
not contained in any hyperplane of P™.

(d) Meromorphic maps f!,..., f*¥ of C" into any algebraic mani-
fold Y are called algebraically dependent if the image of the meromor-
phic map f! x - x f¥: C" - Y x --- x Y (k times) is contained
in some proper analytic subset of ¥ x --- x Y (k times), where
(f1x - x f&)(z):=(fY(2),..., f*(z)) for generic points z in C".

(e) Let X be as in (a). Let & be the sheaf of germs of holomorphic
functions on X. If x € X, let &, be the stalk of @ over x, and m,
be the maximal ideal in &;. Let mZ be its pth power with m? := &,.
Take 0 # f € &, one and only one integer u(f) > 0 exists such that
fem) - m#I* Here u(f) is called the zero-multiplicity of f.
Let U C X be open connected, f # 0 be holomorphic function on
U. Take any x € U and let f; € &, be the germ defined by f in &;.
Then u(}(x) = u(fx) > 0 is called the zero-multiplicity of f at x. The
function u?: U — Z is called the zero divisor of f.

A divisor v on X is an integral value function v: X — Z such that
for every x € X there exists an open connected neighborhood U of x
and holomorphic functions g # 0 # 2 on U with

Codim(g~1(0) N A~1(0)) > 2,

such that v|U = ,ug - /‘2- v = 0 is called the null divisor. If v is not the
null divisor, S := supp v is a pure (n — 1)-dimensional analytic subset
of X where dimX = n. Let Reg(S) be the set of regular points of
S. Then v|Reg(S) is locally constant. Let L be the set of irreducible
components of S. For each B € L, v|{Reg(S)NB = p(v,B) £ 0 is
a constant integer. We say that v > 0 if p(v,B) > 0 for all B € L.
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For any pure (n — 1)-dimensional analytic subset 4 of X, there exists
a unique divisor v 4 such that v 4| Reg(4) = 1. Obviously v, > 0. The
locally finite sum

(2.1) v = Z p(v, B)ug

is called the analytic chain representation of v. If 0 < n € Z, the
divisor
(2.2) v := 3" min(n, p(v, B))vp
BeL
is called the truncation of v at level n.

Let f: X — Y be meromorphic. Let v: Y — Z be a divisor on Y
with § = suppv. Assume that f(X) ¢ S. Since Codim I, > 2, there
exists a unique divisor f*(v) on X, called the pull-back divisor of v by
f, such that for any pair of open, connected, non-empty subsets U of
X —1I;and W of Y with f(U) C W, there are holomorphic functions
g #0# hon W with Codim(g~'(0)nA~1(0)) > 2 and v|W = ud —u?,
then go fIU# 0% ho f|U, and f*(v)|U = (uS,, - ), )IU.

DEFINITION 2.2. (For Nevanlinna theory.)

(@) For z = (zy,...,2z,) €C", let |z[2 i= |z1 > + -+ + |z,4|% S(r) ==
{zeC"||z| =r}. B(r):={zeC"||z{ <r}. d°:= (0 - )/4n\/~1.
Let wo = dd°log|z|> be the homogeneous metric form on C*, and
9o ‘= dd°|z|* be the Euclidean metric form on C". Let 6 := d° log|z|A
w?~! be the Poincaré form on S(r). Let w be the Fubini-Study metric
form on P"~! given by P*w = wy. Denote C? = C" — {0}.

(b) Let v be a divisor on C” with .S = suppv. For ¢t > 0, the counting
Sfunction n, is defined by

> u(2), ifn=1,
ZeSnB(t)
(2.3) ny(t) = 1

i v, if n> 1.

20 /SnB(z) 0

If n> 1, also n,(t) = fSnB(t) vwg’l +v(0). For 0 < s < r, the integrate
counting function is defined by

(2.4) N(v;r,s) = /r ny(t) ?

If f: C" — Y is a meromorphic map, and v is a divisor on Y with
f(C") & suppw, and f*v is the pull-back divisor of v by f, we abbre-
viate N(f*v;r,s) = Ng(v;r,s). If Ais a pure 1-codimensional analytic
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subset of Y, abbreviate N(f*(v,4);r,5) = Ne(4;7,5) and N(vq;7,5) =
N(A4;r,s).
(c) Let f: C" — Y be meromorphic. Let L be a hermitian holomor-

phic line bundle over Y with a metric 4. The characteristic function
of f is defined by

Ap(L;t) = Ap(L, hyt) = ﬂ_r}ﬁ/}g()f*(c”)/\wg—l’ fort >0,
t

.

(2.5) Ty(L;r,s)=Ts(L,h;r,5) = / As(L;t) ? forO<s<r
A

Let A7(L;0) = lim,_,o As(L;t). We also have

Ap(L;t) = fren) Nl + A(L;0), fort>0,
B(1)

where ¢, is the Chern form of the metric # (Note: A,(L;0) = 0if f
is holomorphic at 0).

If f: C" — P™ is meromorphic, and L is the hyperplane section
bundle H over P" with the metric & := {h, := |z4|*/(|z0|?+" - +|2Zm|?)
on U,}, where U, :={[Zg: - : Zyn]l|Zs # 0} fora =0,..., m, then
¢y = @. We abbreviate T,(H, h;r,s) = T((r,s).

