A LOCALIZED ERDÖS-WINTNER THEOREM

P.D.T.A. ELLIOTT

In this paper I show that a form of the well-known Erdös-Wintner theorem for additive arithmetic functions holds, even if the information is only given on widely separated intervals.

For $y \ge x \ge 2$ let

$$(1) \nu_{x,y}(n; f(n) \le z)$$

denote the frequency amongst the integers n in the interval (x - y, x], of those for which the real additive function f(n) does not exceed z.

THEOREM. Let c > 1. Let N_j be an increasing sequence of positive integers for which $N_{j+1} \leq N_j^c$. Let M_j be a further sequence of integers, $M_j \leq N_j$, $\log M_j / \log N_j \to 1$, as $j \to \infty$.

In order that the frequencies

$$(2) \nu_{N_i,M_i}(n;f(n) \leq z)$$

converge weakly, as $j \to \infty$, it is necessary and sufficient that the three series

(3)
$$\sum_{|f(p)|>1} \frac{1}{p}, \quad \sum_{|f(p)|\leq 1} \frac{f(p)}{p}, \quad \sum_{|f(p)|\leq 1} \frac{f(p)^2}{p}$$

converge.

When $N_j = j$, $M_j = j$ this is the well-known theorem of Erdös, Erdös and Wintner [5]. For $N_j = j$ and any M_j which satisfies $M_j/N_j \to 0$, together with the above condition $\log M_j \sim \log N_j$, it was proved by Hildebrand [7].

The present argument differs from theirs in many respects.

2. Preliminary results. It is convenient to introduce the Lévy-distance $\rho(F, G)$ between distributions F(z) and G(z) on the line, defined as the greatest lower bound of those real h for which

$$F(z-h) - h \le G(z) \le F(z+h) + h$$

for all z. Convergence in the topology which this induces on the space of distribution functions, is equivalent to the usual weak-convergence of measures.

For primes $p \le x$ let Y_p be independent random variables distributed according to

$$Y_p = \left\{ \begin{array}{l} f(p^\alpha) \text{ with probability } \frac{1}{p^\alpha} \left(1 - \frac{1}{p}\right), \quad 0 \leq \alpha < \gamma_p, \\ f(p^{\gamma_p}) \text{ with probability } \frac{1}{p^{\gamma_p}} \end{array} \right.$$

where $\gamma_p = [\log x / \log p]$.

Let

$$G_X(z) = P\left(\sum_{p \le x} Y_p \le z\right),$$

and let $F_x(z)$ denote the frequency distribution function (1).

LEMMA 1. There is a positive absolute constant c so that

$$\rho(F_x, G_x) \le c \left(\sum_{\substack{y^{\varepsilon} < q \le y \\ |f(q)| > u}} \frac{1}{q} + \frac{u}{\varepsilon} + \exp\left(-\frac{1}{80\varepsilon} \log \frac{1}{\varepsilon}\right) + \frac{1}{\log y} + \frac{\log \frac{x}{y}}{\log x} \right)$$

holds uniformly for all u > 0, $x \ge y \ge x^{2/3} \ge 3$, $x^{\varepsilon} \ge (\log x)^3$, $0 < \varepsilon \le 1$, and f(q), where q denotes a prime-power.

Proof. Inequalities of this type are obtained in Elliott [1] Chapter 12, [2] Lemma 6. In the main they depend upon the application of a finite probability model constructed with the aid of Selberg's sieve method. The necessary background results can be found in Elliott [1], Chapter 3.

For an arithmetic function g, M(g,x) will denote

$$\sum_{n \le x} g(n).$$

For real α , g_{α} will denote the modified arithmetic function $n \mapsto g(n)n^{i\alpha}$.

