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THE KREIN-MILMAN PROPERTY
AND A MARTINGALE COORDINATIZATION
OF CERTAIN NON-DENTABLE CONVEX SETS

HASKELL ROSENTHAL AND ALAN WESSEL

The concepts of (strong) martingale representations and coordina-
tizations are defined, and the notion of a well-separated bush is crys-
tallized. It is proved that if & is a well-separated uniformly bounded
bush such that % is a strong martingale representation for its closed
convex hull W, then W contains no extreme points. It is moreover
proved that if X is a closed bounded convex subset of a Banach space
with an unconditional skipped-blocking decomposition, then X con-
tains such a bush provided K fails the point of continuity property.
This yields the earlier result, due to the authors (unpublished) and to
W. Schachermayer, that for closed bounded convex subsets of a Ba-
nach space with an unconditional basis, the Krein-Milman property
implies the point of continuity property.

1. Let X be a Banach space and C a closed convex subset of X. C
is said to have the Krein-Milman property (the KMP) if every closed
bounded convex subset K of C is the norm-closed convex hull of its
extreme points; C is said to have the point of continuity property (the
PCP) provided every non-empty closed bounded subset K of C has a
weak-to-norm point of continuity (a PC) relative to K; C satisfies the
Radon-Nikodym property (the RNP) if and only if all closed bounded
convex subsets K of C are dentable. For ¢ > 0, say that K is e-dentable
if K has a slice of diameter less than ¢. A slice S of K is a subset of
K of the form

§=58(f a,K)={x € K|f(x) 2 sup f(K) — a}

for some f € X*, f # 0 and a > 0. K is dentable if it is e-dentable
for all e > 0.

It is well-known that the RNP implies the PCP as well as the KMP
(cf. [BR], [DU] and [Bo]). The converse to the first implication is
known to be false (cf. [BR]); the validity of the converse to the second
remains as a fundamental open question.

We introduce here the notions of (strong) martingale representa-
tions and coordinatizations in order to investigate the structure of
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sets which fail the PCP. We obtain the following result:

THEOREM 1.1. Let X be a Banach space with an unconditional
skipped-blocking decomposition and K a closed bounded convex subset
of X so that K fails the PCP. Then there exists a K-valued well-separated
0-bush which is a strong martingale representation for its closed convex
hull.

The conclusion of this theorem is then shown to imply the existence
of a closed bounded convex non-empty set without extreme points.

THEOREM 1.2. Let W be the closed convex hull of a 6-bush satisfying
the conclusion of Theorem 1.1. Then W fails to have extreme points.

Since an unconditional basis is automatically an unconditional
skipped-blocking decomposition, it follows from these two theorems
that for subsets of a Banach space with an unconditional basis, the
KMP implies the PCP. We had originally obtained this result in the
summer of 1985. Our result was motivated by an earlier unpublished
manuscript of W. Schachermayer, circulated in the fall of 1984, which
established that this implication holds for subspaces of a space with
an unconditional basis. In fact, the subspace implication is easily seen
directly, using the results of [BR]. Indeed, suppose X is a Banach space
failing the PCP such that X has an unconditional skipped-blocking de-
composition (G;). It follows by the results of [BR] that there exists a
skipped-blocking (H;) of (G;) which is not boundedly complete. Since
(Hj) is an unconditional FDD, ¢y, embeds in the closed linear span of
the H;’s; so X fails the KMP because ¢, is isomorphic to a subspace
of X. (See §2 for the definition of the notion of skipped-blockings
and skipped-blocking decompositions; these concepts were originally
introduced and developed in [BR] (cf. also [R3]).)

Schachermayer did not use this reasoning, but instead used a con-
struction due to J. Bourgain [B]. This construction was employed by
Bourgain in [B] to show that every Banach space failing the CPCP con-
tains a subspace with an FDD which fails the RNP. (As noted in [BR]
(see also [R3]), the construction shows that in fact a Banach space fail-
ing the PCP contains a subspace with an FDD which fails the PCP.)
Schachermayer observed that one can exploit this construction in the
unconditional setting to directly obtain a convex set without extreme
points. Our earlier proof as well as the arguments of the present work
follow this line of attack.
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Early in 1986, Schachermayer established that the PCP and KMP
jointly imply the RNP in general (in fact, he showed that the SCSP
and KMP imply the RNP, cf. [S] and also [R1]). He also refined the
argument in his earlier unpublished work to obtain the result stated
above and hence deduced that the KMP and RNP are equivalent for
subsets of a space with an unconditional basis. In fact it thus fol-
lows (by the work discussed in this article and the above-mentioned
deep result in [S]) that the KMP and RNP are equivalent for closed
bounded convex subsets of a Banach space X with an unconditional
skipped-blocking decomposition. We are indebted to the referee of
an earlier version of this article for pointing out that there exist Ba-
nach spaces with this property, which do not embed in a space with
an unconditional basis. For example, the referee pointed out that the
space J of R. C. James with dim J**/J = 1 has the /2-skipped-blocking
property, and the .%,,-Schur space B of J. Bourgain and F. Delbaen
has the /!-skipped-blocking property. (Standard known results show
that neither J nor B embed in a space with an unconditional basis.)

Evidently Schachermayer’s discovery that the PCP and KMP jointly
imply the RNP reduces the KMP/RNP equivalence problem to the
study of sets failing the PCP. It is our hope that the techniques and
formulations developed here will be of use in this study.

In the rest of this first section we review the terminology used
throughout and develop the machinery needed to prove Theorem 1.2.
The proof of Theorem 1.1 is presented in the following section. We
recall briefly the bush terminology we shall be using. This is described
in greater detail in [R1].

