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THE KREIN-MILMAN PROPERTY
AND A MARTINGALE COORDINATIZATION

OF CERTAIN NON-DENTABLE CONVEX SETS

HASKELL ROSENTHAL AND ALAN WESSEL

The concepts of (strong) martingale representations and coordina-
tizations are defined, and the notion of a well-separated bush is crys-
tallized. It is proved that if 38 is a well-separated uniformly bounded
bush such that 3S is a strong martingale representation for its closed
convex hull W, then W contains no extreme points. It is moreover
proved that if AT is a closed bounded convex subset of a Banach space
with an unconditional skipped-blocking decomposition, then K con-
tains such a bush provided K fails the point of continuity property.
This yields the earlier result, due to the authors (unpublished) and to
W. Schachermayer, that for closed bounded convex subsets of a Ba-
nach space with an unconditional basis, the Krein-Milman property
implies the point of continuity property.

1. Let X be a Banach space and C a closed convex subset of X. C
is said to have the Krein-Milman property (the KMP) if every closed
bounded convex subset K of C is the norm-closed convex hull of its
extreme points; C is said to have the point of continuity property (the
PCP) provided every non-empty closed bounded subset K of C has a
weak-to-norm point of continuity (a PC) relative to K; C satisfies the
Radon-Nikodym property (the RNP) if and only if all closed bounded
convex subsets K of C are deniable. For ε > 0, say that K is ε-dentable
if K has a slice of diameter less than ε. A slice S of K is a subset of
K of the form

S = S(f, α, K) = {xe K\f{x) > sup f(K) - a}

for some / e X*> f φ 0 and a > 0. AT is deniable if it is ε-dentable
for all ε > 0.

It is well-known that the RNP implies the PCP as well as the KMP
(cf. [BR], [DU] and [Bo]). The converse to the first implication is
known to be false (cf. [BR]); the validity of the converse to the second
remains as a fundamental open question.

We introduce here the notions of (strong) martingale representa-
tions and coordinatizations in order to investigate the structure of
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sets which fail the PCP. We obtain the following result:

THEOREM 1.1. Let X be a Banach space with an unconditional
skipped-blocking decomposition and K a closed bounded convex subset
ofX so that K fails the PCP. Then there exists a K-valued well-separated
δ-bush which is a strong martingale representation for its closed convex
hull

The conclusion of this theorem is then shown to imply the existence
of a closed bounded convex non-empty set without extreme points.

THEOREM 1.2. Let W be the closed convex hull of a δ-bush satisfying
the conclusion of Theorem 1.1. Then W fails to have extreme points.

Since an unconditional basis is automatically an unconditional
skipped-blocking decomposition, it follows from these two theorems
that for subsets of a Banach space with an unconditional basis, the
KMP implies the PCP. We had originally obtained this result in the
summer of 1985. Our result was motivated by an earlier unpublished
manuscript of W. Schachermayer, circulated in the fall of 1984, which
established that this implication holds for subspaces of a space with
an unconditional basis. In fact, the subspace implication is easily seen
directly, using the results of [BR]. Indeed, suppose X is a Banach space
failing the PCP such that X has an unconditional skipped-blocking de-
composition (Gj). It follows by the results of [BR] that there exists a
skipped-blocking (Hj) of (Gj) which is not boundedly complete. Since
(Hj) is an unconditional FDD, CQ embeds in the closed linear span of
the H/s; so X fails the KMP because c0 is isomorphic to a subspace
of X. (See §2 for the definition of the notion of skipped-blockings
and skipped-blocking decompositions; these concepts were originally
introduced and developed in [BR] (cf. also [R3]).)

Schachermayer did not use this reasoning, but instead used a con-
struction due to J. Bourgain [B]. This construction was employed by
Bourgain in [B] to show that every Banach space failing the CPCP con-
tains a subspace with an FDD which fails the RNP. (As noted in [BR]
(see also [R3]), the construction shows that in fact a Banach space fail-
ing the PCP contains a subspace with an FDD which fails the PCP.)
Schachermayer observed that one can exploit this construction in the
unconditional setting to directly obtain a convex set without extreme
points. Our earlier proof as well as the arguments of the present work
follow this line of attack.
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Early in 1986, Schachermayer established that the PCP and KMP
jointly imply the RNP in general (in fact, he showed that the SCSP
and KMP imply the RNP, cf. [S] and also [Rl]). He also refined the
argument in his earlier unpublished work to obtain the result stated
above and hence deduced that the KMP and RNP are equivalent for
subsets of a space with an unconditional basis. In fact it thus fol-
lows (by the work discussed in this article and the above-mentioned
deep result in [S]) that the KMP and RNP are equivalent for closed
bounded convex subsets of a Banach space X with an unconditional
skipped-blocking decomposition. We are indebted to the referee of
an earlier version of this article for pointing out that there exist Ba-
nach spaces with this property, which do not embed in a space with
an unconditional basis. For example, the referee pointed out that the
space / of R. C. James with dim/**// = 1 has the /2-skiρped-blocking
property, and the J^-Schur space B of J. Bourgain and F. Delbaen
has the /^skipped-blocking property. (Standard known results show
that neither / nor B embed in a space with an unconditional basis.)

Evidently Schachermayer's discovery that the PCP and KMP jointly
imply the RNP reduces the KMP/RNP equivalence problem to the
study of sets failing the PCP. It is our hope that the techniques and
formulations developed here will be of use in this study.

In the rest of this first section we review the terminology used
throughout and develop the machinery needed to prove Theorem 1.2.
The proof of Theorem 1.1 is presented in the following section. We
recall briefly the bush terminology we shall be using. This is described
in greater detail in [Rl].

y °° denotes the set of all finite sequences of integers under the fol-
lowing natural partial order: given a — (a\,..., ak) and β = (β\,...,
βm) in y°°, a < β if k < m and α, = βι for all 1 < i < k. We refer to
the empty sequence 0 as the top-node of .T00 and alternatively denote
this as "0" or αo; if a = (a\,..., ak), the "level" of α, denoted |α|, is
defined as k. (Abstractly, \a\ = #{β: β < a}.) A non-empty subset
G of F°° is called a sub-tree of ^°° if for all g e G and a G 3^°°
with a < g, a G G. For such a subset G of y ° ° and a e G, we set
S^ = {β G G: a < β and \β\ = |α| + 1}. G is called finitely-branching
if 2 < #S^a < oc for all a G G. Finally, a finitely-branching tree F
can be defined as a partially ordered set which is order isomorphic to
a finitely-branching subtree of t9

ro°. Given a finitely branching tree
<5Γ, a function σ: ZΓ —* R+ is called a bush function if σ(0) = 1 and