(d) Let f:C" — Y, L, h be as in (c), Y compact. The set of
all holomorphic sections in L over Y is a finite dimensional complex
vector space I'(Y, L). Since Y is compact, we can select a hermitian
metric 7 on I'(Y, L) such that ||s(y)||, < ||s]|; for all s € I'(Y, L) and
allyeY. If yeY,anda e P(I'(Y,L)), then a = P(a) with 0 # a €
I'(Y, L) and

a
(2.6) 0< |y ally, = |1l <1

is a well-defined function of y and a. Let a € P(I'(Y, L)) and as-
sume f(C") ¢ supp u,, where u, is the associated divisor of a. Then
I|f, alln, # 0 and the proximity function

(2.7) my(a;ry=mgs(a, L, h,;;r) = / log g > 0 exists.

1
sy falln,

If Y = P™, and D is a hyperplane on P™ defined by aqpwg + --- +
amwm = 0, assume f(C") € D, since D associates a unique element
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in P(I'(P™, H)), where H is as in (c),
(2.8) my(D;r)
o _/ log |a0fo + -~ + amSml o
soy (ol +-+ [ fmHV2(lao? + - - + lam|?)!/2
>0

where ¢, = (fy,..., fin) is a reduced representation of f.

(e) The notation ||A(r) < B(r) means that there is some set £ C
R* with [ dr < oo, such that A(r) < B(r) for all r € R* - Ej
||lim, . A(r) = B means that there is some subset £ C R* with
[¢ dr < oo, such that lim,_, e+~ A(r) = B; ||A(r) < o(logr)+ B(r)
means that there is some subset E C R* with [, dr < oo, and a
function 0 < &: Rt — R* with ¢(r) — 0 as r — +oo, such that
A(r) <e(r)logr+ B(r) forallr e Rt — E.

(f) Sometimes we use C to mean a positive constant number which
is independent of r € R*.

3. Lemma of the logarithmic derivative. In 1925, Nevanlinna proved
the “lemma of the logarithmic derivative” [N2], [H1] in the form

(3.1)  |lmy, p(r) < 10log* Ty(r) + 101logr + 4log™ log™(1/| £ (0)))

for meromorphic function f on C. The generalization for it on C”
was given by Vitter in 1977 [V1]. Shiffman [S4] gave a refined lemma
in which O(logr) is replaced by o(logr):

LEMMA 3.1 ([S4, Lemma 3.11]). Let F be a non-constant meromor-
phic function on C". Then forany i, 1 <i<nand0<s<r

oF
a—/ E

We need the following Lemma 3.2. The simplified proof of this
lemma given below is due to W. Stoll.

For Lemma 3.2, some preparation is needed.

U:={(2,,...,%,) € C"|2, # 0}isopenin C". Since U=P~1(P(1))),
the image U := P(U) is open in P*~! and P*~! — U = P({0} x C""!)
is a hyperplane in P"~!, Now E := {1} x C""! is an affine plane in
C” of dimension n — 1 with E ¢ U. The restriction P :=P: E — U
is biholomorphic. If z = P(2) € U, then 2 = (%,,...,%,) € U and
P-1(z) = 2/2,. Let

(3.3) L:E—C"

(3.2)

o < Clog*(Ty(r,s)) + o(logr).
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be the inclusion map. Let w be the Fubini-Study form on P”~!. Then
L*(wg) = P*(w). Define

#j:=(0,...,0,1,0,...,0) e C".

arsan, o’
j-1
Then i, ..., @i, is an orthonormal base of C”. The dual base #7, .. ., i},
of (C")* is orthonormal. Put u} := P(#}). Pick x € U. Then
e =(e,...,en) = P~l(x) x E satisfies #t’(e) = ¢, = | and [e| > 1.
Hence
|#i(e)] _ 1
(3.4) X, ujll = —— = —.
e il = et = e

Let F: C" — P! be a non-constant meromorphic function. Then
S = supp u% Usupp u%° is empty or an analytic subset of pure dimen-

sion n — 1 in C", where u = ul_,, ¢p- = (f1, fo) if ér = (fo. /1)
is a reduced representation of F. Then Ej := {e € E|Ce C S} has
measure zero in E. Take any e € E — Ej, a meromorphic function
F, £ 0 is defined by F.(w) := F(we) for all w € C. Obviously, if
e=(e,...,en) € E—Eythen ey =1 and

(3.5) Fl(w) Ze, (we for all w € C.

The function g, := F/F, is meromorphic on C for each e € E — E,.

LEMMA 3.2. For each 0 < s < r € RY, the integral

[ me ( )L*(w" Y(e)
EEE"EO | |
exists with

(3.6) / L (oo; |§|) L@ )(e)

< C(log" Tr(r,s)) + o(logr).

