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OPERATOR ESTIMATES USING
THE SHARP FUNCTION

DOUGLAS S. KURTZ

Let f* be the sharp function introduced by Fefferman and Stein.
Suppose that T and U are operators acting on the space of Schwartz
functions which satisfy the pointwise estimate (Tf)*(x) < A\Uf(x)\.
Then, on the LP spaces, the operator norm of T divided by the opera-
tor norm of U is bounded by a constant times p. This result allows us
to obtain the best possible rate of growth estimate, as p —> oo, on the
norms of singular integrals, multipliers, and pseudo-differential oper-
ators. These estimates remain valid on weighted LP spaces defined
by an ̂ oo weight.

Introduction. Let S? be the space of Schwartz testing functions and
suppose that T and U are two operators acting on S?. Assume that
for all / G S? we have the pointwise inequality

(1) {Tff{x)<A\Uf(x%

where g* is the Fefferman and Stein sharp function. It is well known
that (1) implies the LP inequality | |Γ/ | | P < C(p)\\Uf\\P9 1 < p < oo,
where the constant C(p) grows exponentially in p. Moreover, these
norms can be replaced by a weighted norm as long as the weight sat-
isfies the Aoo condition.

In fact, inequality (1) implies a much stronger result. We show
that as long as Tf satisfies mild growth conditions for all fe<9*9 the
constant C{p) grows linearly in p. This result is then used to prove
best possible norm estimates for a large class of singular integral and
multiplier operators.

The proof of the main theorem is based on a better understand-
ing of the distribution function of the sharp function. The standard
norm estimate for the sharp function is a consequence of what is re-
ferred to as a "good-λ inequality." In Lemma 1 we improve the good-A
inequality by showing

(2) w({x e Rn: \f(x)\ > Bf*{x) + λ}) < εw({x e Rn: \f(x)\ > λ}).
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Using this inequality and considering non-increasing rearrangements
of / and /* we are able to derive

THEOREM 1. Let w e Aoo. There is a constant C, depending on w
and n so that if f is locally integrable and w({x e Rn: \f(x)\ > λ}) <
+00 for all λ > 0, then

\\f\\p,w<C-p\\f*\\p,w, l<p<OO. D

Thus, we get that the ratio H/HpWH/ΊUn; grows linearly in/?. This
estimate allows us to obtain relatively sharp operator estimates from
an inequality like (1).

The paper is divided into three sections. In the first section, we
consider the sharp function itself and prove our basic results. The
second section derives the consequences of the estimate (1). Finally, in
§3, we list known cases of the estimate (1) and discuss some situations
where it implies best possible estimates.

1. Results for the sharp function. Let g be a locally integrable func-
tion on Rn. We define the sharp function of g by

g#{x) = sup -^ f \g{y) - gQ\ dy,
xeQ \Q\ JQ

where gQ = (l/Q) jQg(y)dy. The sharp function was introduced
by C. Fefferman and E. M. Stein in [13]. Let w be a non-negative,
locally integrable function. For any Lebesgue measurable set E, let
w(E) = JE w(x) dx. We say that w satisfies the A^ condition if given
ε > 0 there is a δ > 0 so that for any cube Q cRn and any measurable
set E c Q, m(E) <δm(Q) implies that w(E) <εw(Q).

All of our results are based on the following lemma. Its statement
and proof generalizes those of Theorem 4.1 of [2], as well as the orig-
inal result proved by Fefferman and Stein.

LEMMA 2. Let w e A^. Given ε > 0, there is a constant By depend-
ing on w, ε, and n, so that for all locally integrable functions f and
λ>0,

w({xeRn:\f(x)\>Bf(x)+λ})

<εw({xeRn: |/(*)| >λ}). D

Proof Fix ε > 0. Let Eλ = {x eRn: \f{x)\ > λ}. Without loss of
generality, we may assume that 0 < w(Eλ) < 00, and hence that / is
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not identically constant. It follows that f*{x) > 0 for all x eRn and,
moreover, that essinfρ/^ > 0 for any cube Q.

Let G be an open set containing Eχ such that w(G) < 2w(Eχ). By
Lemma 3.1 of [2], we can cover G by a sequence of nonoverlapping
cubes {Qk} so that m(Qk) < 2m{Qk\G) and Σ™(Qk) < Cw(G),
where C depends only on w, ε, and n.