σ(β) — 1 f° r aU a Ξ &. A sub-family (wa)aey of X is called a



162 HASKELL ROSENTHAL AND ALAN WESSEL

bush if for all α, wa G co{u)β: β G S^a}. It follows that given a bush
(wα)αβsr, there exists a bush function σ so that wa = Σβe^a

 σ(β)wβ
for all α; when this relation holds, we say that (wa)ae^ is a bush
with function σ. Given δ > 0, a bush {wa)ae^ is called a (5-bush if
INα - Wjjll > (5 for all a G ̂  and /? G .5^. The wedges of a bush
(Wα)α€^ are defined as Wa = co{u^: β > α} for a G ΣΓ\ we set
W = Wo. The 6ws7i differences (da)ae^ a r e given by do — WQ and
dβ = wp - wa for α G ̂  and )? G 5^a. A branch β of y is a maximal
well-ordered subset of ̂ ".

Next we formulate our notions of (strong) martingale representation
and coordinatization. We first define the notion of convergence and
strong convergence for a family of elements of a Banach space indexed
by a finitely branching tree.

Let {xa)ae^ be such a family. We say that Σ α e 5 r * α converges if
Σ£Lo zn converges where zn = E | α |= Λ *<*- We say that Σ α e ^ *«

strongly if for all β e^, Σaef x<* converges where ^ =

Let (c α ) α G ^ be a family of real numbers indexed by a finitely branch-
ing tree «7\ We say that (ca)ae^ is conditionally determined (c.d.) if
c<* = Σ ^ e ^ c^ f°Γ a ^ oί^J'. If we also have that Co = 1 and cα > 0 for
all α G ^ w e say that (cα)αesr is normalized conditionally determined
(n.c.d.). We note that if {ca)ae^ is n.c.d. and βo G ̂ , the condition
that Cβ0 = 1 ensures that ca = 0 unless α > )?o 0 Γ 0 ^ α ^ ^oi of course
then cβ = 1 if 0 < β < β0.

Some "intrinsic" motivation for these notions is provided by the
following lemma.

LEMMA 1.3. Let (wa)ae^ be a bush with bush differences (da)ae<r-

(a) // (cQ)aeϊr is n.c.d. and Σae^ y<* converges where ya =

Σβe^a

 cβdβ> t h e n w0 + Σae^ y« e W-
(b) Let (ca)aesr and ya be as above. If(ya)aer converges strongly,

then for all γ e^ with cy φθ,wy + (l/cy) Σae^ y<* e wy

Proof. We first note that (b) follows directly from (a). Indeed, fix
yG<f with cy Φ 0. By assumption (yα)α6^ converges strongly; thus
Σae& y<* converges. Note that ̂  is a finitely branching tree in its own
right and the desired conclusion is merely a restatement of (a) for the
bush (wa)aecrγ and corresponding n.c.d. (c'a)ae^γ given by c'a = ca/cγ

for a G 9y.
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To prove (a), let x = wo + Σae^ ya and

|α|=l \a\=

Using the fact that (ca)ae^ is n.c.d. and that dβ = Wβ-wa for β e ̂ ,
a straightforward calculation yields that xn = Σ\β\=n+\ cβwβ> a convex
combination of elements of the bush. Since xn —• x, it follows that
x e cδ{wa: aeJ'} = W. π

This lemma also motivates the following concepts. We say that a
(5-bush (wQ)ae^- is a (strong) martingale representation for its closed
convex hull W, if for every βo^^ and x e W ô, there exists (cα)αe^
n.c.d. with Cβ0 = 1 representing x in the following sense:

the sum converging (strongly), where ya = Σβe#t Cβdβ for all a e
y , and (da)ae^ are the differences of the bush (wa)ae^. We say
that (Wα)αe^ is a (strong) martingale coordinatization if the above
representation is unique.

As a convenient notational device, we extend a given finitely branch-
ing tree to include a "dummy" node " - 1 " , which we interpret to be
the predecessor to the top node 0. Thus WQ = do = ΣβEc9>__ι Cβdβ, and
the above equation reduces to

where ^ # is the extension of SΓ and ya = Σβe<9: cβdβ f°Γ a ^ a ^ ̂ #

The following martingale inteφretation should clarify our choice of
terminology. As is well-known, an arbitrary bush (wQ)ae^- can be as-
sociated with a vector valued martingale (iBn) in a canonical fashion,
as follows. Let Γ be the set of branches of y . We then define a proba-
bility space (Γ, J / , P) by setting for each ae<T,Ua = {γeΓ:ae γ}9

stfn — σ({Ua: \a\ = n}) and J / = o(s^n). The probability measure P
on (Γ,s/) is determined by its values on the increasing finite algebras
s/n. We define these values inductively: P(U0) = P(Γ) = 1. If P is
defined on j / π and β e ^a with |α| = n, then P ( ^ ) = P(Ua)τ(β),
where τ is the bush function associated with (wa)aej-.

We now let v5n = Σ|α |=« wcJun, where /t/ is the indicator function
of the set U. (vΰn) is easily seen to be a martingale with respect to
(sfn). This is our fixed vector martingale.
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Now suppose that (wa)ae^ is a martingale representation for its
closed convex hull. Let x G W and let (c α ) α € t^ n.c.d. represent x in
the sense defined above. We define

Λ • &

Since (ca)ae^ is c.d., (fn) can easily be shown to be a (scalar) mar-
tingale with respect to {s/n)\ since (ca)ae^- is normalized, (fn) is non-
negative and Efo = 1. (For a P-integrable function / on Ω, Ef, the
expectation of / , is defined as usual by Ef = J f dP.) Taking the
expectation of fn vSn we obtain for all positive n

E(fn 1Un)= Σ C<*W(* =

Thus we have that x = lim^oo 2?(/Λ t#«).
Conversely, given any martingale (/„) with respect to (s/n), setting

ca equal to P(Ua) times the fixed value of fn on Ua for |α| = n, we
find that (c α ) α € t^ is normalized conditionally determined. It follows
from Lemma 1.3 that if (E(fn -vJn)) converges to JC, say, then x e W.

