PACIFIC JOURNAL OF MATHEMATICS
Vol. 135, No. 2, 1988

A LOCALIZED ERDOS-WINTNER THEOREM
P.D.T.A. ELLIOTT

In this paper I show that a form of the well-known Erdos-Wintner
theorem for additive arithmetic functions holds, even if the informa-
tion is only given on widely separated intervals.

Fory>x2>2let

(1) vxy(m; f(n) < z)

denote the frequency amongst the integers # in the interval (x — y, x],
of those for which the real additive function f(n) does not exceed z.

THEOREM. Let ¢ > 1. Let N; be an increasing sequence of positive
integers for which N; 1 < N €. Let M be a further sequence of integers,
M; < N;logM;/logN; — 1, as j — oo.

In order that the frequencies

(2) vy, M, (1 f(n) < z)

converge weakly, as j — oo, it is necessary and sufficient that the three
series

1 f(p f(p)
© T T B
If(p)i>1 I/ (p)I<t I/ (p)I<t
converge.

When N; = j, M; = j this is the well-known theorem of Erdés,
Erdos and Wintner [S]. For N; = j and any M; which satisfies
M;/N; — 0, together with the above condition log M; ~ log N;, it
was proved by Hildebrand [7].

The present argument differs from theirs in many respects.

2. Preliminary results. It is convenient to introduce the Lévy-
distance p(F, G) between distributions F(z) and G(z) on the line,
defined as the greatest lower bound of those real # for which

F(z—h)—h<G(z)<F(z+h)+h
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288 P.D.T.A. ELLIOTT

for all z. Convergence in the topology which this induces on the space
of distribution functions, is equivalent to the usual weak-convergence
of measures.

For primes p < x let Y, be independent random variables dis-

tributed according to

f(p*) with probability # (1 - %) , 0<Lax<y,

f(p?») with probability o7

where y, = [log x/log p].

Let
Gy(z)=P (Z Y, < z) ,

pLx
and let F(z) denote the frequency distribution function (1).

LEMMA 1. There is a positive absolute constant ¢ so that

. 1, u B N, b
p(Fx,Gy) <c y;w tgrexp ( 80z O a) " logy T logx
if (@)/>u

holds uniformly for all u > 0, x > y > x?/3 > 3, x* > (logx)3,
0< e <1, and f(q), where q denotes a prime-power.

Proof. Inequalities of this type are obtained in Elliott [1] Chapter
12, [2] Lemma 6. In the main they depend upon the application of
a finite probability model constructed with the aid of Selberg’s sieve
method. The necessary background results can be found in Elliott [1],
Chapter 3.

For an arithmetic function g, M (g, x) will denote

> gn).
n<x
For real «, g, will denote the modified arithmetic function n
g(mne.
LEMMA 2. Let g be a complex-valued multiplicative function, |g(n)|
< 1 for positive n; and x > y > 3. Then

M(g.x) - Mlgx—y) = LE23 [* miegr 1 o(yR(x, )
x—y
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where o is any real number, |a| < x, for which
|M (8, x)| = max |M(gg, x)|
|BI<x

and

log2x \ !/
e = (s gy

Proof. This is Theorem 4 of Hildebrand [7].

LEMMA 3. In the notation of Lemma 2, define the Dirichlet series

G(s) = i gr(:)'
n=1

1 1/5
G(1 +__+,-r) )
log x

uniformly in all multiplicative functions g with |g(n)| < 1, and in x,
T >2.

Then

1
M(g,x)<<x<T +m'f;'lgT

Proof. This result is due essentially to Haldsz [6], a detailed proof
may be found in Elliott [1], Lemma (6.10).

LEmMmA 4. If
Re Z pl1-pH«1

p<x
Jor some real A, |A| < x, then A < (logx)~L.