LEMMA 2. Let g be a complex-valued multiplicative function, $|g(n)| \le 1$ for positive n; and $x \ge y \ge 3$. Then

$$M(g,x) - M(g,x-y) = \frac{M(g_{\alpha},x)}{x} \int_{x-y}^{x} t^{-i\alpha} dt + O(yR(x,y))$$

where α is any real number, $|\alpha| \leq x$, for which

$$|M(g_{\alpha},x)| = \max_{|\beta| \le x} |M(g_{\beta},x)|$$

and

$$R(x, y) = \left(\log \frac{\log 2x}{\log 2x/y}\right)^{-1/4}$$

Proof. This is Theorem 4 of Hildebrand [7].

LEMMA 3. In the notation of Lemma 2, define the Dirichlet series

$$G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}.$$

Then

$$M(g,x) \ll x \left(T^{-1} + \frac{1}{\log x} \max_{|\tau| \le T} \left| G \left(1 + \frac{1}{\log x} + i\tau \right) \right| \right)^{1/5}$$

uniformly in all multiplicative functions g with $|g(n)| \le 1$, and in x, T > 2.

Proof. This result is due essentially to Halász [6], a detailed proof may be found in Elliott [1], Lemma (6.10).

LEMMA 4. If

$$\operatorname{Re} \sum_{p \le x} p^{-1} (1 - p^{i\lambda}) \ll 1$$

for some real λ , $|\lambda| \le x$, then $\lambda \ll (\log x)^{-1}$.

Proof. If $\delta = 1 + 1/\log x$, then the hypothesis of this lemma asserts that the Riemann-function $\zeta(s)$ satisfies

$$\log \left| \frac{\zeta(\delta)}{\zeta(\delta + i\lambda)} \right| \ll 1$$

uniformly in $x \ge 3$. The conclusion now follows from application of the bounds

$$\zeta(\sigma + it) = \begin{cases} \frac{1}{\sigma + it - 1} + O(1) & \text{if } \sigma > 1, |t| \le 2, \\ O((\log |t|)^{2/3}) & \text{if } \sigma > 1, |t| > 2, \end{cases}$$

the proofs of which may be found in Ellison and Mendès-France [4].

LEMMA 5. Let the bounded function u, defined on the interval [-1, 1], satisfy

$$|u(t_1+t_2)-u(t_1)-u(t_2)| \leq K$$

whenever t_1 , t_2 and $t_1 + t_2$ belong to the interval. Then

$$|u(t) - u(1)t| \le 3K.$$

Proof. This is established in Ruzsa [9]. It extends an earlier result of Hyers [8].

LEMMA 6. Suppose that for a sequence of real numbers α_n the limit (as $n \to \infty$) of $\exp(it\alpha_n)$ exists uniformly on some open interval of real t-values including t = 0. Then $\lim \alpha_n$ exists (finitely).

Proof. (Cf. Elliott and Ryavec [3].) Since $(e^{it\alpha_n})^2 = \exp(i2t\alpha_n)$, we see that the hypothesis holds on every bounded set of t-values. Here $\exp(it\alpha_n)$ is the characteristic function of the improper distribution function $H_n(z)$ which has a jump at the point α_n . It follows from a standard theorem in the theory of probability that the $H_n(z)$ converge weakly to a distribution function J(z), say.

It is now not difficult to deduce that the α_n are bounded uniformly for all n, that J(z) is itself improper, with a jump at β , say; and that $\alpha_n \to \beta$ as $n \to \infty$.

LEMMA 7. Let $P_j(x)$ be polynomials in x with complex coefficients, and d_j distinct real numbers, j = 1, ..., k. If

$$\theta(t) = \sum_{j=1}^{k} P_j(t)e^{id_jt} = 0$$

on a proper interval of real t-values, then the polynomials are identically zero.

Proof. Without loss of generality $0 = d_1 > d_2 > \cdots > d_k$. As a function of the *complex-variable* t, $\theta(t)$ is everywhere analytic. After the hypothesis, analytic continuation shows that $\theta(t)$ is identically zero. We set t = -iy for real y, and consider

$$\lim_{y\to\infty}y^{-m}\theta(-iy)$$

where m is the degree of P_1 .