We also have that {wa)aef is a strong martingale coordinatization
if and only if it is a martingale coordinatization so that for all mar-
tingales (/„) with respect to {sfn)> whenever (E(fn ϋSn)) converges,
(E(fn -vΰn -IA)) converges for all sets A in the algebra generated by

The above observations show that (wa)ae^- is a martingale coor-
dinatization for its closed convex hull W if and only if for each
x G W, there is a unique martingale (fn) with respect to (s/n) so
that x = lim^oo E(fn -ϋ)n). We then think of the martingale (/„) as
coordinatizing the point x.

We need one more definition, that of a well-separated bush, before
passing to the proof of Theorem 1.2. For K and L non-empty subsets
of some Banach space, md(AΓ, L), the minimum distance between K
and L, is defined as inf{||fc — /||: k G K, I G L}. A bush (wa)ae^ is
well-separated provided there exists a κ> 0 so that

(1) md(Λ^, Wβ) > K for all positive integers n and β G !Γ

with \β\ = tf + 1

where # „ = co{ι/;α: |α| = n}. If (^ α ) α G^ satisfies (1) we say that
is K-well'Separated.
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Our objective is to produce a J-bush (wa)ae#- so that W =
co{wα: a e J~} fails to have extreme points. The following "locates"
the extreme points of W.

PROPOSITION 1.4. Let a δ-bush (wa)ae^- be given satisfying:

(*) For all α e J , Wa = co{Wβ: β e <%}.

Then for every extreme point x ofW, there exists a branch γ ofZΓ such
that x is an element of the wedge intersection f)aeγ Wa.

Proof. We sketch a quick inductive proof. Fix an extreme point x
of W. By assumption x e W = WQ. Assume that γo = 0 < y\ < <
γn G ZF have been found with |y7 | = j and x e W7j for all j = 0,.. ., n.
Applying (*) we have

Since x is an extreme point it follows that x G Wβ for some β e Sγn.
Let γn+\ = β. Continuing in this manner, we obtain a branch γ =
{yo> JΊ, ?2> • • - } so that x e f]aeγ Wa. D

As a consequence of this proposition, given a J-bush (wa)ae^- which
satisfies (*) and has empty wedge intersections (i.e., f]aeγ Wa is empty
for all branches γ of ^ ) , W = cδ{wa: a e <T} will fail to have ex-
treme points. As we demonstrate below, a well-separated J-bush has
empty wedge intersections (EWI); a bush which is a strong martingale
representation for its closed convex hull satisfies (*).

REMARK. The concept of a bush with EWI was introduced by
R. C. James who established in [J] that a closed bounded convex sub-
set AT of a Banach space X such that K fails the RNP contains a ί-bush
with EWI (see also [R2]). Condition (*) is related to, but more com-
prehensive than, the notion of a complemented bush, introduced by
A. Ho in [Ho].

We prove the first of the assertions made above.

PROPOSITION 1.5. Let K > 0. If (wa)aey is a κ-well-separated δ-
bushy then

(a) md(£, W) > K where E = f)Zo D\a\rn &a
(b) {wa)aes

r has empty wedge intersections (EWI).
(c) md(X E) > κ/2.
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[Recall, we regard X as a subset ofX**; Wa equals the weak*-closure
ofWa under this identification.]

Proof, (a) Fix e e E and w e W. We shall show that \\e - w\\ > K.
Fix η > 0 and choose w' e co{wa: a e &~} so that \\w' - w\\ < η.
Since (wa)ae^r is a bush, there exists a level n so that w' e Kn =
co{wa: \a\ = n). Since e eE we may choose β e<T with |/?| = « + 1
and e e Wβ. By assumption md(AΓn, Wβ) > κ\ thus rf(iί;', Wβ) > K
and by the Hahn-Banach theorem d(w', Wβ) > K. It follows that
\\e - w'\\ > κ\ thus \\e -W\\>K-Y\. Since η is arbitrary, the desired
result follows.

(b) This follows immediately from (a) since E contains the set of
all possible wedge intersections.

(c) This follows from (a) and the following elementary result, es-
tablished in Lemma 2.6 of [R2].

PROPOSITION 1.6. Let W be a closed convex non-empty subset of a
Banach space X and E a subset of W. Then

mά(E,X)>\mά(E, W). D

We are now prepared for the proof of Theorem 1.2. Let (wa)ae^-
be a well-separated <J-bush which is a strong martingale representation
for its closed convex hull W. To prove that W has no extreme points,
by Proposition 1.4 it suffices to show that (wa)ae^- satisfies (*) and has
EWI. Since our 5-bush is well-separated, it follows from Proposition
1.5 that it has EWI. It remains to show that it satisfies (*). This
follows from the strong martingale representation and Lemma 1.3. Fix
a{ € y . We must show that Waι = co{Wβ: β e 5^aχ}. Fix x e War

By assumption there exists {ca)ae^ n.c.d. with caι = 1 so that x =
Σ)α€^# y<* w * t h t h e s e r i e s converging strongly, where ya = Σβe^

 cβdβ
for all a. Thus x = waι +Σae^ Λ*. If we let kγ = wγ+(l/cγ) Σae^ y<*
for all γ ES^aι with cγ Φ 0, then kγ is thus well defined and ky e Wy

by Lemma 1.3(b). Let <9\ = {γ e <%/. cγ Φ 0}. Since caι = 1 and
(ca)a€<7- is c.d., we have Σγe^ ŷ = 1- It then follows that

χ =

ThusxGco{^7:
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2. This section is devoted to the proof of Theorem 1.1. Our
construction actually exhibits a <ϊ-bush which is a strong martingale
coordinatization for its closed convex hull (in the proof of Theorem
2.4 use the <5-bush (wa)ae^ instead of (wa)ae^)\ however, this (5-bush
lies in a "bubble" of the original set K (i.e., in a set of the form K+aBχ
where a is an arbitrary positive number and Bx is the closed unit ball
of X) and may no longer lie in K.