J *° denotes the set of all finite sequences of integers under the fol-
lowing natural partial order: given a = (ay,...,ax) and g = (f,...,
Bm)InT® a< Bifk <mandqa; =p; forall 1 <i<k. We refer to
the empty sequence & as the top-node of .7 and alternatively denote
this as “0” or ag; if a = (ay,..., ay), the “level” of «, denoted |a/, is
defined as k. (Abstractly, |a| = #{f: B < a}.) A non-empty subset
G of 9 is called a sub-tree of 7 if forall g € Gand a € T
with a < g, a € G. For such a subset G of .7 and a € G, we set
Fa={P€G:a< pfand |B| = |a|+ 1}. Gis called finitely-branching
if 2 < #%, < oo for all « € G. Finally, a finitely-branching tree 7~
can be defined as a partially ordered set which is order isomorphic to
a finitely-branching subtree of 7. Given a finitely branching tree
g, a function g: .9 — R™" is called a bush function if ¢(0) = 1 and
Y pes 0(B)=1foralla € 7. A sub-family (wa)ses of X is called a
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bush if for all a, w, € co{wg: f € #}. It follows that given a bush
(Wa)aes, there exists a bush function ¢ so that w, = } 5o a(B)wp
for all a; when this relation holds, we say that (w,).cs is a bush
with function . Given Jd > 0, a bush (w,).cs is called a J-bush if
llwe — wg|| > d for all @ € 9 and B € . The wedges of a bush
(Wq)acs are defined as W, = co{wg: f > a} for a € J; we set
W = W,. The bush differences (d,).cs are given by dy = wp and
dg =wpg —w, fora €5 and B € %,. A branch B of I is a maximal
well-ordered subset of 7.

Next we formulate our notions of (strong) martingale representation
and coordinatization. We first define the notion of convergence and
strong convergence for a family of elements of a Banach space indexed
by a finitely branching tree.

Let (Xa)oes be such a family. We say that }_ - X, converges if
Y oo Zn converges where z, = Zla|=n Xo. We say that 3 . x, con-
verges strongly if for all € 7, 3 7 Xa CONverges where 73 = {a €
T :a> B}

Let (¢y)acs be a family of real numbers indexed by a finitely branch-
ing tree 9. We say that (c,)ocs is conditionally determined (c.d.) if
Ca = 2 ges cp foralla € . If we also have that ¢o = 1 and ¢, > 0 for
all a € .9, we say that (¢, )acs is normalized conditionally determined
(n.c.d.). We note that if (¢,).cs is n.c.d. and By € 9, the condition
that cg, = 1 ensures that ¢, = 0 unless a > By or 0 < a < fy; of course
then ¢y =1if 0 < B < Bo.

Some “intrinsic” motivation for these notions is provided by the
following lemma.

LEMMA 1.3. Let (wy)acs be a bush with bush differences (dy)qcs -

(@) If (Ca)acs is ncd. and Y ..o Vo converges where y, =
2 pes, Cpdp, then wo + 3 co Vo EW.

(b) Let (Co)acs and y, be as above. If (ya)acs converges strongly,
then for all y € 7 with ¢, # 0, wy + (1/cy) Eaez Yo €W,

Proof. We first note that (b) follows directly from (a). Indeed, fix
y € J with ¢, # 0. By assumption (y,)acs converges strongly; thus
>_aez Vo converges. Note that 7 is a finitely branching tree in its own
right and the desired conclusion is merely a restatement of (a) for the
bush (w,)aes; and corresponding n.c.d. (cj)acs; given by ¢/, = ca/cy
fora € 9.
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To prove (a), let x = wo + Y, Vo and

n n
Xp = Wo + Z Vo = Wo + Z Z cpdpg.
le|=1 lel=1 B
Using the fact that (¢, ).cs is n.c.d. and that d/; = wg—w, for B € F,
a straightforward calculation yields that x, = El fl=n+1CpWp, @ CONVEX
combination of elements of the bush. Since x, — x, it follows that
xeco{w,:a €T} =W. O

This lemma also motivates the following concepts. We say that a
J-bush (wy)aes is a (strong) martingale representation for its closed
convex hull W, if for every Sy €. and x € Wy, there exists (Ca)acs
n.c.d. with ¢g = 1 representing x in the following sense:

X =Wy + Z Ya
a€d
the sum converging (strongly), where y, = } 5., cpdp for all @ €
T, and (d,).cs are the differences of the bush (wy)ees. We say
that (w,)aes 1S a (strong) martingale coordinatization if the above
representation is unique.

As a convenient notational device, we extend a given finitely branch-
ing tree to include a “dummy” node “—1”, which we interpret to be
the predecessor to the top node 0. Thus wg = do = 35  cpdp, and
the above equation reduces to

X= Y Ya

aET*

where 7 is the extension of I and yo = 35, cpdp forall a € 7%

The following martingale interpretation should clarify our choice of
terminology. As is well-known, an arbitrary bush (w,).cs can be as-
sociated with a vector valued martingale (7,) in a canonical fashion,
as follows. Let I' be the set of branches of .77. We then define a proba-
bility space (I', &7, P) by setting foreacha € 7, U, ={y eTl': a € 7},
&y = 0({Uy: |a| = n}) and & = o(%4). The probability measure P
on (I', »7) is determined by its values on the increasing finite algebras
&,. We define these values inductively: P(Uy) = P(I') = 1. If P is
defined on %, and B € %, with |a| = n, then P(Up) = P(U,)t(B),
where 7 is the bush function associated with (Wy)acs -

We now let o, = Z]a _n Woly,, where Iy is the indicator function
of the set U. (uw,) is easily seen to be a martingale with respect to
(%4,). This is our fixed vector martingale.



164 HASKELL ROSENTHAL AND ALAN WESSEL

Now suppose that (w,).cs is a martingale representation for its
closed convex hull. Let x € W and let (c,)acs n.c.d. represent x in
the sense defined above. We define

Ca
Tn= 2w

la|=n

Since (¢,)acs is c.d., (f4) can easily be shown to be a (scalar) mar-
tingale with respect to (%,); since (Cq)qocs is normalized, (f,) is non-
negative and Efy = 1. (For a P-integrable function f on Q, Ef, the
expectation of f, is defined as usual by Ef = [ fdP.) Taking the
expectation of f, - w0, we obtain for all positive n

E(fn 'wn) = Z CaWy = Z Cala.

la|=n la|<n

Thus we have that x = lim,_,., E(f, - Wy).

Conversely, given any martingale (f,) with respect to (%), setting
¢, equal to P(U,) times the fixed value of f, on U, for |a| = n, we
find that (c,)qcs is normalized conditionally determined. It follows
from Lemma 1.3 that if (E(f, - W,)) converges to x, say, then x € W.

We also have that (w,).cs 18 a strong martingale coordinatization
if and only if it is a martingale coordinatization so that for all mar-
tingales (f,) with respect to (%4,), whenever (E(f, - W,)) converges,
(E(fn - W, - 1)) converges for all sets A in the algebra generated by
().