The terms $P_j(-iy) \exp(d_j y)$ with $j \ge 2$ converge exponentially to zero, whilst $y^{-m}P_1(-iy)$ approaches $(-i)^m$ times the coefficient of x^m

in P_1 . Since the value of this limit is zero, $P_1(x)$ is identically zero. An argument by induction completes the proof of the lemma.

3. Proof of the theorem: (3) implies (2). Define independent random variables Z_p by

$$Z_p = \begin{cases} Y_p & \text{if } Y = f(p), \\ 0 & \text{otherwise.} \end{cases}$$

The convergence of the three series at (3) is precisely Kolmogorov's condition that the series $Z_2 + Z_3 + \cdots$ be almost surely convergent. Moreover,

$$\sum_{p} P(Z_p \neq Y_p) \leq \sum_{p} \sum_{m=2}^{\infty} \frac{1}{p^m} < \infty,$$

so that by the Borel-Cantelli lemma, $Y_2 + Y_3 + \cdots$ is also almost surely convergent. This is equivalent to the weak convergence of the distribution functions $G_X(z)$ appearing in Lemma 1. The relevant background results from the theory of probability may be found in Elliott [1], Lemma (1.18).

We apply Lemma 1 with $x = N_j$, $y = M_j$. Since the series $\sum p^{-1}$ taken over those primes p for which |f(p)| > u converges for each positive u,

$$\limsup_{i \to \infty} \rho(F_{N_i}, G_{N_i}) \le c \left(\frac{u}{\varepsilon} + \exp\left(-\frac{1}{80\varepsilon} \log \frac{1}{\varepsilon} \right) \right)$$

for all u > 0, $0 < \varepsilon < 1$. Letting $u \to 0+$, $\varepsilon \to 0+$ we obtain the weak convergence of the frequencies (2).

In this direction no restriction upon the rate of growth of the N_j need be assumed.

4. Proof of the theorem: (2) *implies* (3). The characteristic function of a typical frequency (2) is given by

$$\phi_j(t) = M_j^{-1} \sum_{N_i - M_j < n \le N_i} g(n),$$

where $g(n) = \exp(itf(n))$ is a multiplicative function, and t is real. If the frequencies (2) converge weakly to a distribution function with characteristic function $\phi(t)$, then by a standard result in the theory of probability, $\phi_j(t) \to \phi(t)$ as $j \to \infty$, uniformly on any bounded interval of t-values.

If we temporarily use x, y to denote N_j , M_j respectively, then it follows from Lemma 2 that

(4)
$$\phi(t) = x^{-1} M(g_{\alpha}, x) y^{-1} \int_{x-y}^{x} v^{-i\alpha} dv + o(1), \quad x \to \infty,$$

for some real α , $|\alpha| \le x$. Since $\phi(t)$ is continuous in t, and $\phi(0) = 1$, there is a proper interval $|t| \le \tau$, on which $|\phi(t)| \ge 1/2$. On this same interval $|M(g_{\alpha}, x)| \ge x/4$ for all sufficiently large $x = N_j$. The parameter α may depend upon both t and x.

Applying Lemma 3 with $T = \log x$ gives

$$M(g_{\alpha}, x) \ll x \exp\left(-\frac{1}{5}\operatorname{Re}\sum_{p \le x} \frac{1 - g(p)p^{i\psi}}{p}\right) + x(\log x)^{-1/5}$$

for some real ψ , $|\psi(x) - \alpha| \le \log x$. Thus $|\psi(x)| \le x + \log x$. In view of the lower bound for $|M(g_{\alpha}, x)|$

$$\operatorname{Re} \sum_{p \le x} \frac{1 - g(p)p^{i\psi}}{p} \ll 1.$$

We first show that $\psi = \psi(t)$ is essentially linear in t.