Proof. Take e € E — Eg and w € C with 0 # F,(w) # co. Then
e=(ey,...,e,) and

|Fe(w) < |<f|2

2, (e)

Z e,g—(we
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or

log" | ge(w)| = log* %l

2

OF (we)| |F (we)|2

5z, (we)

éz—i(we)/F(we)

<log|e| +

< logle| +Zlog+ + %logn,

i=1

which implies
r
mgl, o0, Ié—l
1
< —_
<logle| + ,=Zl 7
2 oF e
x/ logt | — (rexp (V-16) )/F (rexp(V—lG)—-—)' do
0 0z; I | le]

+llon
7 08

By [W1, p. 130, (2.12)] we have

(3.7) / e logle|L*(wf~!)(e)

— ___1__”* n—1
= /eeE_Eo e Bt @)

1 — 1
= log —" N (x -
fo Yo ™' ; 7

A diffeomorphism ®: E x R(0,2n) — E onto a subset £ of S(r)
is defined by ®(e, 6) = r exp(v/—16)e/|e| such that E is open in the
topology of S(r) and such that S(r) — E has measure zero. Then

OF

2n
[ps, 35 )y 108" |G 00 [ Fe@te o) avbior-ic)

oF
= log" | —=- / F
/S(r) 0Z;

a.
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Finally,
r
my (0o — | L*(w? ") (e
e M) (570
<Z/ log* Fa+llo n+’§_:l
S(r) & 2 ¢ A’
i=1
then (3.6) is proved by applying Lemma 3.1. O

4. Lemmas from Nevanlinna Main Theorems.

LEmMMA 4.1. Let f € F-(C", V,k), Ky ® (H|V)k=2 > 0. Then for
0<s<reRt,

(4.1) Hsz H|V;r,s) ZN Aj;r,8)

+ C(log T((r,5)) + o(logr).
In particular, if V =P™, ie., f € F(C",P" m+3),

m+3
(4.2) Hsz r,s) < > N(4;r,s)+ Clog" T¢(r,5)) + o(logr).
j=1

Proof. From [S4, Theorem 3.1] we have

k
(4.3) HZTf(H}V; rs)< > Ny(Hjr,s) = N(Ry;r.s)
j=1
+ C(log™ T¢(r,s)) + o(logr),
where R/ is the ramification divisor of f which is defined in [S4, p
73], or [D2]. By [D2, Lemma 3.2],

k
(4.4) > Ny(Hjr,s) - N(Ry;r,s)
j=1
where N ;(v;r,s) := N((f*v)1;r,s) (cf. (2.2)). Note that N /(Hj;r, s)
= N(4j;r,s); then (4.1) 1s proved by (4.3) and (4.4). o

Ns(Hj;rs)+C

I M»

LEMMA 4.2. Let [ € 3(C",P™,3m + 1). Then for 0 < s <r € RY,

3m+1
2T(r.s) Z N(Aj;r,s)+ C(log* T¢(r.s)) + o(logr).
j=1

(4.5)
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Proof. From [V1, (5.5), (5.6), p. 103],
(4.6) [(Bm+ 1) —m = 1]Ts(r,s) = 2mT((r,s)
<log(|g1 - &m+1l/J) +1logD + C,

where _

(1) g = foaé’) -+ final), and a(()’), a') are given by (1.1),
fori=1,....,3m+ 1, and (fo,..., fm) is a reduced representation
of f.

(2) J = ||f AD®f A--- AD% f]| = det(D® f)osigm.apm0> Where
(0, ay,...,0p) are nonnegative integers such that there exists a dense

open subset U of C", for any z € U, f(z), D* f(z),...,D% f(z) are
linearly independent.

1 1
D-=det| D" folfo - DS/ fm

D folfo - D fim/fm
From [F3, p. 255], we have

(4.7) /g | ogllgy g5l )o

3m+ Im+1

Z rs[k°]<mZNij,rs)
j=1 j=1

where

(1) By [F3, Proposition 4.5], k; always can be m for nondegenerate
meromorphic map from C” into P™.

(2) By [F3, p. 250], the second inequality holds because

(4.8) N (o)l o= N((f*H))™;rs)  (cf. (2.2))
<mN¢(Hj;r.s).
With (4.6), (4.7) and (4.8),
3m+1

2mTf(r,s)§ Z me(Hj;r,s)-;-/ logD.o-+C
j= S(r)
j=1

Apply Lemma 3.1 repeatedly to |, S(r) log D - g, then (4.5) follows. O
LemMA 4.3. Forany n,m € Z*, let f, g: C" — P™ be linearly non-

degenerate meromorphic maps with f # g. Let D be any hypersurface

on P If f~1(D) = g~'(D) and f|f~'(D) = glg~!(D), then

(4.9) Ny(D;r.s) < Tp(r,s) + Tg(r.s) + C.
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Proof. See [D2, Lemma 3.4]. (Note: Lemma 3.4 in [D2] needs the
condition » > m, but this is seen to be unnecessary by checking the
proof.) O

LEMMA 4.4. Let f, g € 53(C",P™, k) with f # g and with

k
2T (r,s) < ZN(Aj;r s) + C(log* Ty(r,s)) + o(logr),

(4.10) k
2T, (r,s) < ZN(A,,r 5) + C(log* T(r, s)) + o(logr).
Then
k
(4.11) Z Aj,rs/Tf(r s)=2 and
(4.12) rlir?o Tf(r,s)/Tg(r,s) = 1.

Proof. From (4.10) and Lemma 4.3,

k
Ty(r,s)+ Te(r,s) <> N(Ajr.s)
j=1
+ C(log* Ty (r,s) +log T (1, 5)) + o(logr)
< Ty(r,s) + Tg(r,s) + Clog" Ty(r,s) +log* Tg(r.s))
+ o(logr).