The above observations show that (w,).es is a martingale coor-
dinatization for its closed convex hull W if and only if for each
Xx € W, there is a unique martingale (f,) with respect to (&4,) so
that x = lim,_,. E(f, - W,). We then think of the martingale (f,) as
coordinatizing the point x.

We need one more definition, that of a well-separated bush, before
passing to the proof of Theorem 1.2. For K and L non-empty subsets
of some Banach space, md(K, L), the minimum distance between K
and L, is defined as inf{||k — [||: k € K, | € L}. A bush (W,)secs is
well-separated provided there exists a k > 0 so that

(1) md(K,, Wg) > k for all positive integers n and f € 7
with || =n+1

where K, = co{w,: |a|] = n}. If (wa)a.ecs satisfies (1) we say that
(Wa)aes 18 K-well-separated.
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Our objective is to produce a J-bush (w,)e.cs so that W =
co{w,: a € 7} fails to have extreme points. The following “locates”
the extreme points of .

PROPOSITION 1.4. Let a d-bush (w,)acs be given satisfying:
(%) Foralla e 7, Wy = co{Wg: B € A}

Then for every extreme point x of W, there exists a branch y of I such
that x is an element of the wedge intersection (¢, Wa.

Proof. We sketch a quick inductive proof. Fix an extreme point x
of W. By assumption x € W = W,,. Assume that yo=0<y; < --- <
¥n € have been found with |y;| = jand x € W, forall j=0,...,n.
Applying (x) we have

xeW, =co{Wp: g €5,}

Since x is an extreme point it follows that x € Wy for some g € .7, .
Let y,.; = f. Continuing in this manner, we obtain a branch y =
{70, 71,72,...} sO thatxeﬂaey w,. O

As a consequence of this proposition, given a d-bush (w,)acs Which
satisfies () and has empty wedge intersections (i.e., \,c, Wo is empty
for all branches y of .97), W = ¢to{w,: a € 7} will fail to have ex-
treme points. As we demonstrate below, a well-separated J-bush has
empty wedge intersections (EWI); a bush which is a strong martingale
representation for its closed convex hull satisfies (x).

REMARK. The concept of a bush with EWI was introduced by
R. C. James who established in [J] that a closed bounded convex sub-
set K of a Banach space X such that K fails the RNP contains a d-bush
with EWI (see also [R2]). Condition (x) is related to, but more com-
prehensive than, the notion of a complemented bush, introduced by
A. Ho in [Ho].

We prove the first of the assertions made above.

PROPOSITION 1.5. Let k > 0. If (W,)ecs is a k-well-separated o-
bush, then

(a) md(E, W) > k where E = ;20 Ujajn Wa-

(b) (wa)acs has empty wedge intersections (EWI).

(¢) md(X, E) > k/2.
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[Recall, we regard X as a subset of X**; W, equals the weak*-closure
of W, under this identification.)

Proof. (a) Fix e € E and w € W. We shall show that ||e — w|| > k.
Fix n > 0 and choose w' € co{w,: @ € I} so that ||w' — w|| < 7.
Since (wq,)aecs is a bush, there exists a level n so that w' € K, =
co{w,: |a| = n}. Since e € E we may choose f € 9 with |B|=n+1
and e € Wj. By assumption md(K,, Wp) > k; thus d(w’, Wg) > k
and by the Hahn-Banach theorem d(w’, Wﬂ) > k. It follows that
|le — w'|| > k; thus ||e — w|| > Kk — n. Since 7 is arbitrary, the desired
result follows.

(b) This follows immediately from (a) since E contains the set of
all possible wedge intersections.

(c) This follows from (a) and the following elementary result, es-
tablished in Lemma 2.6 of [R2].

PROPOSITION 1.6. Let W be a closed convex non-empty subset of a
Banach space X and E a subset of W. Then

md(E, X) > { md(E, W). O

We are now prepared for the proof of Theorem 1.2. Let (wg,)ecs
be a well-separated d-bush which is a strong martingale representation
for its closed convex hull W. To prove that # has no extreme points,
by Proposition 1.4 it suffices to show that (w, ).cs satisfies (*) and has
EWI. Since our d-bush is well-separated, it follows from Proposition
1.5 that it has EWI. It remains to show that it satisfies (). This
follows from the strong martingale representation and Lemma 1.3. Fix
a; € . We must show that W, = co{W;: B € 4, }. Fix x € W,,.
By assumption there exists (¢,)qcs n.c.d. with ¢,, = 1 so that x =
Y ac+ Yo With the series converging strongly, where y, = ) pes, Cpdp
for all a. Thus X = Wa, +3 aes, Voo f Welet ky = wy+(1/¢)) Yooeg, Ve
for all y € %4, with ¢, # 0, then k;, is thus well defined and k, € W,
by Lemma 1.3(b). Let A = {y € #,: ¢, # 0}. Since ¢,, = 1 and
(Ca)aes is c.d., we have 3 . o, ¢, = 1. It then follows that

x=zya:wa|+zya

aceT* a€g,,
=D oW+ Y D Ya= D, Gk
VES, VES, 0ET; e,

Thus x € co{W,: y € %, }. O
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2. This section is devoted to the proof of Theorem 1.1. Our
construction actually exhibits a d-bush which is a strong martingale
coordinatization for its closed convex hull (in the proof of Theorem
2.4 use the J-bush (1, )qes instead of (w,)qcs); however, this d-bush
lies in a “bubble” of the original set X (i.e., in a set of the form K+aBy
where a is an arbitrary positive number and By is the closed unit ball
of X) and may no longer lie in K.

We first assemble various structural results. Following [BR], [R3],
we say that (G;)%2, is a decomposition for a Banach space X provided
X is the closed linear span of the G;’s and for all positive integers j,
G, is finite-dimensional and there exist continuous linear projections
P; from X onto G satisfying P; P, = 0 for all j # k. (G;)%2, is called
a finite-dimensional decomposition (an FDD) if it is a decomposition
so that in addition for all x € X, x = }>%| P;(x), the sum converging
in norm. If this sum converges unconditionally for all x € X we say
that (G;)%2, is an unconditional FDD.