Let

$$S(f) = \sum_{p \le x} p^{-1} \left(\sin \frac{f(p)}{2} \right)^2.$$

Then since $|\sin(a+b)| \le |\sin a| + |\sin b|$,

(5)
$$S(f_1 + f_2) \le 2(S(f_1) + S(f_2)).$$

With $g(p) = \exp(itf(p))$,

$$\operatorname{Re}(1 - g(p)p^{i\psi}) = \operatorname{Re}(1 - \exp(i(tf(p) + \psi(t)\log p)))$$
$$= 2\left(\operatorname{Sin}\frac{1}{2}(tf(p) + \psi(t)\log p)\right)^{2}$$

so that

$$S(tf + \psi(t)\log) \ll 1$$

uniformly for $|t| \leq \tau$.

In view of the inequality (5), whenever $|t_j| \le \tau$, j = 1, 2, $|t_1 + t_2| \le \tau$,

$$S((\psi(t_1+t_2)-\psi(t_1)-\psi(t_2))\log)\ll 1$$
,

so that by Lemma 4

$$\psi(t_1 + t_2) - \psi(t_1) - \psi(t_2) \ll (\log x)^{-1}$$
.

We can now apply Lemma 5, to deduce that

$$\psi(t) = t\psi(\tau)/\tau + O((\log x)^{-1}).$$

Then

$$\sum_{p \le x} \frac{1}{p} |p^{i\psi(t)} - p^{it\psi(\tau)/\tau}| \le |\psi(t) - t\psi(\tau)/\tau| \sum_{p \le x} \frac{\log p}{p} \ll 1$$

uniformly for $|t| \leq \tau$. Thus

(6)
$$S(t(f - \omega(x)\log)) \ll 1$$

holds, uniformly for $|t| \le \tau$, for some function $\omega(x)$ of x alone.

Up until this point the proof has followed Elliott [2]. The relative sizes of the N_i now comes into play.

For all sufficiently large integers j, the interval $(2^{c^j}, 2^{c^{j+1}}]$ contains at least one member, r_j say, of the sequence of N_i . Since $r_{j+2} \ge r_j^c$, by induction

$$\frac{\log r_m}{\log r_n} \ge (\sqrt{c})^{m-n-1}$$

for all $m \ge n \ge$ (some fixed) n_0 .

From their definition $r_{m+1} \le r_m^{c^2}$. By an elementary estimate from number theory

$$\sum_{r_m$$

so that

Re
$$\sum_{p \le r_{\infty}} \frac{1}{p} (1 - g(p)p^{it\omega}) \ll 1$$

holds for both $\omega = \omega(r_m)$, and $\omega = \omega(r_{m+1})$. Another application of Lemma 4 yields

$$|\omega(r_{m+1}) - \omega(r_m)| \le \frac{D}{\log r_m}$$

for some D and all positive m.

Employing our lower bound (7), an argument by induction shows that

(8)
$$|\omega(r_m) - \omega(r_n)| \le \frac{2D}{\log r_n} \sum_{n < k \le m} c^{-(k-n-1)/2}$$

uniformly for $m \ge n \ge n_0$. In particular the $\omega(r_m)$ form a Cauchy sequence, and converge to a limit, A say. Letting $m \to \infty$ in (8) gives

$$\omega(r_n) - A \ll (\log r_n)^{-1}$$

for $n \geq n_0$.

Since every large enough N_i lies in an interval $(r_m, r_{m+1}]$,

$$\omega(N_j) - A \ll (\log N_j)^{-1}$$

for all j. In the way that we replaced $\psi(t)$ by $t\psi(\tau)/\tau$ we replace $\omega(N_i)$ by A, to obtain

$$S(t(f - A\log)) \ll 1$$

uniformly for $|t| \le \tau$, for all sufficiently large (underlying) N_j .