So,
(4.13)
“1 < [Zf=1 N(Aj;r,s)+ C(log™ Ty(r,s) +log* T,(r,s)) + o(logr)]
- [Tr(rs)+ Tg(r,s)]
[C(log"™ Ty(r,s) + log* T,(r,s)) + o(logr)]

<1+
[Tr(r.s)+ Tg(r,s)]
By (4.10),
(4.14) rlgglon r,s /ZN Aj;r,s) < 1/2 and

r—o0

(4.15) hmT(rs/ZN(Aj;r,s)g 1/2.
j=1
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Apply (4.15) to (4.13), we obtain (4.11). Then apply (4.11) to
(4.13), we obtain (4.12). O

COROLLARY 4.5. Let f,g € F4(C",P", m + 3) (respectively
F(C",P™ 3m + 1), or Fo(C", V, k)) with f # g. Then

m+3
(4.16) rhrg)ZNAJ,r s)/Tf(rs
(resp.
3m+1
(4.17) lim Z N(4;;r,s) / Tr(r,s) or
(4.18) lim }: N(4;;r,5) / Ty(r,s) = 2)
j=1
(4.19) }Lrglo Tf(r,s)/Tg(r,s) =1.

5. Proof for holomorphic curves. In this section, we prove Theorem
B when n = 1. Although this case is only for holomorphic curves, the
method of proof will be essentially used for the remaining cases of
Theorems A, B and C.

LeMMA 5.1. Let n,m, k € Z*. Let $3(C",P™, k) # &. Then there
exists a dense subset # c C**1, such that for any p = (py, ..., Pm) €
P, the hyperplane H, defined by pywg + - - - + pmWm = 0 satisfies

k
(5.1) Codim (U A nf—l(H,,)) >2 forall f € F3(C", P k).

J=1

Proof. For any irreducible pure (n — 1)-dimensional component ¢ of
Uk, 4j, set Ko == {(X0, ..., Xm) € C"*Vxo fo(z) + - + XmSm(z) = 0
for all z € 6}, where ¢, = (fo,..., fm) is a reduced representation of
f € F(C",P" k). K, is independent of the choice of f for f|4 =
F|A. K, is a complex vector subspace of C"*! with dimK, < m.

Let K :=|J, K;. Then K is a union of at most a countable num-
ber of m-dimensional complex vector subspaces in C”t1, Let & :=

Cm+! — K. Then & meets the requirement of the lemma. O
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Now for any n, m, k € Z* and for f, g, h € 93(C, P™, k), let & be as-
sociated to #3(C, P™, k) as in Lemma 5.1, and take p = (pg, ..., Pm) €
P. Take i € {1,..., k}. We define a meromorphic function ¢ on C
by

F G H
(52) e¢o=9¢(f,ghpi)=det| F'/F G/G H/H
| 1 1

G H H F' F' G
—(a“ﬁ)“(ﬁ‘ﬂ“(?‘a‘)”’

F=F(fpi)=@a{fo+ - +a@ fm)/(pofo+ -+ Pmfm),

(53) { G=G(g p,i) = (ag)go+ -+ a gm)/(Pogo + -+ + Pm&m),

H=Hh,pi)=(aYho+ - +a hn)/(Doho + - + Pmhm),

where

where ¢ = (fo,.... fm), ¥g = (&0s--->8m)s &n = (My,..., hm)A are
reduced representations of f, g, &, respectively, and (a(()’), e, aﬁ,i)) is

defined in (1.1).
Sometimes we define

(5.4) P(f)=p0f0+"'+pmfm
Hi(f)=ay fo+ - +ay fim. etc.

LEMMA 5.2. Let f, g, h € #3(C,P",3m + 1). Assume

p=0(f.8hpi)#0,

Jor some p € P and some i €{1,..., 3m+1}. ThenforO<s<r
N(A;,rs) _ 1

5.5 lim : > =

-2 A Trs) 22

Proof. First we prove

3m+1

(5.6) U 4,co ' 0)n(e)"(0).

J=1j#i

For any a € 4; with j # i, j € {1,...,3m + 1}, because the A
are disjoint in C for k = 1,...,3m + 1 and (5.1), we know that
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F(a) = G(a) = H(a) € C,. Then from (5.2), we have

(5.7) ¢(a) =0 and
58 0@ = (G2 - ) @

. (H’(a F’(a)) " (F’ a) G’(a)) ()

i (G,), z F(a) ~ Gla)
-

Z) a)| F(a)
“|(57) - (%

7 }
AN

() @-(3) @] #a-o

Next we show that if b € 4;, then

(5.9) ¢(b) # co.

When w is near b in C, F(w) = (w—b)* F*(w), F*(b) # 0; G(w) =
(w—-b)eG*(w), G*(b) # 0; H(w) = (w—b)s H*(w), H*(b) # 0, where
integers ki, ky, k3 > 1. Then ¢(b) # oo follows from (5.2).