Let (G;)72, be a sequence of subspaces of a Banach space X. (H;)32,
is a skipped-blocking of (Gj)?‘;l if there exist sequences of positive in-
tegers (my) and (ng) so that m; < n; + 1 < my,;, and H equals
the closed linear subspace spanned by {G;: i = my, ..., n;} (we write
Hy = sp{G;}}%,,)- A decomposition (G;)%, is a skipped-FDD (resp.
unconditional skipped-blocking decomposition) if every skipped-
blocking (H;)72, of (G})72, is an FDD (resp. an unconditional FDD)
for its closed linear span Sp{H,}%,.

We define the bi-FDD constant for an FDD (Gj);?‘; ytobe d =
supg<; |l 27, Pill. It is easily seen that if (G;) is a skipped-FDD,
then there is a A < oo so that the bi-FDD constant of (H;) is less than
or equal to A for every skipped-blocking (H;) of (G;). We call the
infimum of these possible A’s the skipped-bi-FDD constant of (G;).
It is evident that if (G;) is an FDD, then the skipped-bi-FDD con-
stant of (G;) equals its bi-FDD constant. (As noted in [BR], [R3], any
separable infinite-dimensional Banach space admits a skipped-FDD
with constant at most 1 + ¢, for a given ¢ > 0. Also, it follows from
the results in [BR] that if X has an unconditional skipped-blocking
decomposition, then so does Y for every infinite-dimensional closed
linear subspace Y of X.)

Let 7* be an extended finitely branching tree. We say that a map-
ping t: 7% — N is strongly order preserving if |a| < |B| implies
7(a) < 7(B). The next theorem gives the main constructive element
of our proof.
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THEOREM 2.1. Let (GHR, be a skipped-FDD for a Banach space X
and K a closed bounded convex subset of X such that K fails the PCP.
Then there exists a & > 0 so that for all sequences of positive num-
bers (g;)% _, there exist a finitely branching tree 7, 5-bushes (Wa)acs
and (W,)ocs sharing a common bush function o with (W,)ecs C K, a
skipped-blocking (H )3 of (GHR, and a strongly order preserving bi-
Jjection t: 9% — N so that the following hold for all o € 7* and B € &,
(as usual (dy)acs and (dy)ecs denote the differences of (We)acs and
(Wa)acs respectively):

(i) lldg — dgl| < &qs
(ll) d/g (S H‘t(a)’
(iii) {dg: B € S} is affinely independent.

We shall soon see that if (G;) is an unconditional skipped-blocking
decomposition and if ¢ = }°%2_, ¢; is sufficiently small, then the J-
bush (w,).cs constructed above will satisfy the conclusion of Theo-
rem 1.1. To this end, some preliminary results are useful. We delay
the proof of Theorem 2.1.

We first concentrate on the conditions on (W, ).cs Obtained above.

LEMMA 2.2. Let (H;)%2, be an FDD for a Banach space Y with
corresponding projections P;: Y — H; and A = sup;||P;||. Suppose
(Wa)acs is a 6-bush in' Y with differences (dy)acs and 1: 7% — N is
a strongly order preserving bijection so that for all a € T*:

(i) dg € Hy(y for all B € %, and

(ii) {dg: B € #} is affinely independent.

Then (y)qcs is 0/ A-well-separated and a martingale coordinatization

for its closed convex hull. Moreover the levels of (W,).cs are affinely
independent.

Proof. We first deal with the algebraic assertion at the end. This is
trivial for the Oth level. Proceeding by induction, we fix n > 0 and
assume that for all real numbers (4,) indexed by .7, the nth level of 7,
Yacs Ao =0and ) o AoW, = 0 implies that 4, = 0 for all « € .
We now fix real numbers (43) indexed by 7,41 = {a €T : |a| =n+1}
with 3 s Ag = 0 = X gcq Agwp and show that Az = 0 for all



A MARTINGALE COORDINATIZATION OF CONVEX SETS 169

n+1- a = .
B € Tpy1. Let Ao =3 g5 Ap for all a € 7,. We then have

0= Y Agwg=Y_ Y Ag(wa+dp)

BET a€I, BES,
=Y Ao+ Y Y. Agdp
a€Y, a€d, BES,

It follows that }° .5 AaW, = 0 and -4 Agdg = 0 for all a € .,
since each of these terms lie in disjoint blocks of our FDD.
Since also - co Ao = D BET Ag = 0, by our induction hypothesis
we have A, = O for all « € 9,. We now have for all o« € 9,
Ypes A = 4o = 0 = Yy Apdp and {dp: B € F} is affinely
independent, hence Ag = 0 for all o € 4. Since this holds for all
a €Iy, Ag =0 forall g €5, and we are done.

We now show that (,).cs 1s a martingale coordinatization for
its closed convex hull. Fix f; € . We must show that for each
X € Wﬂo = Co{W,: a > Bo}

there exists a unique n.c.d (¢a)acs With cg =1 and x =

(**) Eaey# YVa where Vo = Zﬂ&% Cﬁ(iﬂ for all a € e7#.

Let L equal the set of all x € Wy, for which (x*) holds (without
the uniqueness assertion). We easily see that wg € L for all g > f.
Indeed, fix 8 > By. We define (c,)q.cs inductively as follows:

For 0 < a < B let ¢, = 1. If ¢, has been defined for all « > # with
|a| = |B| + n for a non-negative integer n, and y € %, a as above,
let ¢, = c,0(y) where o is the bush function associated with (W, )ecs -
This defines ¢, inductively for all « > . If « is incomparable with S
(i.e., neither a < B nor a > B), let ¢, = 0.

Since ¢ is the bush function for (W,).cs, this choice of (¢y)acs
yields

Vo = Z ¢,dy = Z a0 (P)dy = Ca Z o(y)d, =0 foralla>p.

YES, YES, YES

(¢a)acs 1s Obviously n.c.d. and }° .o+ Vo = 2 p<o<p da = Wg.

Next we observe that L is closed. Indeed, let x,, — x with x,, € L
for all n. Letting (c”),cs represent x, and passing to a subsequence,
we may assume that for all @ € I, ¢ — ¢, as n — oo. Note that
(Ca)acs is n.c.d. and cg, = 1. By hypothesis x, = }_ .+ y; where
V4 = Ypes, Cpdp and by (i), y} € Hy) forall a € 7.