Proof. If 6 = 1+ 1/logx, then the hypothesis of this lemma asserts
that the Riemann-function {(s) satisfies

_¢@)
(8 + id)

uniformly in x > 3. The conclusion now follows from application of
the bounds

1
_ i 1]e <2,
fo+it) = ——=—+0(1) ifo> 1<
O((log |£])2/3) ifo>1,t>2,

the proofs of which may be found in Ellison and Mendeés-France [4].

log

P
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LEMMA 5. Let the bounded function u, defined on the interval [-1, 1],
satisfy
lu(ty +62) —u(ty) —u()| < K
whenever t,, t, and t| + t, belong to the interval. Then

lu(t) — u(1)t] < 3K.

Proof. This is established in Ruzsa [9]. It extends an earlier result
of Hyers [8].

LEMMA 6. Suppose that for a sequence of real numbers a, the limit
(as n — o0) of exp(itay) exists uniformly on some open interval of real
t-values including t = 0. Then lim «, exists (finitely).

Proof. (Cf. Elliott and Ryavec [3].) Since (e/®)? = exp(i2tay), we
see that the hypothesis holds on every bounded set of f-values. Here
exp(itay,) is the characteristic function of the improper distribution
function H,(z) which has a jump at the point «,. It follows from a
standard theorem in the theory of probability that the H,(z) converge
weakly to a distribution function J(z), say.

It is now not difficult to deduce that the «, are bounded uniformly
for all n, that J(z) is itself improper, with a jump at f, say; and that
ap — f as n— oo.

LeEMMA 7. Let Pi(x) be polynomials in x with complex coefficients,
and d; distinct real numbers, j =1,.... k. If

k
(1) =>_ Pi(t)e'' =0
j=1

on a proper interval of real t-values, then the polynomials are identically
zero.

Proof. Without loss of generality 0 =d; > d, > --- > d).. As a func-
tion of the complex-variable t, 6(t) is everywhere analytic. After the
hypothesis, analytic continuation shows that 6(¢) is identically zero.
We set t = —~iy for real y, and consider

ylim y "0(—iy)
where m is the degree of P;.

The terms P;j(—iy)exp(d;y) with j > 2 converge exponentially to
zero, whilst y =" P;(—iy) approaches (—i)"” times the coefficient of x™
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in P;. Since the value of this limit is zero, P;(x) is identically zero.
An argument by induction completes the proof of the lemma.

3. Proof of the theorem: (3) implies (2). Define independent random
variables Z, by
{ Y, ifY=f(p),
Zp - .
0  otherwise.
The convergence of the three series at (3) is precisely Kolmogorov’s
condition that the series Z, + Z3 + --- be almost surely convergent.

Moreover,
o0
1
SPZEYNSE Y <o
p

P m=2

so that by the Borel-Cantelli lemma, Y, + Y3+ -- is also almost surely
convergent. This is equivalent to the weak convergence of the distri-
bution functions G,(z) appearing in Lemma 1. The relevant back-
ground results from the theory of probability may be found in Elliott
[1], Lemma (1.18).

We apply Lemma 1 with x = N;, y = M;. Since the series )_ p~!
taken over those primes p for which |f(p)| > u converges for each
positive u,

. U 1 1
Y<c|— ———log —
llﬁgpp(FN,,sz,) <c (a + exp ( 30z 108 a))
forall u >0, 0 < e < 1. Letting u — 0+, ¢ — 0+ we obtain the weak
convergence of the frequencies (2).

In this direction no restriction upon the rate of growth of the N;
need be assumed.

4. Proof of the theorem: (2) implies (3). The characteristic function
of a typical frequency (2) is given by

gi)y=M7" 3 g(n),
N,—M,<n<N,

where g(n) = exp(itf(n)) is a multiplicative function, and ¢ is real.
If the frequencies (2) converge weakly to a distribution function with
characteristic function ¢(¢), then by a standard result in the theory
of probability, ¢;(¢) — ¢(t) as j — oo, uniformly on any bounded
interval of z-values.