Fix Q e {Qk}- The argument used to prove Theorem 4.1 [2] shows
that \fQ\ < 2f*{x) + A for all x e Q. Set / = essinfρ/* > 0. Let
μ = j / + |/ρ| and E = EμnQ, with J to be chosen. Again, arguing
as in Theorem 4.1, (μ - \fQ\)m(E) < m(Q)f#(x) for all x e Q. This
implies that %Im(E) < I m(Q)9 so that m(E) < δm(Q). Therefore, if
we set B = 2 + y, we have

m({xeQ:\f(x)\>Bf*(x)+λ})

= m({x e Q: \f(x)\ > ±f(x) + [2J*(x) + A]})

< m({x e Q: \f(x)\ > $1 + \fQ\}) = m(E) < δm(Q).

Now, choose δ corresponding to e/2C in the definition of A^. Then,

w({* G Q: \f(x)\ > Bf(x)+λ}) < (e/2C)w(Q).

Since this is true for all cubes in {Qk} and the cubes are disjoint,

w({xeRn:\f(x)\>Bf*(x)+λ})

< (ε/2C)Σw{Q)< (e/2)w(G) < εw(Eλ). π

Define the generalized Hardy-Littlewood maximal function of g by

Mrg(x) = sup (^j \g(y)\rdy^j , 1 < r < oo,

where the supremum is taken over all cubes Q which contain x. The
lemma is also true with |/ | replaced by Mf = M\f in the conclusion.
This improves the estimate of Fefferman and Stein [13].

Let q > 0 and define the sharp function g* by

1 r \ι/q

— \g{y) - gQ\*dy) .
\Q\jQ J

By Holder's inequality, for q > 1, g*(x) < gq{x) so that Lemma 2
is valid with /* replaced by f*. Further, for 0 < q < 1, we can use
the argument above, with the minor changes that \/Q\ < 2χlqf*(x)+λ
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and m(E) < διlqm(Q). This generalization is useful for one of the
applications.

The proof of Theorem 1 is now fairly straightforward. (See, for
example, [1].) Define the non-increasing rearrangement function of/
with respect to w by

f*(ή = inf{A > 0: w({x e Rn: \f(x)\ > λ}) < t).

Let λ = fa(2t) and ε = 1/4 in Lemma 2. By the definition of the
non-increasing rearrangement,

Iterating this inequality, we have
POO

fw(t) < C / (fγw(s) ds/s + lim f*(s),
Jt/4 s^°°

where the limit term is zero by the assumptions on / . The theorem
now follows by an application of Hardy's inequality.

2. Pointwise estimates and good-Λ inequalities. Let T and U be two

operators acting on S?. Say that T and U satisfy condition S with
respect to w if for all / e S?\

(i) Tf is locally integrable,
(ii) w({x e Rn: | Γ / ( J C ) | > λ}) < +oo, for all λ > 0,

(iii) {Tf)*{x)<A\Uf{x)\2i.t.
From Theorem 1 we have

THEOREM 3. Let w e Aoo and suppose that T and U satisfy condition
S with respect to w. There is a constant C depending on w, A, and n
so that

WTfWpw < C p\\Uf\\p,W9 \<p<oo. D

However, from Lemma 2 we can derive more. If we set C = AB,
then

w({x:\Tf(x)\>C\Uf(x)\ + λ})

<w({x:\Tf(x)\>B(Tf)*(x) + λ})

<εw({x:\Tf(x)\>λ}).

Thus, we have

LEMMA 4. Let w e A^ and suppose that T and U satisfy condition
S with respect to w. Given e > 0 there is a constant C depending on
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w, e, Af and n so that

w({x: \Tf{x)\ > C\Uf(x)\+λ})<εw({w: \Tf(x)\>λ})

for all fe<9> and λ > 0. D

In fact, the lemma is true as long as T and U satisfy (i) and (iii).
We observe that this "good-Λ," type inequality is actually stronger than
the more standard estimate of this type. Setting C = l/δ, we get an
estimate of the form

w({x: \Tf{x)\ > 2λ and \Uf{x)\ < δλ}) < εw({x: \Tf(x)\ > λ}).