We first assemble various structural results. Following [BR], [R3],
we say that (Gj)JL{ is a decomposition for a Banach space X provided
X is the closed linear span of the G/s and for all positive integers j 9

Gj is finite-dimensional and there exist continuous linear projections
Pj from X onto Gj satisfying PjPk = 0 for all j Φ k. (Gj)JLx is called
a finite-dimensional decomposition (an FDD) if it is a decomposition
so that in addition for all x e X, x = Σ y l i Pj(χ)> the s u m converging
in norm. If this sum converges unconditionally for all x e X we say
that (Gj)f=ι

 i s a n unconditional FDD.
Let (Gj)JLx be a sequence of subspaces of a Banach space X. (/(/)>= i

is a skipped-blocking of (Gy)yΞ=i if there exist sequences of positive in-
tegers (rafc) and (/ifc) so that mk < nk + 1 < m^+ 1, and Hk equals
the closed linear subspace spanned by {Gι•: i = mk,..., nk} (we write
Hk = sp{G/}^m^). A decomposition (Gj)JLx is a skipped-FDΌ (resp.
unconditional skipped-blocking decomposition) if every skipped-
blocking (/2))£i of (<J/)£LI is an FDD (resp. an unconditional FDD)
for its closed linear span sp{Hj}JLv

We define the bi-FDD constant for an FDD (Gj)^ to be λ =
suPk<j IIΣ)/=A:^II It is easily seen that if (Gj) is a skipped-FDD,
then there is a A < oo so that the bi-FDD constant of (//,) is less than
or equal to λ for every skipped-blocking (Hj) of (Gj). We call the
infimum of these possible λ's the skipped-bi-FDD constant of (Gj).
It is evident that if (Gj) is an FDD, then the skipped-bi-FDD con-
stant of (Gj) equals its bi-FDD constant. (As noted in [BR], [R3], any
separable infinite-dimensional Banach space admits a skipped-FDD
with constant at most 1 + ε, for a given ε > 0. Also, it follows from
the results in [BR] that if X has an unconditional skipped-blocking
decomposition, then so does Y for every infinite-dimensional closed
linear subspace Y of X.)

Let t 9
r # be an extended finitely branching tree. We say that a map-

ping τ: y # —> N is strongly order preserving if |α| < \β\ implies
τ(α) < τ(β). The next theorem gives the main constructive element
of our proof.
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THEOREM 2.1. Let {Gj)JLx be a skipped-FDD for a Banach space X
and K a closed bounded convex subset ofX such that K fails the PCP.
Then there exists a δ > 0 so that for all sequences of positive num-
bers {£j)JL_x there exist a finitely branching tree Sr

> δ-bushes {wa)ae^
and (wa)ae^ sharing a common bush function σ with (wQ)ae$r c K, a
skipped-blocking {Hj)ψ=x of{Gj)ψ=ι and a strongly order preserving bi-
jection τ : y # —• N so that the following hold for all ae^* and β e 5^a

(as usual {da)ae^ and (d^aer denote the differences of(wa)ae^ and
(wa)aesr respectively):

(i) \\dβ-dfi\\<ew,

(ii) dβ e Hτ{a),

(iii) {dβ\ β eS^a} is affinely independent

We shall soon see that if (Gj) is an unconditional skipped-blocking
decomposition and if ε = ΣJL_χ β/ is sufficiently small, then the δ-
bush (wa)ae<^ constructed above will satisfy the conclusion of Theo-
rem 1.1. To this end, some preliminary results are useful. We delay
the proof of Theorem 2.1.

We first concentrate on the conditions on (wa)aey obtained above.

LEMMA 2.2. Let (Hj)JLx be an FDD for a Banach space Y with
corresponding projections Pji Y —• Hj and λ = sup^ \\Pj\\. Suppose
(ffiβ)α6f is a δ-bush in Y with differences (da)Qe^ and τ: J~* -> N is
a strongly order preserving bijection so that for all a e ^ # :

(i) dβ e Hτ{a) for all βeS*a, and

(ii) {dβ: β eS^a} is affinely independent
Then (wa)ae^r is δ/λ-well-separated and a martingale coordinatization

for its closed convex hull. Moreover the levels of(wa)ae^ are affinely
independent

Proof. We first deal with the algebraic assertion at the end. This is
trivial for the Oth level. Proceeding by induction, we fix n > 0 and
assume that for all real numbers (λa) indexed by ^ , the nth level of y ,

Σaezrn ̂ a = 0 a n d Σ)α€^ ̂ Oiwa = 0 implies that λa = 0 for all a e ^ .
We now fix real numbers (λβ) indexed by S^+\ = {a e ^: \a\ = n + 1}
with Σ,βeJι λβ = 0 = Σβe<rι ^βwβ a n c * s h o w t h a t λβ ~
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β G £Γn+x. Let λa = Σβe^ λβ for all a e 3^. We then have

0 = Σ hwβ = Σ Σ h(w<* +

It follows that Σae^n λawa = 0 and Σβe^t λβdβ = 0 for all a G ^
since each of these terms lie in disjoint blocks of our FDD.
Since also Σae^n ^a = Σβe<%+1 ^β ~ ®> by 0 U Γ induction hypothesis
we have λa = 0 for all a G SΓn. We now have for all a e ^ ,

Σ ^ G ^ Â  = λα = 0 = Σ^e*?. Ay?^ a n d {^ : ^ E ^ } i s affinely
independent, hence λβ = 0 for all α G c5^. Since this holds for all
α G ^ , ^ = 0 for all β G ̂ + i and we are done.

We now show that (wa)aey is a martingale coordinatization for
its closed convex hull. Fix /?0 € ^ We must show that for each
xe Wβo = cδ{wa: a > β0}

there exists a unique n.c.d (ca)ae^ with c 0̂ = 1 and x =

Σ ^β w h e r e ^ = Σβe^ cβdβ f o r a 1 1 α G ^ #

Let L equal the set of all x G Wβ0 for which (**) holds (without
the uniqueness assertion). We easily see that Wβ G L for all β > βo
Indeed, fix β > βo. We define (ca)ae^ inductively as follows:

For 0 < a < β let ca = 1. If ca has been defined for all a > β with
\a\ = \β\ + n for a non-negative integer n, and y E y α , α as above,
let c7 = cao{y) where σ is the bush function associated with (wa)ae^.
This defines ca inductively for all a > β. If a is incomparable with β
(i.e., neither a < β nor a > /?), let ca — 0.

Since σ is the bush function for {wa)ae^, this choice of {c
yields

Σ Σ Σ = ° for a11 α

is obviously n.c.d. and E*e^* ^ = Σo<«</? d* = % .
Next we observe that L is closed. Indeed, let xn —> x with xn e L

for all n. Letting (c£)ae^ represent xΛ and passing to a subsequence,
we may assume that for all a G ̂ , c" —• cQ as n —• oo. Note that
( O α e ^ i s n c d a n d ty0 = 1. By hypothesis xn = Σae^^a w h e r e

^ = Σ / t e * ^ ^ a n d b y (i)' ^ € fΓτ(α) for all a G ^ # .