Since (H j)‘;‘;l is an FDD, x has a unique representation of the form
X =Y ,eo+ Ua Where u, € Hy, for all a € 7%, the series converging
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in the order induced by 7: 7% — N. The sequence (x,) converges to
x, hence by continuity of the projection onto each H;(,) we must have

Z cgcfﬁ —u, forallaeg*
BES

We trivially have that 3- 4. . cjdg — 3 e cpdp which must there-
fore equal u,. We thus have x = }_ .+ u, Where u, = > pes cpdp
for all « € 7*, the series converging in the order induced by 7. Since
7 is strongly order preserving, T enumerates fully each level of 7* be-
fore passing to the next. It follows that ) _..u, converges to x in
the usual sense. This proves that L is closed. Since L is obviously
convex, it follows that L = Wy, .

To show that each x € Wy, has a unique n.c.d. representation
(Ca)acs, it suffices to show that if (¢4)aes is .d., 3 c o+ Vo = 0 where
Vo= Y pges cpdp foralla € 7% and 3 o, cp = 0 for some a € T7,
then ¢y = 0 for § € . This is easy to show. Since we have an
FDD, §o = Y e cpdp = 0 for all a. Since 345, cp = 0, the affine
independence of {dg: f € %} ensures that ¢y = 0 for all § € %%.

Next, we show that (W,)ecs is d/A-well-separated. Fix x € K, =
co{wW,: |a| = n} and y € Wy = co{w,: y > B} where g € %, for
some «; with |a;| = n. Using (i) and the fact that 7 is strongly order
preserving, we can find integers j < k so that co{w,: |a|=n} C H =
sp{Ho....,H;} and dg € H,. We next note that y = @,, +dg +r
where r € Sp{H;: i > k}. We now obtain

1 |
- > Z — ——
llx = Il 2 Z|1Pe(x = Y)Il = = [dgl|

where Py is the projection associated with H; and A = sup; || Pj||. Since
|ldg|| > & we obtain the desired result. O

We now draw some further consequences from the results of Theo-
rem 2.1.

THEOREM 2.3. Let (Wy)acs and (Wq)acs be as in Theorem 2.1,
W =Wy=00{w,: a >0}, W=Wy=720{w,: a >0} Then

(a) (Wq)acs is 8/ A-well-separated and a martingale coordinatization
Jor W, where A is the skipped bi-FDD constant for ( G,

(b) Let (ca)acs be n.c.d. and for all o« € T% let yo = 3 pc 5 cpdp
and y, = 2 pes, cﬂcf,;. Then Y .o+ Yo converges (respectively con-
verges unconditionally) if and only if 3 . -+ Vo converges (respectively
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converges unconditionally). Here the mode of convergence is taken to
be that induced by t: 7* — N.

(c) There is a uniformly continuous closed surjective affine map
o: W — W with ¢p(0,) = w, and ¢(W,) = W, for all a € I and
llp(x)=x||<e=372_,¢ forallx e W.

(d) (Wa)aes is (6/4 — 2¢)-well-separated provided ¢ = 3222 ¢; <
0/(24).

Theorem 1.1 now follows immediately. In fact, we obtain the fol-
lowing result.

THEOREM 2.4. Let X be a Banach space with an unconditional
skipped-blocking decomposition and let K be a closed bounded convex
subset of X so that K fails the PCP. Then there exists a well-separated
K-valued 6-bush (w,)acs Which is a strong martingale representation
for its closed convex hull.

Proof of Theorem 2.4. Let K and X be as above and (G;)%, be an
unconditional skipped-blocking decomposition for X. We first apply
Theorem 2.1 with Zj?‘;_l €j < d/(24), where 4 is the skipped-bi-FDD
constant for (G;)52,, to obtain a skipped-blocking (H;)32, of (G;)R2,,
J-bushes (Wy)aes and (104 )aecs, and a strongly order preserving bijec-
tion 7: 9% — N satisfying (i)-(iii) of Theorem 2.1.

It now follows from Theorem 2.3(a) that (W,).cs is d/A-well-
separated and a martingale coordinatization for W. Thus for all
Bo € T and x € Wy, = Co{wg: B > Py}, there exists (Ca)acs n.C.d.
with cg, = 1 s0 that X = 3,5+ Vo Where Jo = 35, cpdy for all
a € 7*. Since (H;)%, is an unconditional FDD and y, € H¢(a) for
all o €  (condition (ii) of Theorem 2.1), X = }_ .5+ Ja, the sum
converging unconditionally in the order induced by 7. Since 7 is a
strongly order preserving bijection, it follows that this sum converges
strongly. Thus (W, ).c is a strong martingale coordinatization for its
closed convex hull.

We now show that (w,).es is a martingale representation for its
closed convex hull. It then follows immediately from Theorem 2.3(b)
and the argument above that it is a strong martingale representation
and Theorem 2.3(d) tells us it is (6/4 — 2¢)-well-separated,where & =

(o]

j=—1 8] . -
We now fix x € Wpy. By Theorem 2.3(c) there exists an x € Wp,

with ¢(X) = x. Since (W,).cs 1S a martingale coordinatization, we

can represent X (using the alternate notation) X = lim,_, Elal=n CaWqy
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where (¢,)acs is n.c.d. and cg, = 1. Since ¢ is affine, continuous and
maps each w, to w,, it follows that x = lim,_, ZM:n CoW,. Thus
(wq)aes 1s indeed a (strong) martingale representation for its closed
convex hull. 0

Proof of Theorem 2.3. (a) follows immediately from Lemma 2.2.

(b) is immediate from the fact that 3 v ||Va — Jal| < c0. The
latter is a consequence of the fact that each d, is a suitably small
perturbation of d,,.

Do va=dall < Y0 Y cplldg —dgll

a€T* a€T* e,
o0 o0 o0
< Z Z Zc/;s,,= Z Ecas,,= Za,,=£<oo.
n=-1|a|=n BES, n=—1|a|=n n=-1

(c) We define ¢ as follows: Given X = }_ o+ Z/}e % cﬂJﬂ, we let
9(X) = 2o+ 2pes, ¢pdp- (Equivalently if X = limy—o0 3o =y CaWas
let ¢(x) = lim, Z|a|=n CaW,, from whence it follows that ¢ is affine
and ¢(w,) = w, for all « € 7.) Note that the estimate ||¢(X) — X|| <
Y521 ¢; forall x € W follows from the proof of (b). It follows from
(a) and (b) that ¢ is a well-defined map.