If we temporarily use x, y to denote N;, M; respectively, then it

follows from Lemma 2 that
X

4) o) =x""M(gu, x)y™! v dv +o(1), x— oo,

X=y
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for some real «, |a| < x. Since ¢(¢) is continuous in ¢, and ¢(0) = 1,
there is a proper interval |t < 7, on which [¢(z)] > 1/2. On this
same interval [M(g,, x)| > x/4 for all sufficiently large x (= N;). The
parameter a may depend upon both ¢ and x.

Applying Lemma 3 with T = log x gives

_ iy
M(g,, x) < x exp (—% Re) " l_g;pi) + x(logx)~1/3

P<x

for some real y, |y (x) — a| <logx. Thus |y (x)| < x +logx. In view
of the lower bound for |M(g,, x)|

1-—- iy
P<x p

We first show that y = y/(¢) is essentially linear in ¢.
Let

2
S(fy=Y p! (sm f(zp)) .
p<x
Then since |Sin(a + )| < |Sina| + | Sin b|,

(5) S(fi + f2) < 2(S(f1) + S(f2)).
With g(p) = exp(itf(p)),
Re(1 — g(p)p™) = Re(1 —exp(i(tf (p) + w(1)log p)))
2
=2 (Sin 31/ (5) + w(t) log »)
so that

S(tf + w(f)log) < 1

uniformly for |¢| < 7.
In view of the inequality (5), whenever |£;] < 7, j = 1,2, |t} +#,| < T,

Syt + 1) —w(t) —w())log) <« 1,

so that by Lemma 4

w(ti+12) — w(t) — w(t2) < (logx) ™.

We can now apply Lemma 5, to deduce that

w(t) = ty(1)/7 + O((logx)™).
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Then

1 . . lo
S —|p0 = pv @It < |y () - (07 S = < 1
p<x p p<x p

uniformly for |¢] < 7. Thus
(6) S@t(f — w(x)log)) < 1

holds, uniformly for |¢| < 7, for some function w(x) of x alone.

Up until this point the proof has followed Elliott [2]. The relative
sizes of the N; now comes into play.

For all sufficiently large integers j, the interval (2¢,2¢"'] contains
at least one member, r; say, of the sequence of N;. Since r;,» > rj? ,
by induction

lOgrm m—n—1
= ">
(7) Togr, > (Vc)

for all m > n > (some fixed) ng.
From their definition 7,,,; < r,",,2 . By an elementary estimate from
number theory

Z % = log <M> + O((logr,)" ) <« 1,

logr
rm<pgrm+l g "

so that )
Re Y —(1-g(p)p™) <1
P<rm p
holds for both w = w(ry), and w = w(r,.1). Another application of
Lemma 4 yields

|(Fps1) — @(rm)| < 108 7'

for some D and all positive m.
Employing our lower bound (7), an argument by induction shows
that

(8) |(rm) — @(ra)| <

uniformly for m > n > ngy. In particular the w(r,,) form a Cauchy
sequence, and converge to a limit, 4 say. Letting m — oo in (8) gives

w(r,) — A< (10grn)—l

for n > ny.
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Since every large enough N; lies in an interval (7, 71411,
CI)(NJ) -AK (logNj)—l

for all j. In the way that we replaced y(¢) by tw(t)/t we replace
w(N;) by A, to obtain

S(t(f —Alog)) <« 1

uniformly for |¢| < 7, for all sufficiently large (underlying) N;.

Again we argue as in Elliott [2]. Let d denote n/|t|. The inequality
|Sin 8| > 2|6|/m holds for |6| < n/2. With h(p) = f(p) — Alogp,
x = N;, we deduce that

72 h(p)|?

5 Y P o« §(eny < 1.
p<x
h(p)|<d

Moreover,

1 T
=_/ﬂwﬁ<L

Together these inequalities imply the convergence of the series
1 h(p)?
(9) DD %
[h(p)>u |A{p)|<u

for each positive u. We shall use this to estimate M (g,, x) for all large
x, whether of the form N; or not.