Since ¢ # 0 and (5.6) and the First Main Theorem,

3m+1
(5.10) 2 Z N(Aj;r,8) < Ty(r,s) + O(1) = Ny(oos 1, 5)
J=1j#i
+ my(00;r) — my(oo;s) + O(1).
By (5.2), (5.3) and (5.9), all the poles of ¢ must be the ones of F,
G, H. Hence
(5.11) Ny(oo;r,5) < Np(oo;r,5) + Ng(oo; 1, 5) + Np(oo; 1, 5).
By Lemma 3.1,
(5.12) ||my(o0;r) < mp(oo;r) + mg(oo; 1) + mp(oo;r)
+ C(log" Tr(r, s) + log* T5(r, s) + logt Ty (r, 5))
+ o(logr).
Note Tr(r,s) < T¢(r,s) + C, etc. Note f # g because ¢ # 0, so we
can apply the Corollary 4.5. By (5.10), (5.11), (5.12) and (4.19),
Im+1
2 Y N(Ajns) <3T4(r,s)+ o(logr) + C(log* Ty(r,s)).
J=1.j#i
Then by (4.6) we prove (5.5). O
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LEmMMA 5.3. Let 53(C,P", k), #, pe L, ie€{l,....k}, f,.ghe
F(C,P" k), p = o(f,g.h.p,i), F=F(f,p,i), G=G(g p,i) H =
H(h,p,i) be as in (5.2), (5.3). Assume k > 2. Then

(5.13) @ =0 & There is constant (A, u,v) € C3 such that
A un v _
(5.14) S+b+Z=0

Proof. Set a:=1/F, B:=1/G, y:=1/H. Since

o 1B Uy (1 11
¢=det(—a’/a -B'/B —V’/V)=Tdet(a B y)
1 1 1 apy o By

and o #Z oo, B # o0, y # oo for f, g, h are linearly non-degenerate,

put
1 1 1
A=det| a B 7y |.
al ﬂl yl

Thus (5.13) is equivalent to
(5.15) A=0.

\

By Wronsky determinant, (5.14) is equivalent to

a B v
(5.16) det| o B | =0
C!Il ﬁll yll

It suffices to prove (5.15)<(5.16).

For (5.16)=-(5.15): By the definition of #(C,P", k) and k > 2,
H|A=G|A=H|A#0,s0A+u+v =0 from (5.14). So (5.16)<(5.14)
= (5.15) is obvious.

Assume (5.15). If (a,B,7) = {(1,1,1), where { is a meromor-
phic function, (5.16) is obvious; if not, then (o/, f',9") = p(1,1,1) +
n(a, B,y), where p, n are meromorphic functions. Differentiating,
we conclude that (¢, 8”,7") is a linear combination of (a, 8, y) and

(o, B".7). 0

The proof of Theorem B when n = 1.
(1) Let f,g.h € F3(C,P",3m + 1). Let & be associated to
FB(C,P",3m + 1) as in Lemma 5.1.
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It suffices to show that for each p € £, for all but at most four
ie{l,...,3m+ 1} (here the condition m > 2 is used),

A MK L B
F(f.p,i) G(gp i) Hhpi)

holds for some constant (4;, u;,v;) € C2, where F(f, p,i), G(g, p,i),
H(h, p,i) are defined as in (5.3).

In fact, assume that the statement above has been proved, we prove
that f, g, h satisfy Property (P) as follows: forany p = (pg,..., Pm) €
C+1 since & is dense in C”*! by Lemma 5.1, we choose a sequence
of p; € # with p; — p as t — oco. For each p;, by the assumption, for
all but at most four i € {1,...,3m + 1} (the exceptional set depends
on ?),

(5.17)

Ay Ui Yy
5.18 Y S =0
(5.18) F(f,pi,i) G(g p,i) H(h pi)

for some constant (4, 4, v;,) € C3. We assume

(5.19) Max(|A. |, |usl, lvy]) =1 for all ¢ and i.

By taking a convergent subsequence of {p;} if necessary, we can as-
sume that

(i) There is an exceptional set A, C {1,...,3m+ 1} which consists
of at most four numbers and is independent of ¢, such that for any
pr,andany i €{1l,...,3m+ 1} — A,, (5.18) holds for some constant
(A, t,, v,) € C3.

(i) As, = Aj, fy, = Ui, vy, » viforeachie{l,...,3m+ 1} - A, as
I — o0.

Because (5.19), (4;, u;,v;) € C3. Just let ¢ — oo in (5.18), we have
proved (1.4), i.e., f, g, h satisfy Property (P).

(2) Now suppose that the statement (5.17) is not true. Then there
exist p € # and iy,...,i5 € {1,...,3m + 1}, such that there is no
constant (4, #,v) € C3 so that

G S
F(f.p.is) G(g pis) Hhpis) ™

for s = 1,2,3,4,5. By Lemma 5.3, o(f.g.h, p,is) £ 0 for s =
1,2,3,4,5. Then by Lemma 5.2,

lim N(4;;7.5)/Ty(r,s) >

r—0o0

%, fors=1,2,3,4,5.
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So,

3m+1
}Lr{)lo Zl N(Aj;r,s)[Ts(r,s)
j:
3m+1

. 5
> 3 lim N(4;,1,9)/Ty(n5) 2 5 > 2,

j=l r—0o0

but this is contrary to (4.17). O

6. Lemmas for ¢,.. For proving Theorems A, B and C, we make
some preparation in this section. Since §5, we assume n > 2 through
§6, §7.

Let n, m, k € Z* with k > 2, and let f, g, h € F5(C",P", k). Let
& be associated to F3(C",P™, k) as in Lemma 5.1. Take p € & and
i € {1,...,k}. Suppose that there is no constant (4, u,v) € C3, such
that

(6.1) %+%+%Ea
where F = F(f,p,i), G = G(g, p,i), H = H(h, p,i) are defined by
(5.3).