Since (Hj)JLx is an FDD, x has a unique representation of the form

x = ΣαG^# w« where wα G /fτ(α) for all ae^*, the series converging
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in the order induced by τ: 9~* —• N. The sequence (xn) converges to
x, hence by continuity of the projection onto each //τ(α) we must have

βdβ -+ u<* f o r a 1 1 <* e ^ # .

We trivially have that Σβe<s?(t

 cβ^β —• Σβe^ cβdβ which must there-
fore equal wα. We thus have x = Σae^# ua where wα = Σ/?EJ^

 cβdβ
for all α e F*, the series converging in the order induced by τ. Since
τ is strongly order preserving, τ enumerates fully each level of y # be-
fore passing to the next. It follows that Σae^* ua converges to x in
the usual sense. This proves that L is closed. Since L is obviously
convex, it follows that L = Wβ0.

To show that each x e Wβ0 has a unique n.c.d. representation
(cα)α6^5 it suffices to show that if (ca)aer is c.d., Σaetr* ya = 0 where

j><* = Σ)^G^t

 c £ ^ f°Γ a 1 1 α € ^"# anc^ Σβes*a

 cβ = 0 f°Γ s o m e α G ^ # '
then Cβ = 0 for β € S*a. This is easy to show. Since we have an

FDD, ya = Σβe*?;, cβdβ = 0 for all α. Since Σβetf, cβ = ®» ι ^ e a ^ n e

independence of {dβ: β ES^a} ensures that Cβ = 0 for all β € ^ .
Next, we show that (tDα)αβ^ is ^/^-well-separated. Fix x e Kn =

co{tDα: |α| = «} and y e Wβ = co{ti)y: γ > β} where β e S^aι for
some αi with |αi | = n. Using (i) and the fact that τ is strongly order
preserving, we can find integers j < k so that co{wa: |α| = Λ} c i/ =
sp{//0» ^ β}} a n d dβ e Hk. We next note that y = waχ + dβ + r
where r e sp{Hj: / > k}. We now obtain

\ \ \ \ > \ \ P ( ) \ \ \\d

where P^ is the projection associated with H^ and λ — sup7 | |P 7 ||. Since
^ > δ we obtain the desired result. D

We now draw some further consequences from the results of Theo-
rem 2.1.

THEOREM 2.3. Let (wa)ae^- and {wa)ae^ be as in Theorem 2.1,
W =W0 = cδ{wa: a > 0}, W = ίV0 = cδ{wa: a > 0}. Then

(a) ( t θ α ) α € ^ is δIλ-well-separated and a martingale coordinatization
for W, where λ is the skipped bi-FDD constant for (Gj)JLv

(b) Let (ca)ae^ be n.c.d. and for all a e F* let ya = Σβe^ cβdβ
and ya = Σβe^a

 cβdβ Then Σae^« ^ converges (respectively con-
verges unconditionally) if and only ifΣae^* y<* converges (respectively
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converges unconditionally). Here the mode of convergence is taken to
be that induced by τ : y # —> N.

(c) There is a uniformly continuous closed surjective affine map
φ: W -+ W with φ(wa) = wa and φ(Wa) = Wa for all a e ^ and
\\φ(x) - x\\ < ε = Σ%-\ tj for all xeW.

(d) (wa)aey is (δ/λ - 2ε)-well-separated provided ε = ΣJL-\ εj <

δ/(2λ).

Theorem 1.1 now follows immediately. In fact, we obtain the fol-
lowing result.

THEOREM 2.4. Let X be a Banach space with an unconditional
skipped-blocking decomposition and let K be a closed bounded convex
subset ofX so that K fails the PCP. Then there exists a well-separated
K-valued δ-bush (wa)ae^ which is a strong martingale representation
for its closed convex hull

Proof of Theorem 2.4. Let K and X be as above and (Gj)JLλ be an
unconditional skipped-blocking decomposition for X. We first apply
Theorem 2.1 with ΣJL-\ εj < <V(2Λ), where λ is the skipped-bi-FDD
constant for (Gj)°°=ι, to obtain a skipped-blocking (Hj)Jlx of (Gj)JLv

J-bushes (wa)ae^r and (wa)ae<r, and a strongly order preserving bijec-
tion τ: ^ # -• N satisfying (i)-(iii) of Theorem 2.1.

It now follows from Theorem 2.3(a) that (wa)ae^- is <J/Λ-well-
separated and a martingale coordinatization for W. Thus for all
β0 e ^ and x e Wβo = cδ{wβ: β > β0}, there exists (ca)ae^ n.c.d.
with cβo = 1 so that x = E α € ^ * ?<* w h e r e ?<* = Σ^e^Ω Cβdβ for all
a e SΓ*. Since (Hj)JLx is an unconditional FDD and ya e Hτ(a) for
all a G F (condition (ii) of Theorem 2.1), x = Σae^*?0" ^ e s u m

converging unconditionally in the order induced by τ. Since τ is a
strongly order preserving bijection, it follows that this sum converges
strongly. Thus (wa)ae^ i s a strong martingale coordinatization for its
closed convex hull.

We now show that (wa)ae^- is a martingale representation for its
closed convex hull. It then follows immediately from Theorem 2.3(b)
and the argument above that it is a strong martingale representation
and Theorem 2.3(d) tells us it is (δ/λ - 2ε)-well-seρarated,where ε —

We now fix x e Wβo. By Theorem 2.3(c) there exists an x e ίVβo

with φ(x) = x. Since (wa)ae^ is a martingale coordinatization, we
can represent x (using the alternate notation) x = lim^oo Σ\a\=n coV^a
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where (ca)ae^- is n.c.d. and Cβ0 = 1. Since φ is affine, continuous and
maps each wa to wa, it follows that x = lim^oo Σ|α|=Λ c<*wα. Thus
(w^aef is indeed a (strong) martingale representation for its closed
convex hull. D

Proof of Theorem 2.3. (a) follows immediately from Lemma 2.2.

(b) is immediate from the fact that Σ)αβ5r# ll̂ α - Pα|| < °° The
latter is a consequence of the fact that each da is a suitably small
perturbation of da.