Let L
u) = 3 A2,
p<x
[h(p)I<1

If x12<w<x,u>0,

(x) - pw) < 3 %+u 3 %

w<p<Xx w<pLXx
[h(p))>u [h(p)|<u

=o(l)+ 0 (ulog(ll(l)gx >)
> log x
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as x — oo. Since ¥ may be chosen arbitrarily small, u(x) — u(w) — 0
as x — oo, uniformly for x!/2 < w < x.

In the same way that the convergence of the three series (3) im-
plies the weak convergence of the distribution functions G.(z), the
convergence of the two series at (9) implies the weak convergence of

P (ZZ,,—/J(X)SZ),

pP<x

where the random variables Z, are defined like the Y, but with f(p®)
everywhere replaced by f(p®) — A4log p°.

Another application of Lemma 1, this time with y = x, and to the
function f(n) — Alogn, shows that

Uxx(n; f(n)— Alogn — u(x) < z) = H(z), X — 00,

for some distribution function H(z). If A(t) is the characteristic func-
tion of H(z), we can express this last assertion in the form of the
asymptotic estimate:

x "M(g_4, x)e” X 5 h(t),  x — oo,

uniformly on every bounded set of ¢-values.
An integration by parts shows that

. x .
M(g,, x) = x" DM (g_ 4, x) —i(a+ At) / vierA)-IAf(g_ ,, v)dv.
1—
The integral term is small. In fact, from our hypothesis (4) (with
X = Nj),
Re) p '(1-gp)p™) <1,

P<x

and we have shown that a similar relation holds with a replaced by
—At. Arguing with the function S (as earlier), we see that a + At <
(logx)~!, x = N;. Thus as x (= N;) — oo,

M(g,,x) = xh(t)exp(i(a+ At)logx + itu(x)) + o(x).

Combining this result with that of (4),

(10)  efutx)+dlop) (1 - (- ;’)/;‘/);“) . i’%, x - o0,

uniformly on a proper interval |t| < t. Here x = N;, y = M.




296 P.D.T.A. ELLIOTT

Suppose now that for a sequence of j-values, M;/N; — p. Then
for this sequence of values the coefficient of the exponential at (10)
converges to

p Ml —(1=p) Y if p£0; 1+idtif p=0.

This convergence is uniform on some bounded interval of ¢-values
which includes ¢ = 0. Here we have again applied the estimate « +
At < (logx)~!. It follows from this and an application of Lemma
6, that on this same sequence of j-values, f(p) = lim(u(x) + 4logx)
exists. Moreover, for all sufficiently small ¢,

eitﬂ(p)p——l(l _ (1 _ p)H-iAt) — gb(t)h(t)—l

if p > 0, with a similar (modified) relation if p = 0.
We next show that the value of f#(p) does not depend upon p.
Assume that for an interval of real ¢-values

(11) pl—leitﬂl(l —(1 - pl)1+iAt) — pz—leitﬂz(l —(1- ,02)1“’4[),

where each p; i1s positive and < 1. Suppose that ; # f,. Then 4 # 0,
and the coefficient of e/ on the right-hand side is p; . Tt follows
from Lemma 7 that

B2 = B+ Alog(1 — py), fi = B+ Alog(l - p;),

which is impossible. A similar argument may be made when the re-
strictions upon the values of p;, p, are removed.
We have now proved that
lim (4(N;) - Alog )
j—oo
exists, the variable j running through all positive integers. By an ele-
mentary estimate

1
lu(N))| < ) = < loglog N,
PEN, p

so that 4log N; < loglog N, for all j, and 4 = 0. A look back at (11)
shows that 4 = 0 removes the possibility of comparing the values of

p1 and p,.
Thus the series

1 2
Z A Z f(pp)

S EART s
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converge, and

Jj—oo p<N, D
If(p)I<t

exists. Since every sufficiently large real w lies in an interval (N;, N;.],
and (now with 4 = 0) u(N;;;) — u(w) — 0 as j — oo, uniformly for
N;j < w < Nj,y, the series

>
I/ (p)I<1

also converges.
The proof of the theorem is complete.
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