Let

K:=K(f,g,h,pi)={F=0U{l/F=0U{G=0}u{l/G=0}
U{H=0U{l/H=0}U{F=G}U{G=H}U{H =F}.
Since f, g, h are linearly non-degenerate and the assumption in (6.1),
K is a proper analytic subset of C”.
Take a = (a;,...,a,) € C" — K. Since n > 2, lete = (ey,...,e,) €
E := {1} x C"! (see §3). Then define a meromorphic function ¢, =
Pae(f, & h, p,7) on C by

Fde Gae Hae
(6.2) ¢ae = det Fée/Fae Gzze/Gae Hée/Hag 3 Where
1 | 1

(6.3) Fae(w) := F(a + we), etc.

LEMMA 6.1.

(6.4) Pae(0) = Ay (a) + A2(a)ez + - - + An(a)en,
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where
.. _ (D/Ga) D’/H(a) D/H(a) D'F(a)
1@ = (%~ “ma) F@+ (o~ ) °@
DiF(a) D/Gla)
(PFa o) Hie # oo
forj=1,...,n and Dj=%.

Proof. By (6.3), Fz(0) = F(a), and

F!,(w) = D'F(a + we) + e;D*F(a + we) + - -- + e,D"F(a + we),
SO
(6.5) F}o(0) = D' Fue(0) + €2D?F 4 (0) + - - - + €,.D" Fe (0).
Then by (6.2) and (6.5), we obtain (6.4).

Since a ¢ K, F(a) # 0,00, G(a) # 0,00, H(a) # 0,00, so Aj(a) # oo
forj=1,...,n. O

LEMMA 6.2. There is no open subset U C C" — K such that
(6.6) 0.(0)=0 forallac U andalle € E.

Proof. (1) Suppose that there is some open subset U C C" — K such
that ¢4 (0) = O for all a € U and all e € E. From Lemma 6.1, it
implies that 4;(a) = 0 for all a € U and for j = 1,...,n. Since 4;
are meromorphic, we know

(6.7) Aij=0 onC" forj=1,...,n
We shall find a contradiction with (6.7).
(2) Consider 4, = 0. Write z = (z/, z,) € C"~! x C. 4, = 0 means
F(Z,z,) G(Z', zp) H(Z,z,)

D"F(Z',z,) D"G(z',z,) D"H(Z,z,)
F(z', z,) G(2', z,) H(Z', z,)

1 1 1
for all (Z/, z,) € C".

For any (2, z,) € C" — K, fixing z' € C"~!, by the proof of Lemma
5.3 for F(z',-) # 0, G(Z',-) # 0, H(Z',) # 0, there is constant
(A(z"), i(2"), 9(2")) € C3? such that

AZ') A(z') v(z)  _
(6.8) F(z, z,) + G(z', zn) + H(z', z,) 0,

det =0

Az + ja(2)+v(2)=0, forall z,eC.
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The second identity is because F|4 = G|4 = H|4 # 0 for k > 2.
(3) Consider the equation on C”,

M2) gz v(@)

F(z)  G(z) H(z) 7

(6.9)
AMz)+u(z)+v(z)=0.
For any z € C" — K, we solve (6.9) to obtain
_1/H(z)-1/G(z)

M= 1Fe -1/

_1/F(z)-1/H(z)
M= 176
So, for any v # 0, we obtain a solution (4, u, v) for (6.9) on C" — K,
with 4 # 0 and 4 # 0. If we fix v # 0 to be a meromorphic function,
then (A(z), u(z), v(z)) is a solution for (6.9) on all of C", where A # 0,
u # 0 are also meromorphic functions.
Such (4, u, v) is not unique, but for any z € C" — K,
Mz) u(z) Az)
1—/—(‘2—)' 0, 0, I/_(E‘S 0, oo, m 7\/-‘ O, o0
are uniquely determined by (6.9) because of (6.10).
We want to prove that such A/v, u/v, A/u are constant on C” from
(6.7), which is contrary to (6.1). Thus the lemma is proved.
(4) For any z = (2/,z,) € C" — K, by (6.8) and the uniqueness
property in (3), assume #(z’') # 0; then we have

AMz") M2, zn)
(z") ~ v(Z, zn)

(6.10)

M(z) _ g zn)
v(z'y wv(Z,zy)

# 0,00, #0, 00,

Thus .
M2 M7, zn)
A(z') — pu(Z, zn)
i.e., for any (Z/, z,) € C" — K, the meromorphic functions A/u, v/u,
A/v are independent of z,. So, they are independent of z, on C".
Repeating the same procedure for j = 1,...,n — 1, we prove that
Alu, v/u, Ajv are independent of zj for j=1,...,n. m]

# 0, co.

7. Proof for Theorems A, B, C. As in §6, assume that n > 2.

LEMMA 7.1. Let f,g.h € F(C",P", m + 3) (respectively
Fp(C",P",3m+ 1), or F-(C", V, k)). Let p € P, where P is associat-
ed to F4(C",P" , m + 3) (resp. $3(C",P",3m + 1), or Fo(C", V,k))
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and let i € {1,...,m + 3} (resp. {1,...,3m + 1}, or {1,...,k}).
Let F = F(f,p,i), G = G(g p, i), H = H(h, p,i) be defined by
(5.3). Suppose that there is no constant (4, u,v) € C3 such that

A u v o
(7.1) F+—G+E=O.
For each b € C", define a bioholomorphic map {,: C" — C" by {3(z) =
z+b forall z € C". Abbreviate Aj;, = {;'(A4;) and f, = f o (. Then
for almost every b € C" we have

im N(Ajp;r.8)/ Ty (1, 5) 2> % forO<s<r

r—00

(7.2)

Proof. We only need to consider #4(C",P”, m + 3). For the cases
of #g(C",P™,3m + 1), or Z-(C", V, k), the proof is the same.