We next show that ¢ is uniformly continuous. Let X, — y, — 0
in W, and let (¢/)aecs and (€?),cs represent X, and p, respectively.
We shall show that ¢(x,) — ¢(9,) — 0. Since (H;) is an FDD it is
immediate that

(2) Y cpdg— Y epdsg—0 forallaeg™

BeS Bes.,
We claim that
(3) ¢y —ey—0 forallaed.
This follows from a simple inductive argument once the following fact
is established. Fix d,...,d, affinely independent elements of a Ba-
nach space X,and sequences of scalars (cf'), ..., (cg)and (ef),...,(e}).
If

k k k k
> crdi—-Y eldi—0 and Y - e —0,
i=1 i=1 i=1 i=1

then ¢! — e — O forall i = 1,...,k. This is easily established. We
work in the product space X x R and choose u so that dy+u,...,d;+u
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are linearly independent (e.g., u = 0 ® 1). We then have

k
> (cf —ef)(di+u) — 0;
i=1
by the linear independence of these terms, the desired result follows.
We now present the inductive argument that ¢? — €7 — 0 for all
a € . This is trivially true for a« = 0. Fix n > 0 and assume that
c? —e — 0 for || = n. Fix such an o € 9. It follows from the
argument just given that cg - eg — 0 for all B € . Indeed, we
know that 3. o cgdp — o ges €jdp — 0, {dp: B € S} is affinely
independent, and by the induction hypothesis and the fact that for all
n, (c)acs and (e),cs are c.d., we have

S - Y ej=ci-er o
BEZ, I3

We now conclude the proof that ¢ is uniformly continuous. Fix
n > 0. First choose N so that

4) D& <
J2N
Recall that X, — y, — 0. Since (H;) is an FDD, it follows that

D D (ch—epdy

la|2N pes,

— 0.

Choose an integer #n; so that

Y. D (cp—epds

(5)

<n forall n> ny.

We can now estimate

> D (5 —epds

llo(Xn) — @(Pn)ll =

a€ET* BES,
< DZ Do (ch—epdg||+|| 2o X (cj—epdy].
a€T* BES, a€T* BEY
la|<N la|>N

Since the first expression contains only finitely many terms and cg -
e; — 0 for each B € 7, we can find an integer n, > n; so that this
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expression is less than »n for n > n,. The second expression satisfies

D D (ch—epds

a€.7" Be'Zr
la|2N

< Z (cg —ep)(dg —dp)|| + E (cj —ep)dp
aET* a€T?
la|2N la]>N

<Y D0 D (cp+eplldg—dgll+n forn>=ny by (5)

n=N a€.7" ﬂE'ZI
la|=n

Z Z Z (cg +ep)en+n by (i) of Theorem 2.1
n=N

aeT* BES
le|=n

IA

IA

o0
2 Z én+1n since (cg)pes and (eg)pes are n.c.d.
N

n=
<3n by (4).
It follows that ||¢(X,) — @(7n)|| < 4n for all n > n,.

We now establish that ¢ is closed. It is then immediate that it is
surjective (since co{w,: a € 9} is trivially dense in W). Let 4 be a
closed non-empty subset of W and (X,) be a sequence in 4, x, = ¢(X,)
for all n, and assume that x, — x. For all n let (c?),cs represent x,;
by passing to a subsequence we may assume without loss of generality
that ¢! — ¢, for all « € 9, where (c4)qcs 1S, Of course, n.c.d.. (It is
not yet apparent that (c,).cs represents x!)

We claim that (X,) is Cauchy. It then follows that (X,) converges.
By the arguments presented above, we know that X, — X where X is
represented by (c,).cs. Hence x = ¢(X), and X € A4 since A4 is closed.
Let # > 0. We show that for n, m sufficiently large, ||X, — Xm|| < 47.
This follows from another perturbation estimate. First, choose N so
that ) >N € <1 As before, we need only show that

(6) D D (ch—cpdpl| <3

a€ET* BES,
la|>N

for n, m sufficiently large, since we can then control the finite number
of initial terms.
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Since (x,) converges and also (3 o+ jaj<nv 2o pges, C5da) CONVErges,
we have that (3_,cv. 01> N 2 pes, Cda) converges and is thus Cauchy.
Hence for n, m sufficiently large,

(7) Yo D (ef—cpydgl| <m

a€T* fES,

la|>N
Estimating the left-hand-side of (6) by means of (7) and the pertur-
bation technique used above yields the desired result.

Since ¢ is affine and ¢(w,) = w, for all a € 7, to prove that
o(W,) = o(W,) for all a € 7, it suffices to regard the subtree I, =
{p € T : B > a} as a finitely branching tree in its own right and apply
the proof just given that p(W) = W.

(d) Fix an integer n, x € K, = co{w,: |a|] = n} and y € Wy
with f € 9 and |f| = n+ 1. It follows from (c) that there exist
X € K, = co{w,: |a|] = n} and y € Wy with ||X — x|| < ¢ and
[|l7 — y|| < e. Since (W, )acs is d/A-well-separated, ||x — y|| > d/1 — 2¢
and hence (Wq)acs is (0/A — 2¢)-well-separated provided (/4 — 2¢) is
positive. O

We finally present the proof of Theorem 2.1. We construct the de-
sired d-bush by “averaging back” from a suitably chosen approximate
bush. Let (¢ j)g‘;o be a sequence of positive numbers. An approximate
d-bush corresponding to (g; )52 is a bounded family of elements of a
Banach space (w,)q.cs, indexed by a finitely branching tree .77, which
satisfies:

<éq and ||lwa—wpl|>d for f €%,

We — Z O'(ﬂ)'ll)ﬁ

BESZ

where o is a bush function.

The following result is a useful “trick-of-the-trade”. It can be proved
directly. The most elegant proofs, however, involve martingale tech-
niques (cf. [KR]) and make use of the correspondence between bushes
and approximate bushes on one hand, and martingales and quasi-
martingales on the other (see the discussion following Definition 7.5.2
in [Bo]).

PROPOSITION 2.5. Let (w,)acs be an approximate &-bush with bush
function a corresponding to a summable sequence of positive numbers
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(/)50 which satisfy ' = — 2% n; > 0. Then there exists an “aver-
aged back” &'-bush (W,)acs such that

We €ECO{wg: BET}, We= Z o(B)wp and
Bes,

o0
e —wall < > n; forallacd.
J=lal

We shall need the following two lemmas, which investigate the
neighborhood structure of a closed bounded convex set failing the
PCP. The first lemma is a slight modification of Lemma 2 in [BR]
and is proved in [R3].