βe^a

0 0 OO

n=~\\a\=n βeS^t n=-\ \a\=n n=-l

(c) We define φ as follows: Given x = Σ α β ^ # Σβe<9>« cβdβ> w e l e t

^ c ^ . (Equivalently if x = lim^oo Σ\Q\=n

 caΰa,
let φ(x) = lim^-,00 Σ|α|=« c «^α ? from whence it follows that φ is affine
and φ(βa) = wQ for all a e <T.) Note that the estimate \\φ(x) - x\\ <
ΣJL-ι εj f°Γ all jc E ί^ follows from the proof of (b). It follows from
(a) and (b) that φ is a well-defined map.

We next show that φ is uniformly continuous. Let xn - yw —> 0
in fF, and let (c^)ae^ and (e^)ae^ represent Jcrt and prt respectively.
We shall show that ^(JCΛ) - φ{yn) —• 0. Since (//}) is an FDD it is
immediate that

??adR —> 0 for all α «

We claim that

(3) c*-en^o

This follows from a simple inductive argument once the following fact
is established. Fix d\9...9dk affinely independent elements of a Ba-
nach space X,and sequences of scalars (cj1),..., (eg) and {e")9...,(e%).
If

Σ'?4-Σ'?4->° a n d Σ^-Σ^-*°
/ = 1 ι = l i = l i = l

then cf - ef -> 0 for all / = 1, . . . , k. This is easily established. We

work in the product space X x R and choose w so that d\+u>... ,



A MARTINGALE COORDINATIZATION OF CONVEX SETS 173

are linearly independent (e.g., u = 0 Θ 1). We then have

k

- e?)(di + u) - 0;

by the linear independence of these terms, the desired result follows.
We now present the inductive argument that c" - e£ —• 0 for all

a € &". This is trivially true for a = 0. Fix n > 0 and assume that
c£ - e% -+ 0 for \a\ = n. Fix such an a e <9r. It follows from the
argument just given that cn

β - en

β - ^ 0 for dλ\ β e 5%. Indeed, we

know that Σβe^cβ^β ~ Σβe^
eβdβ ^ 0, {dβ: β e S^} is affinely

independent, and by the induction hypothesis and the fact that for all
«, (c£)aeιr and (e^)ae^- are c.d., we have

We now conclude the proof that φ is uniformly continuous. Fix
η > 0. First choose N so that

Σ(4)

Recall that xn - yn -> 0. Since (//}) is an FDD, it follows that

Σ
\a\>N

Choose an integer n\ so that

0.

(5)

We can now estimate

Σ < η for all n > Π\.

Σ

Σ Σ ('?-«?

Since the first expression contains only finitely many terms and cβ -
enn -> 0 for each β e &~, we can find an integer ri2 > nι so that this
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expression is less than η for n > n2. The second expression satisfies

\cβ eβ)aβ

\<*\>N

\a\>N

6
|β|=«

( J ) o f τ h e o r e m 2

and (^)^ G t ^ are n.c.d.

\a\>N

oo

T T
n=N aE£Γ*

\a\=n
oo

^ V^ V V^ /•/.« -L on

since

< 3η by (4).

It follows that \\φ(Xn) - ^(PΛ) | | < 4ι/ for all Λ > n2.
We now establish that φ is closed. It is then immediate that it is

surjective (since co{wa\ a G ̂ } is trivially dense in W). Let ̂ 4 be a
closed non-empty subset of W and (xw) be a sequence in ̂ 4, xn = φ(χn)
for all n, and assume that xn -*- x. For all « let (c^)ae^- represent xn\
by passing to a subsequence we may assume without loss of generality
that c% —• cα for all a e SΓ, where (cα)αesr is, of course, n.c.d.. (It is
not yet apparent that (cα)αes^ represents x!)

We claim that (xn) is Cauchy. It then follows that (xn) converges.
By the arguments presented above, we know that xn —• x where x is
represented by (ca)ae^r. Hence x = φ(x), and Jc G A since 4̂ is closed.
Let η > 0. We show that for AZ, m sufficiently large, ||jcπ - xm\\ < 4η.
This follows from another perturbation estimate. First, choose N so
that Σj>N £j < η. As before, we need only show that

(6) m)dβ
<3ηΣ Σ«ί-

for n, m sufficiently large, since we can then control the finite number
of initial terms.
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Since (xn) converges and also (Σaes* ,\a\<N Σβs9>a

 cβd<*ϊ converges,
we have that (J2ae^ \a\>N Σβe^t

 cβda) converges and is thus Cauchy.
Hence for n, m sufficiently large,

(7) Σ
\a\>N

Estimating the left-hand-side of (6) by means of (7) and the pertur-
bation technique used above yields the desired result.

Since φ is affine and φ(wQ) = wa for all α € 7 , to prove that
φ(Wa) = φ(WQ) for all a G EΓ, it suffices to regard the subtree ^ =
{β G ̂ : β >a} as a finitely branching tree in its own right and apply
the proof just given that φ{W) = W.

(d) Fix an integer n, x G Kn = co{wa\ |α| = n} and y G Wβ
with β G y and \β\ = n + 1. It follows from (c) that there exist
x e Kn = co{t()α: |α| = n} and y G Wβ with ||JC — JC|| < ε and
IIP - y| | < e- Since {wa)ae^ is <5/λ-well-seρarated, ||JC - y\\ > δ/λ - 2ε
and hence (wa)ae^- is (ί/A - 2β)-well-separated provided (δ/λ - 2ε) is
positive. D

We finally present the proof of Theorem 2.1. We construct the de-
sired ί-bush by "averaging back" from a suitably chosen approximate
bush. Let (εj)JL0 be a sequence of positive numbers. An approximate
δ-bush corresponding to (Sj)JL0 is a bounded family of elements of a
Banach space {wa)ae^-, indexed by a finitely branching tree y , which
satisfies:

and > 5 ϊoτ β

where σ is a 6ŵ Λ function.
The following result is a useful "trick-of-the-trade". It can be proved

directly. The most elegant proofs, however, involve martingale tech-
niques (cf. [KR]) and make use of the correspondence between bushes
and approximate bushes on one hand, and martingales and quasi-
martingales on the other (see the discussion following Definition 7.5.2
in [Bo]).

PROPOSITION 2.5. Let {wa)ae^ be an approximate δ-bush with bush
function σ corresponding to a summable sequence of positive numbers
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(iJj)JL0 which satisfy δ1 = δ - 2 £ Y\) > 0. Then there exists an "aver-
aged back9' δ'-bush (wa)ae^- such that

wa e cδ{Wβ: β e <9
Γ}, wa = ]Γ) σ(β)wβ and

\\wa - wa\\ < Σ r\j for all α E / .
j=\a\

We shall need the following two lemmas, which investigate the
neighborhood structure of a closed bounded convex set failing the
PCP. The first lemma is a slight modification of Lemma 2 in [BR]
and is proved in [R3].