Again we argue as in Elliott [2]. Let d denote $\pi/|\tau|$. The inequality $|\sin \theta| \ge 2|\theta|/\pi$ holds for $|\theta| \le \pi/2$. With $h(p) = f(p) - A \log p$, $x = N_i$, we deduce that

$$\frac{\tau^2}{\pi^2} \sum_{\substack{p \le x \\ |h(p)| \le d}} \frac{|h(p)|^2}{p} \le S(\tau h) \ll 1.$$

Moreover,

$$\left(1 - \frac{1}{\pi}\right) \sum_{\substack{p \le x \\ |h(p)| > d}} \frac{1}{p} \le \sum_{p \le x} \frac{1}{p} \left(1 - \frac{\sin \tau h(p)}{\tau h(p)}\right)$$
$$= \frac{1}{2\tau} \int_{-\tau}^{\tau} S(th) dt \ll 1.$$

Together these inequalities imply the convergence of the series

(9)
$$\sum_{|h(p)| > u} \frac{1}{p}, \quad \sum_{|h(p)| \le u} \frac{h(p)^2}{p}$$

for each positive u. We shall use this to estimate $M(g_{\alpha}, x)$ for all large x, whether of the form N_i or not.

Let

$$\mu(x) = \sum_{\substack{p \le x \\ |h(p)| \le 1}} \frac{h(p)}{p}.$$

If $x^{1/2} \le w \le x$, u > 0,

$$|\mu(x) - \mu(w)| \le \sum_{\substack{w u}} \frac{1}{p} + u \sum_{\substack{w
$$= o(1) + O\left(u \log\left(\frac{\log x}{\frac{1}{2}\log x}\right)\right)$$$$

as $x \to \infty$. Since u may be chosen arbitrarily small, $\mu(x) - \mu(w) \to 0$ as $x \to \infty$, uniformly for $x^{1/2} \le w \le x$.

In the same way that the convergence of the three series (3) implies the weak convergence of the distribution functions $G_x(z)$, the convergence of the two series at (9) implies the weak convergence of

$$P\left(\sum_{p\leq x}Z_p-\mu(x)\leq z\right),\,$$

where the random variables Z_p are defined like the Y_p , but with $f(p^{\alpha})$ everywhere replaced by $f(p^{\alpha}) - A \log p^{\alpha}$.

Another application of Lemma 1, this time with y = x, and to the function $f(n) - A \log n$, shows that

$$\nu_{x,x}(n; f(n) - A \log n - \mu(x) \le z) \Rightarrow H(z), \qquad x \to \infty$$

for some distribution function H(z). If h(t) is the characteristic function of H(z), we can express this last assertion in the form of the asymptotic estimate:

$$x^{-1}M(g_{-A},x)e^{-it\mu(x)} \to h(t), \qquad x \to \infty,$$

uniformly on every bounded set of t-values.

An integration by parts shows that

$$M(g_{\alpha}, x) = x^{i(\alpha+At)}M(g_{-A}, x) - i(\alpha+At)\int_{1-}^{x} v^{i(\alpha+At)-1}M(g_{-A}, v) dv.$$

The integral term is small. In fact, from our hypothesis (4) (with $x = N_i$),

$$\operatorname{Re} \sum_{p \le x} p^{-1} (1 - g(p) p^{i\alpha}) \ll 1,$$

and we have shown that a similar relation holds with α replaced by -At. Arguing with the function S (as earlier), we see that $\alpha + At \ll (\log x)^{-1}$, $x = N_j$. Thus as $x = (\log x)^{-1}$, $x = N_j$.

$$M(g_{\alpha}, x) = xh(t) \exp(i(\alpha + At) \log x + it\mu(x)) + o(x).$$

Combining this result with that of (4),

(10)
$$e^{it(\mu(x)+A\log x)}\left(\frac{1-(1-y/x)^{1-i\alpha}}{(1-i\alpha)y/x}\right)\to\frac{\phi(t)}{h(t)}, \qquad x\to\infty,$$

uniformly on a proper interval $|t| \le t_0$. Here $x = N_j$, $y = M_j$.

Suppose now that for a sequence of j-values, $M_j/N_j \rightarrow \rho$. Then for this sequence of values the coefficient of the exponential at (10) converges to

$$\rho^{-1}(1-(1-\rho)^{1+iAt})$$
 if $\rho \neq 0$; $1+iAt$ if $\rho = 0$.