LEMMA 2.6. If a closed bounded convex subset K of a Banach space
X fails the PCP, then there exist 6 > 0 and a nonempty closed subset
A of K such that every relative weak neighborhood in A has diameter
greater than 496.

The next result is a “localized” version of Lemma 10 in [B] and is
proved in [W].

LEMMA 2.7. Let A and 6 be as in the conclusion of Lemma 2.6.
Then for all x € A and relative weak neighborhoods N (x) of x,

(8) x € To{(4\B(x,26)) N N(x)}

where B(x, 1) is the closed ball of radius 1 centered at x.

We now begin the main construction. Let X, K, and (G;)52, be as
in the statement of Theorem 2.1. Applying Lemmas 2.6 and 2.7, we
obtain a closed subset 4 of K and J > 0 so that (8) holds for all x € 4
and relative weak neighborhoods N(x) of x.

Let (¢j)72_, be an arbitrary sequence of positive numbers. We need
to produce a K-valued d-bush (w,)q.es With bush function o, a d-bush
(Wa)aes sharing the same bush function, bush differences (d,)acs
and (d,).c7, a strongly order preserving bijection 7: 9% — N, and
a skipped-blocking (H; e of (Gj)f2, satisfying for all a € T * and
B € F:

(i) l|dg — dgll < &>
(ii) dp € Ho),
(iii) {dg: B € #} is affinely independent.
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We first claim it suffices to construct a J-bush (0, ).cs along with
an A-valued approximate 20-bush (w,).cs With differences (d,)acs
corresponding to a suitably chosen (7 )20 depending on (¢;)% _,, sat-
isfying (i) (with 5|, replacing &,|), (ii), and (iii). Indeed, let (wWa)acs
be such an approximate bush. Proposition 2.5 then guarantees the “av-
eraged back” bush (W, )acs is K-valued, a 5-bush solongas2) 7, <9

and satisfies

[e.e]
l|Wa — wal| < Z nj-
Jj=la|
Letting (Ja)ae + denote the differences of (10, )scs and fixing a € 7%
and B € .%,, we then have

ldp = dgll = lhwp = wa = (g = W)l < 3 1y + > 1y
J=|8l j=lel

Since by hypothesis we additionally have ||dg — dgl| < 7}y, it follows
that

oo
ldg —dgll <23 my.
J=lef
Thus given (€)% 1> for suitably chosen (7; 2o (e.g., choose ()50
so that 23°%,7; < & and 7.4 < &/(4-2%) for j =0,1,2,... and
k =0,1,2,...) and corresponding approximate bush, the “averaged
back” bush will have the desired properties.

Thus to prove Theorem 2.1, given (¢ )52y an arbitrary sequence of
positive numbers, it suffices to construct an 4-valued approximate 2J-
bush (w,).cs and a d-bush (W, ).cs sharing the same bush function
o, with differences (d,,)ocs and (d,)acs respectively, and 7: 7% — N
and (H,) as above, satisfying (i)-(iii) for all « € 9% and B € %, and

(iv)

Wo — Z a(ﬂ)w,;

Be~,

Y a(Bdg

B,

<égq forallaes.

We carry out the construction using Lemma 2.7; the weak neigh-
borhoods we use will be of the form:

N(x)={y € 4: ||ISm(y — x)l| < &}

for some ¢ > 0 and positive integer m, where S, (y) = ;":1 Pi(y),
the natural projection of y onto the span of the first m G;’s. (Recall
that for all i, P; is the projection associated with G;.)
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We construct the bushes by induction on the lexicographic order
induced by the strongly order preserving bijection 7, which we simul-
taneously define, beginning with the top-most level and enumerating
each node of a given level before passing to the next level. Thus when
all the nodes of a given level have been enumerated by 7, all the nodes
of the succeeding level are defined. At a given node o, we define 7(a),
construct the successors % of a, the differences of the bushes (dg)
and (dg) for B € % and a skipped-blocking H(,) of (G))%2, so that
(i)-(iv) hold for this o and B € .%,.

We begin with the “dummy” index “—1”, define 7(—1) = 1 and set
Z 1 = {ag}, where ag, the empty sequence, is the top node of our
finitely branching tree. (To avoid confusion, we refrain from using
the notation ag = 0 here.) Recall that the sole purpose of the dummy
index is to write ap as a successor. We now let w,, = do, be an
arbitrary element of A4, set m; = 1, and choose n; > m; so that there
exists

doy € Hy € sp{G}1e,,  with ||da, — day| < &1.

Set W,, = d,,. (i)-(iii) then trivially hold for @ = —1; (iv) does not
yet apply.

Let j > 1 and assume that the construction has been carried out
for a with 7(a) < j, with m; < n+1 < my <---<m; <n;+1
and H; = sp{Gy},;_,, fori=1,...,j. Choose a with 7(a) = j and
let kK = |a|. If there exists a node «; on the kth level for which 7
has not yet been defined, let 7(a;) = j + 1. Otherwise choose an
arbitrary node «; on the (k + 1)st level (these nodes all exist since by
hypothesis the successors to the kth level have then been constructed)
and let 7(a;) =j + 1.

Let n = ¢j,,/5. We apply (8) with x = w,, and N(w,,) = {y €
Az ||Sn 1 (v = )| < ).