(1) By §6, there is a proper-analytic subset K := K(f, g, h, p,i) € C"
and a € C" — K and some e € E such that

(7.3) 9qe(0) # 0,
where @z = @qe(f, & 4, p,I) is defined by (6.2).
By taking w = (wy,...,wn) =a+(zy,...,2,) = a+ z, we assume

a = 0. From Lemma 6.1, Ej := {e € E|p(.(0) = 0} C E is a proper
linear variety, so

(7.4) Measure Ey = 0.

(2) Forany e € E — Ep and for any j € {1,...,m + 3} with j # i,
we shall prove

(7.5) L; € 95.1(0) N (94,) "' (0), where

(7.6) Lj:=weClweed;— f{(H)U |J 4
1<u<m+3
u#j

Assume I,; # &. For any b € I, since Fo.(b) = F(be) = Go.(b) =
G(be) = Hy.(b) = H(be) € C. by definition (7.6), by using the proof
of Lemma 5.2 ((5.7), (5.8)), we can prove

90e(b) = 9o (b) = 0.

So, (7.5) is proved.
(3) Now we estimate 2 E;’:fl?#i N(4j;r,s).
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Because p € & and Codim 4; N 4; > 2 for i # j, we know that

Codim4; NS f~I(H,)U | Aup =2, so

1<u<m+3
U#j

N(A-'rs)—/r _a / o
. s ANB(1) o

where
Ay=4;— fYHHU |J Au
1<u<m+3
u#j
Therefore
m+3
2 Z N(Aj;r,s)
j=Lj#i
m+3 r s |
=2 >N (Ie,-; el l—e-|> L*(wf™")(e)

EEE—EQ ]:1'1#1

. (7.4) and L*
is defined in (3.3)

r S
< N, O;—,—)L* 2=1(e).
/eeE_EO ¢"< e e ) L@@

The last inequality is because of (7.5) and the fact that if I,; = &,
then N(Ig;r.s) = 0.

(4) For any e € E — E, we estimate N, (0;7/|e|,s/|e|) now.

If gg. = const., since ¢q.(0) # 0, Ny, (0;7/le|,s/le]) = 0. So, we
consider @g, # const. Then by the First Main Theorem,

r s r s §
P\ el el  \lel” lel 7 el

r s r s
< Nyp, | 005 =, — | + My, (oo;—)-i-mw (0;—>+C.
Y ( le| |€> ? le] Y le]

By (6.2) and as in (5.9), since ¢, # const., all the poles of ¢, must
be the ones of Fy,, Gy, and Hy,. Then

r s r s
Ny, (oo;—,—-—) < Np, (oo;—,—)
i lel” le] ’ lel” le|
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Furthermore,

< ) e ) o ()
o2 o) e () o ()

(5) By (3), (4), and Lemma 3.2,

m+3
2 Z N(4;;r.s)

J=1j#i

S/eeE-EoN‘”""( el ll)”“" e

S Tr(rs) + Tg(r, s) + Ty(r, s)
+ C(log" Tr(r,s) +1log" Tg(r, s) +logt Ty (r, s))
+o(logr) + C.

(7.7)

By Corollary 4.5, and (7.7), the lemma for %, (C", P™, m+3) follows
as in the proof of Lemma 5.2. O

ReMARK. If f, g, h, p are as in Lemma 7.1, suppose for distinct
ire{l,...,m+3} (resp. {1,...,3m+ 1}, or {1,..., k}), there are no
constant (A;, 4, ;) € C3, such that

At He Vi
— + — + — =0, fort=1,...,5.
F(fip.i;) G(g p.i;) H(hp i)
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Then there is a € C", which is independent of ¢, so that under the new
coordinates system w = a + z,

. 1
im N (Ay37,5)/ Ty (r,8) 2 5.

r—o0

In fact, from §6, we first consider i;, there is a; € C", and some
e1 € E, 94,6,(0) # 0, where @46, = 9a,e,(f, & h, p,i;). By Lemma 6.1,
there are neighborhoods U, of a; in C" and V| of ¢, in E, so that
forall a € Uy, e € V|, 9q(0) # 0. Then, we consider i;, also from
§6, there is a; € U) and some e, € V|, ¢4,,(0) # 0, and then go on
for t = 3,4,5. So, we finally find some a € C", and e € E, such that
Pac(f, 8 0, p,1)(0)#0,fort=1,2,3,4,5.

Proof of Theorems A, B and C. From Lemma 7.2 and the remark
above and as the proof of Theorem B when # = 1 in §5, Theorems A
and B are proved immediately.

For Theorem C, for f, g, h € -(C",V, k), we can prove as above
that f, g, h satisfy Property (P). It remains to show that f, g, s are
algebraically dependent.

Since f, g, h satisfy Property (P) and k > 5, we can take p =
(Do,....pm) €ECT 1 and i € {1,..., k} such that

(7.8) (a(()i)w0+-~+a§l2wM)/(p0wo+-‘°+prM)$const. and
AP(f)  uP(g)  vP(h)
7 Hg TEm =

for some (1, 4,v) € C2, where P(f) = pofo+ -+ pau S Hi(f) =
al) fo + -+ al) fur, etc., as in (5.4).