LEMMA 2.6. If a closed bounded convex subset K of a Banach space
X fails the PCP, then there exist δ > 0 and a nonempty closed subset
AofK such that every relative weak neighborhood in A has diameter
greater than 4δ.

The next result is a "localized" version of Lemma 10 in [B] and is
proved in [W].

LEMMA 2.7. Let A and δ be as in the conclusion of Lemma 2.6.
Then for all x eA and relative weak neighborhoods N(x) ofxf

(8) x e cδ{(A\B(x, 2δ)) n N(x)}

where B(x, τ) is the closed ball of radius τ centered at x.

We now begin the main construction. Let X, K, and (Gj)JL{ be as
in the statement of Theorem 2.1. Applying Lemmas 2.6 and 2.7, we
obtain a closed subset A of K and δ > 0 so that (8) holds for all x e A
and relative weak neighborhoods N(x) of x.

Let (βj)JL_\ be an arbitrary sequence of positive numbers. We need
to produce a AT-valued <5-bush (wa)ae^ with bush function σ, a 5-bush
(^a)ae^ sharing the same bush function, bush differences (da)ae^
and (Jα)αG ĵ a strongly order preserving bijection τ: 9Γ* —• N, and
a skipped-blocking {Hj)JLλ of (Gj)f=ι satisfying for all a e &* and

βe fa-
il) \\dβ-dβ\\<εw,

(u)dβ_eHτ{a)9

(iii) {dβ: β G fa} is affinely independent.
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We first claim it suffices to construct a J-bush (wa)ae^- along with
an ^4-valued approximate 2J-bush (wa)ae^ with differences (da)ae^
corresponding to a suitably chosen (ηj)JLQ depending on (ε ;)^=_1, sat-
isfying (i) (with */|α| replacing εμ), (ii), and (iii). Indeed, let (wa)aey-
be such an approximate bush. Proposition 2.5 then guarantees the "av-
eraged back" bush (wa)ae^- is ΛΓ-valued, a J-bush so long as 2 Σ Y\J <δ
and satisfies

\\wQ-wa\\< ] Γ Vj
j=\a\

Letting (da)aey denote the differences of {wa)ae$r and fixing a e
and β G ̂ , we then have

OO 00

\\dβ - dβ\\ = \\wβ -wa- (wβ - wa)\\ <Σ*1j+Σ IJ
j=\β\ j=\<*\

Since by hypothesis we additionally have \\dβ - dβ\\ < η\a\, it follows
that

j=\a\

Thus given (Sj)°°=_v for suitably chosen (ηj)JL0 (e.g., choose (ηj)JL0

so that 2 X ^ 0 ηj < δ and ηj+k < ε7/(4 2k) for j = 0, 1,2,... and
k — 0,1,2,...) and corresponding approximate bush, the "averaged
back" bush will have the desired properties.

Thus to prove Theorem 2.1, given (Sj)JL_{ an arbitrary sequence of
positive numbers, it suffices to construct an ^[-valued approximate 2δ-
bush (wa)aecr and a <5-bush (wa)aE^- sharing the same bush function
σ, with differences (da)ae^ and {da)ae^ respectively, and τ: ̂ # —• N
and (Hj) as above, satisfying (i)—(iii) for all ae<7~# and β eS*a and

(iv)

σ(β)wβ
for all

We carry out the construction using Lemma 2.7; the weak neigh-
borhoods we use will be of the form:

N(x) = {yeA:\\Sm(y-x)\\<e}

for some ε > 0 and positive integer m, where Sm(y) = Σ J l i Pj(y),
the natural projection of y onto the span of the first m G/s. (Recall
that for all /, // is the projection associated with (?/.)
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We construct the bushes by induction on the lexicographic order
induced by the strongly order preserving bijection τ, which we simul-
taneously define, beginning with the top-most level and enumerating
each node of a given level before passing to the next level. Thus when
all the nodes of a given level have been enumerated by τ, all the nodes
of the succeeding level are defined. At a given node α, we define τ(α),
construct the successors <5̂  of α, the differences of the bushes (dp)
and (dβ) for β e S^ and a skipped-blocking // τ ( α ) of (Gj)JLx so that
(i)-(iv) hold for this a and β e S*a.

We begin with the "dummy" index " - 1 " , define τ ( - l ) = 1 and set
&-\ = {αo}> where αo, the empty sequence, is the top node of our
finitely branching tree. (To avoid confusion, we refrain from using
the notation αo = 0 here.) Recall that the sole purpose of the dummy
index is to write αo as a successor. We now let wao = dao be an
arbitrary element of A, set πi\ = 1, and choose n\ >mχ so that there
exists

dao e H{

 d^ f sp{Gj}»Lmι with \\dao - </J| < e{.

Set wao = Jα o . (i)-(iii) then trivially hold for α = — 1; (iv) does not
yet apply.

Let j > 1 and assume that the construction has been carried out
for a with τ(α) < j , with mi < Π\ + 1 < mi < < m} < n}^ + 1
and H( — ̂ v{G\ς)

n

]l^m for / = 1,... ,j. Choose a with τ(a) = j and
let k = |α|. If there exists a node ax on the /cth level for which τ
has not yet been defined, let τ(a\) = 7 + 1. Otherwise choose an
arbitrary node a\ on the (k + l)st level (these nodes all exist since by
hypothesis the successors to the kth level have then been constructed)
and let τ(a\) = 7 + 1.

Let η = β +i/5. We apply (8) with x = waι and N(waι) = {y €
A:\\SnΛl(y-x)\\<η}.

Since waι e A1 = cδ{(A\B(waι, 2δ))nN(waι)} there exist an integer
n,W\,... ,wn eA' and λ\,...,λn non-negative numbers with Σ A/ = 1
so that

< η a n d \ \ w a ι - W i \ \ > 2 δ f o r / = 1 , . . . , n.

By our choice of N(waι)9 we additionally have

||S^+i(dz )| | < η for d\ = Wj - waι and / = ! , . . . ,«.
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Note that

(9)

We set nij+\ = Πj+2 and choose rij+\ > nij+\ so that \\di-Snj+ιdi\\ <
η for / = 1,... ,n. Setting d\ = (Sn.+ι - Snj+\)di, we then have

(10) 'i - di\\ < 2η and d\ € HJ+ι ^

for i = 1,...,«.