This convergence is uniform on some bounded interval of t-values which includes t=0. Here we have again applied the estimate $\alpha + At \ll (\log x)^{-1}$. It follows from this and an application of Lemma 6, that on this same sequence of j-values, $\beta(\rho) = \lim(\mu(x) + A\log x)$ exists. Moreover, for all sufficiently small t,

$$e^{it\beta(\rho)}\rho^{-1}(1-(1-\rho)^{1+iAt})=\phi(t)h(t)^{-1}$$

if $\rho > 0$, with a similar (modified) relation if $\rho = 0$.

We next show that the value of $\beta(\rho)$ does not depend upon ρ . Assume that for an interval of real t-values

(11)
$$\rho_1^{-1}e^{it\beta_1}(1-(1-\rho_1)^{1+iAt}) = \rho_2^{-1}e^{it\beta_2}(1-(1-\rho_2)^{1+iAt}),$$

where each ρ_j is positive and < 1. Suppose that $\beta_1 \neq \beta_2$. Then $A \neq 0$, and the coefficient of $e^{it\beta_2}$ on the right-hand side is ρ_2^{-1} . It follows from Lemma 7 that

$$\beta_2 = \beta_1 + A \log(1 - \rho_1), \qquad \beta_1 = \beta_2 + A \log(1 - \rho_2),$$

which is impossible. A similar argument may be made when the restrictions upon the values of ρ_1 , ρ_2 are removed.

We have now proved that

$$\lim_{j\to\infty}(\mu(N_j)-A\log N_j)$$

exists, the variable j running through all positive integers. By an elementary estimate

$$|\mu(N_j)| \leq \sum_{p \leq N_j} \frac{1}{p} \ll \log \log N_j,$$

so that $A \log N_j \ll \log \log N_j$ for all j, and A = 0. A look back at (11) shows that A = 0 removes the possibility of comparing the values of ρ_1 and ρ_2 .

Thus the series

$$\sum_{|f(p)| > 1} \frac{1}{p}, \quad \sum_{|f(p)| \le 1} \frac{f(p)^2}{p}$$

converge, and

$$\lim_{j \to \infty} \sum_{\substack{p \le N_j \\ |f(p)| \le 1}} \frac{f(p)}{p}$$

exists. Since every sufficiently large real w lies in an interval $(N_j, N_{j+1}]$, and (now with A=0) $\mu(N_{j+1})-\mu(w)\to 0$ as $j\to\infty$, uniformly for $N_j< w\le N_{j+1}$, the series

$$\sum_{|f(p)| \le 1} \frac{f(p)}{p}$$

also converges.

The proof of the theorem is complete.

REFERENCES

- [1] P.D.T.A. Elliott, *Probabilistic Number Theory*, Grund. der math. Wiss., **239** (1979), **240** (1980), Springer-Verlag, New York, Heidelberg, Berlin.
- [2] _____, Localised value-distribution of additive arithmetic functions, J. für die reine und ang. Math., 379 (1987), 64-75.
- [3] P.D.T.A. Elliott and C. Ryavec, *The distribution of the values of additive arithmetical functions*, Acta Math., **126** (1971), 143–164.
- [4] W. J. Ellison and M. Mendès-France, Les Nombres Premiers, Hermann, Paris, 1975.
- [5] P. Erdös and A. Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math., 61 (1939), 713-721.
- [6] G. Halász, On the distribution of additive arithmetic functions, Acta Arith., 27 (1975), 143-152.
- [7] A. Hildebrand, Multiplicative functions in short intervals, Canad. J. Math., 39 (1987), 646-672.
- [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
- [9] I. Z. Ruzsa, On the concentration of additive functions, Acta Math. Acad. Sci. Hungar., 36 (1980), 215-232.

Received May 22, 1986 and in revised form March 15, 1988. Partially supported by N.S.F. contract DMS-8500949.

University of Colorado Boulder, CO 80309