(7.9)

Let
Q(w, u, w) := AP(w)H;(u)H;(v) + pH;(w)P(u)H;(v)
+ vH(w)H;(u)P(v)
be a polynomial of Clwy, ..., wusug, ..., UMUGs - s vy]. Note that

(7.10) Q(w, u,v) = H;(w)H;(u)H;(v) (/IP(w) uP(w) yp(v)>.

Hi(w) ~ Hiu) Hi(v)

Assume A # 0. Since V is not contained in any hyperplane in PM,
we can choose #/, v’ € CM*! with P(u') € V and P(v') € V, such that
H;(u') # 0, Hi(v') # 0. Hence Q(-,u/,v') # 0 by (7.10). For the
same reason as above we can choose w' € CM¥+! with P(w') € V such
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that Q(w', ', w') # 0. This means {(P(w),P(u),P(v)) € V x V x
ViQ(w,u,v) = 0} is a proper analytic subset of V' x V' x V. Then
from (7.9), Q(é7, d.., dy) = 0, where ¢ is a reduced representation
of f, etc., and therefore f, g, & are algebraically dependent. O

ReMARK. Recently, Stoll has proved some closely related re-
sults [S11] which implies that if f, g,7 € F(C",P", m + 3), or
F(C",P",3m + 1), or F-(C", V, k), then f, g, h are not in general
position, hence f, g, h are algebraically dependent. Stoll applies the
First Main Theorem for exterior product [S10] to prove his theorems.
The method is very interesting.

REFERENCES

[C1} H. Cartan, Sur quelques théoremes de M. R. Nevanlinna, C. R. Acad. Sci. Paris,
185 (1927), 1253-1254.

, Un nouveau théoreme d’unicité relatif aux fonctions méromorphes,
C. R. Acad. Sci. Paris, 188 (1929), 301-303.

[D1] S.J. Drouilhet, Ramification and unicity of equidimensional holomorphic maps,
thesis, Rice University, 1974.

, A unicity theorem for meromorphic mappings between algebraic vari-
eties, Trans. Amer. Math. Soc., 265 (1981), 349-358.

[F1] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex
projective space, Nagoya Math. J., 58 (1975), 1-23.

[C2]

(D2}

[F2] , Remarks to the uniqueness problem of meromorphic maps into P¥ (C),
III, Nagoya Math. J., 75 (1979), 71-85.
[F3} , Non-integrated defect relation for meromorphic maps of complex Kdihler

manifolds into PM (C) x - -- x PY«(C), Japanese J. Math., 11 (1985), 233-264.
[G1] P.Griffiths, Entire holomorphic mappings in one and several complex variables,
Ann, Math. Studies 85, Princeton Univ. Press, Princeton, N. J. (1976).
[H1] W. K. Hayman, Meromorphic Functions, Oxford Univ. Press, Oxford, (1964).
[N1} R. Nevanlinna, Einige Eindeutigkeitssitze in der Theorie der meromorphen
Funktionen, Acta. Math., 48 (1926), 367-391.
, Zur Theorie der meromorphen Funktionen, Acta. Math., 46 (1925),

[N2]
1-99.

[P1] G. Polya, Bestimmung einer ganzen Funktion endlichen Geschlechts durch vier-
erlei Stellen, Math. Tidsskrift B. Kebenhavn, (1921), 16-21.

[S1] E. M. Schmid, Some theorems on value distribution of meromorphic functions,
Math. Z., 120 (1971), 61-92.

{S2] B. V. Shabat, Distribution of values of holomorphic mappings, Transl. of Math.
Mono. Vol. 61, Amer. Math. Soc., 1985.

[S3] B. Shiffman, Nevanlinna defect relations for singular divisors, Invent. Math.,
31 (1975), 155-182.

, Introduction to the Carlson-Griffiths equidistribution theory, Lecture
Notes in Math., vol. 981, Springer-Verlag, 1983.

[S5] L. Smiley, Dependence theorems for meromorphic maps, Notre Dame, thesis,
1979.

[S4]



348

[S6]
[S7]
[S8]
[S9]
[S10]

[S11]
(vi]

fwi]

SHANYU J1

, Geometric conditions for unicity of holomorphic curves, Contemporary
Math., vol. 25, Amer. Math. Soc., (1983), 149-154.

W. Stoll, Value distribution on parabolic spaces, Springer Lecture Notes in
Math., 600 (1977).

, Introduction to value distribution theory of meromorphic maps, in Com-
plex Analysis, Springer Lecture Notes in Math., 950 (1982), 210-359.

, The Ahlfors-Weyl theory of meromorphic maps on parabolic manifolds,
Springer Lecture Notes in Math., 981 (1983), 101-219.

, Value distribution theory for meromorphic maps, Aspects of Mathe-
matics, E7 (1985), Vieweg-Verlag.

, to appear.

A. Vitter, The lemma of the logarithmic derivative in several complex variables,
Duke Math. J., 44 (1977), 89-104.

H. Weyl and J. Weyl, Meromorphic functions and analytic curves, Annals of
Math. Studies 12, Princeton Univ. Press, Princeton, N, J., 1943,

Received April 13, 1987.

THE JoHNS HoPKINS UNIVERSITY
BALTIMORE, MD 21218