Before we define our bush elements, we make adjustments and pare
down these sets. Let d'{ = d\ - Ey=i Wj for i = 1,..., n. Then

for i = l, . . . , i i , and

7=1

y=i

(10)

by (9) and (10)

Since X)"=1 λ/rf̂  = 0, we can choose an affinely independent subset
{d\,..., dγ) of {d",... f d'n) and non-negative numbers σ\,...,σr with
Σr

i=ι Gi = 1 and Σ/=i σ/^/ = 0 Relabeling if necessary, we now let
{d\,..., dγ) be the corresponding subset of the original rf/'s. We then
still have

dieHj+ι and

Note that

wa{+diEA for / = 1,..., r.

r

i = l

<

r

7 (JiCli

ι=l 1=1

We now <ίζ^«^ the successors of αi to be (αi, 1), . . . , (a\, r), where
(a,i) is the (|α| + l)-tuple of integers for which the first |α| terms
coincide with a and the last term equals /. Relabeling with these
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indices, and setting σ((α,/)) = σ, for / = l , . . . , r , it is clear that
(i)-(iv) are satisfied. This completes the proof of Theorem 2.1. D

We wish finally to isolate out the main constructive step in the
proof of Theorem 2.1, which we use to produce a well-separated δ-
bush which is a strong martingale representation for its closed convex
hull. We thus obtain a criterion which insures that a closed convex
set fails the KMP. The criterion is essentially the same as the one for-
mulated by W. Schachermayer in [S] and in his earlier unpublished
work. For possible future applications, we formulate the criterion
in terms of unconditional decompositions which are not necessarily
finite-dimensional.

Let X be a Banach space and (Hj)°?=x be a sequence of closed linear
subspaces of X so that (Hj) is an unconditional decomposition for
its closed linear span. It follows that there exists a λ < oo so that
IIΣ) β/λ/|| < λ\\ X) hj\\ for all choices of signs ε7 = ±1 and hj e HJ9 j =
1,2,..., with finitely many of the h/s non-zero. The smallest possible
λ so that this holds is the unconditional decomposition constant of
(Hj)Jlx. It is easily seen that in case the H/s are all finite-dimensional,
the bi-FDD constant of (Hj)JLx is no greater than its unconditional
decomposition constant. We note that in the setting of Theorems
2.1 and 2.3, if the H/s form an unconditional FDD, it suffices for
the mapping τ: !Γ* —• N to be an injection, since we can use the
unconditionality to re-order the H/s if desired.

PROPOSITION 2.8. Let X be a Banach space, K a closed convex subset
of X, and let (Hj)JLχ be a sequence of closed linear subspaces of X
so that (Hj) is an unconditional decomposition for its closed linear
span; let λ be the unconditional decomposition constant of(Hj) and let
δ > 0. Let 8j = otjV and Y\J = α/(2M) for j = - 1 , 0 , 1 , . . . , where
a > 0 is chosen so that Σ?=-\ «/ < ^/(2^) ™d 2 ΣJL0 Άj < δ Let &
be a finitely branching tree, (wa)ae^- a K-valued approximate 2δ-bush
corresponding to (ί///3)^0 and τ: y # —• N an injection so that for all
ae^* and β e <9>a

d{dβ,Hτ(a))<ηlal/3.

Then K fails the KMP.

We sketch the proof. Let (wa)ae^- have bush function λ. First, we
pare down y to produce a finitely branching tree y 7 , and a (J-bush
(wα)αesr/ along with the pared down version of our approximate 2δ-
bush (wa)ae^f which now share a (new) bush function σ. We proceed
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in a lexicographic order. At the top-most node there is little to do; we
select do = woe # τ (-i) s o that

and add the 0 node to 3^f. Say we are now at a node a\ e ίΓ' so that
the successors to a\ have not yet been defined. We know that

where ^ , denotes the successors to a\ in y . For β € <5̂ , we select
d'βeHτ{aι) satisfying

\\dβ-d'β\\<η-ψ.
Following the procedure outlined following Equation (10), we set dβ =
d'β ~ Έβe^tι Kβ)d'β for β e c5 ,̂ and pare down the set <5̂ , to obtain
^ i ? the successors to αi i n ^ , and the values of the bush function
σ(β) for β G S^x along with the corresponding {dβ)βe^a and differ-
ences of the original approximate 2<5-bush (dβ)βe^<, for which the
following estimates now hold for β G <9%λ

:

(i)
(ii) β _ { )

(iii) {dβ: /? G ^ ^ } is affinely independent,

χ

Continuing in this fashion, we obtain the desired pared down tree 3Γ1

and (5-bush (wa)ae^ along with (wa)<*e^' s o that (i)-(iii) hold for all
a\ G y / # and all β e S^Qϊ, and (iv) holds for all a{ G ̂ " ;. Since r/7

satisfies ηjΊ_k < εj/(4 2k) for 7 = 0,1,2,... and A: = 0,1,2,..., as
noted following Lemma 2.7, the "averaged back" bush {Wa)ae^' wiU
satisfy (i)—(iii) with βj replacing ηj. Thus the necessary conclusions
of Theorem 2.1 are met. By the arguments of Theorems 2.3 and 2.4,
(ώ α ) a G y' is well-separated and a strong martingale representation for
its closed convex hull, which therefore fails to have extreme points.
Since (wa)ae^> CK,K fails the KMP.

REMARKS. We conclude with some open questions suggested by our
work. Let K be a closed bounded convex subset of a Banach space X.

Let X have an unconditional skipped-blocking decomposition.
1. Evidently our results yield that if K fails the PCP, K admits a

ίΓ-valued well-separated <J-bush which is a martingale representation
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for its closed convex hull. Can this bush be chosen to be a martin-
gale coordinatizationΊ If X has an unconditional skipped-blocking
decomposition, can the bush be chosen to be a strong martingale co-
ordinatization? Our results show that every ε-bubble of K contains
such a coordinatization. (See the comments at the beginning of §2.)
Hence in particular, the answer is yes if K is the unit ball of X and X
fails the PCP.

2. Does every K failing the PCP admit a AΓ-valued <5-bush which is
a strong martingale representation for its closed convex hull? In view
of Schachermayer's results [S] and Theorem 1.2 an affirmative answer
would, of course, solve the RNP/KMP equivalence problem.
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