Since w,, € A' = TO{(A\B(w,,,20))NN(w,,)} there exist an integer
n,wi,...,w, € A"and 4, ..., 4, non-negative numbers with > 1, = 1
so that

n
Wq, — Z Aiwi

i=1

<n and ||wa, —w;]|>25 fori=1,...,n

By our choice of N(w,,), we additionally have

[[Sn,+1(di)ll <n fordi=w;—w, andi=1,...,n
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Note that

(9)

<

n n n
D didi| =D Awi =Y A,
i=1 i=1 i=1

Weset m;. = n;+2 and choose ;. > mj, so that ||d;—S,, di|| <
nfori=1,...,n. Setting d] = (Sy,, — Sp,+1)d;, we then have

(10) ld! —dil| <2n and d! e Hj, < sp{G)}r

I=m,,,
fori=1,...,n

Before we define our bush elements, we make adjustments and pare
down these sets. Let d} =d[ - 37_,4;dj fori=1,...,n. Then

n
Zl;d,f':O,d,f’eHjH fori=1,...,n, and

i=1

n
> Ad;

lldi — dill < l1d; — dill +

j=1
n
<20+ (> Adj|| + > Alld;—djll by (10)
j=1
<2n+n+2n by (9) and (10)
= &j+1-

Since Z;’zl A;d} = 0, we can choose an affinely independent subset
{di,....d,} of {d},...,d]} and non-negative numbers o1, ..., g, with

"_10i = 1and Y/_, 0;d; = 0. Relabeling if necessary, we now let
{dy,...,d,} be the corresponding subset of the original d;’s. We then
still have

ldill > 26, ||di—dill <ejs1, di€Hjy and
Wo, +d;€A fori=1,...,r

Note that

r
+> ailldi — dil] <0 +ej41.

i=1

<

r r
ZO’,‘d,‘ EO’,’J{
i=1 i=1

We now define the successors of a; to be (aj,1),...,(ay,r), where
(a, i) is the (|a| + 1)-tuple of integers for which the first |«| terms
coincide with o and the last term equals i. Relabeling with these
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indices, and setting o((a,i)) = g; for i = 1,...,r, it is clear that
(1)—(iv) are satisfied. This completes the proof of Theorem 2.1. O

We wish finally to isolate out the main constructive step in the
proof of Theorem 2.1, which we use to produce a well-separated -
bush which is a strong martingale representation for its closed convex
hull. We thus obtain a criterion which insures that a closed convex
set fails the KMP. The criterion is essentially the same as the one for-
mulated by W. Schachermayer in [S] and in his earlier unpublished
work. For possible future applications, we formulate the criterion
in terms of unconditional decompositions which are not necessarily
finite-dimensional.

Let X be a Banach space and (H;)%2, be a sequence of closed linear
subspaces of X so that (H;) is an unconditional decomposition for
its closed linear span. It follows that there exists a A < oo so that
[12-¢;hjl| < A|l 3 Aj|| for all choices of signs ¢; = +1 and hj € H}, j =
1,2,..., with finitely many of the /;’s non-zero. The smallest possible
A so that this holds is the unconditional decomposition constant of
(H j)?il . Itis easily seen that in case the H’s are all finite-dimensional,
the bi-FDD constant of (H;)$2, is no greater than its unconditional
decomposition constant. We note that in the setting of Theorems
2.1 and 2.3, if the H;’s form an unconditional FDD, it suffices for
the mapping 7: 9% — N to be an injection, since we can use the
unconditionality to re-order the H;’s if desired.

PROPOSITION 2.8. Let X be a Banach space, K a closed convex subset
of X, and let (H )52 be a sequence of closed linear subspaces of X
so that (H;) is an unconditional decomposition for its closed linear
span; let A be the unconditional decomposition constant of (H;) and let
6>0. Let¢; = a/2/ and nj = a/(2/4) for j = —1,0,1,..., where
@ > 0 is chosen so that 3232 ¢; < 6/(24) and 23"2n; < 6. Let 7
be a finitely branching tree, (W,)ocs a K-valued approximate 26-bush
corresponding to (n;/ 3)%0 and 1: 7* — N an injection so that for all
a€IT*and B €%,

d(dg, Hya)) < Mal/3.
Then K fails the KMP.

We sketch the proof. Let (w,).cs have bush function A. First, we
pare down 7 to produce a finitely branching tree .7/, and a d-bush
(Wa)acs along with the pared down version of our approximate 24-
bush (w,)aes+ Which now share a (new) bush function . We proceed
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in a lexicographic order. At the top-most node there is little to do; we
select dy = g € Hy(_y) so that

lldo—d||<—<'1| 1>

and add the 0 node to 7”'. Say we are now at a node a; € 7" so that
the successors to «; have not yet been defined. We know that

Wa, — Y AB)w

pes,

nla.

where %4, denotes the successors to «; in 7. For f € %4, we select
a’,’9 € H,,,) satisfying
"Iaxl

lldg — dpll <

Following the procedure outlined followmg Equation (10), we set d; =
dy — Eﬂex, A(B)d for B € #, and pare down the set %, to obtain
., the successors to o in 7, and the values of the bush function
a(pB) for B € %, along with the corresponding (JI;) pes, and differ-
ences of the original approximate 2d-bush (dg)se X for which the
following estimates now hold for g € &
(i) lidg ~ dgll < M

(i) dj € Hrga,,

(iii) {dp: B € & } is affinely independent,

(W) | Epesry 7(B)gl < M.
Continuing in this fashion, we obtain the desired pared down tree 7’
and J-bush (W, ).cs along with (w,)a.ecs so that (i)—(iii) hold for all
o) € 9" and all B € %,, and (iv) holds for all a; € I”. Since 7,
satisfies #;,, < ¢;/(4-2K) for j =0,1,2,... and k = 0,1,2,..., as
noted following Lemma 2.7, the “averaged back” bush (W, )acs Will
satisfy (i)-(iii) with ¢; replacing #;. Thus the necessary conclusions
of Theorem 2.1 are met. By the arguments of Theorems 2.3 and 2.4,
(Wqa)aecs 1s Well-separated and a strong martingale representation for
its closed convex hull, which therefore fails to have extreme points.
Since (Wq)eecs C K, K fails the KMP.

REMARKS. We conclude with some open questions suggested by our
work. Let K be a closed bounded convex subset of a Banach space X.

Let X have an unconditional skipped-blocking decomposition.

1. Evidently our results yield that if K fails the PCP, K admits a
K-valued well-separated d-bush which is a martingale representation
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for its closed convex hull. Can this bush be chosen to be a martin-
gale coordinatization? If X has an unconditional skipped-blocking
decomposition, can the bush be chosen to be a strong martingale co-
ordinatization? Our results show that every e-bubble of K contains
such a coordinatization. (See the comments at the beginning of §2.)
Hence in particular, the answer is yes if K is the unit ball of X and X
fails the PCP.

2. Does every K failing the PCP admit a K-valued d-bush which is
a strong martingale representation for its closed convex hull? In view
of Schachermayer’s results [S] and Theorem 1.2 an affirmative answer
would, of course, solve the RNP/KMP equivalence problem.
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