Additionally, Lemma 4 implies Theorem 3 while this last inequality
does not.

By condition (ii), (Tf)*(t) —> 0 as t —• oo. Therefore, arguing as in
the proof of Theorem 1, Lemma 4 implies

LEMMA 5. Let w e Aoo and suppose that T and U satisfy condition
S with respect to w. Then, there is a constant C depending on w, A,
and n so that for f e S? and t > 0,

(τfγw{t) < c
h/4

In general, our interest is to derive properties of T from ones sat-
isfied by U. Suppose that U satisfies weak-type (r, r), r > 1, and
strong-type (oo, oo) conditions with respect to a fixed weight w. It fol-
lows that the norm of U is bounded for large p, so that Theorem 3
implies

COROLLARY 6. Let w e A^ and suppose that T and U satisfy con-
diton S with respect to w. IfU satisfies weak-type (r,r), r > 1, and
strong-type (oo, oo) conditions with respect to w, then there are con-
stants Po> r and C, depending on w and A, so that

\\Tf\\PtW < C p\\f\\p,w, Po<P<oo. Π

Further, by Calderόn's theorem [5],

(UfTw(t) <
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Using this estimate in the conclusion of Lemma 5 yields

COROLLARY 7. Let w e Aoo and suppose that T and U satisfy con-
dition S with respect to w. IfU satisfies weak-type (r,r), r > 1, and
strong-type (oo, oo) conditions with respect to w, then there is a constant
C so that for feS* and t > 0

(Tfyw(t)<
Jo s Jt s )

Inequalities such as this have been studied by Calderόn [5] when the
operator T satisfies various weak-type conditions and later generalized
by Bennett and Rudnick [4]. This result shows that they follow from
properties of U.

Analogs of Corollaries 6 and 7 follow when U satisfies two weak-
type conditions or weak-type (p,q) conditions. Since most of our
applications use majorants which are bounded on L°°, we do not state
these corollaries in such generalities.

3. Applications. There are many applications of the estimate
(Tfγ(x) < A\Uf(x)\. It follows from Theorem 1 that in some cases
this inequality can be used to prove sharp estimates on the rate of
growth of the norm of the operator T.

This estimate was first used by Cordoba and Fefferman [12] to study
singular integral operators with kernels satisfying a gradient condition.
It was later generalized by Kurtz and Wheeden [16] to more general
singular integral operators.

Let Σ = Σrt_i = {x eRn: \x\ = 1}. Given a rotation p, set \p\ =

DEFINITION 8. Let Ω be defined on Σ and satisfy JΣΩdσ = 0. For
1 < r < oo, define the //-modulus of continuity of Ω on Σ by

ωr(δ)= sup ( f\Ω(x)-Ω(px)\rdσ(x))
\p\<δ

with the obvious modification when r = oo. We say that Ω satisfies
the Z/-Dini condition of Ω e Z/(Σ) and /J (ωr(δ)/δ) dδ < +oo. α

Suppose K(x) = Ω(x)/\x\n, where Ω e Z/-Dini for some r > 1.
Define the singular integral operator T by

Tf(x) = \imf K(y)f(x-y)dy.
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As shown in [16], if Ω e Z/-Dini, then (Tf)*{x) < AMr,f{x). Since
Mr> is weak-type (r', r') and strong-type (00,00), from Theorem 6 we
get

THEOREM 9. Let w e A^ and 1 < r < 00. Suppose that Ω e U-
Dini. Then, there exist constants C andpo, depending on w,r,Ω, and
n, such that

\\Tf\\p,w < C p\\f\\P9W, Po<P<oo. Π

This result had previously been proved in [1] for the maximal sin-
gular integral operator associated to T. Since the kernel of the Hubert
transform satisfies all these Dini conditions, we see that this is the best
possible estimate on the rate of growth of the norm of Γ, even in the
unweighted case.

For / G ̂ , define the Fourier transform of / by

Given a bounded function m(x) on R", define the multiplier operator
T = Tm by (TfΠx) = m(x)f{x), f e &. Let β = (βΪ9...9βn) be

a multi-index of non-negative integers and set \β\ = β\ + •• + βn.
Consider multipliers, m, which satisfy the following definition.

DEFINITION 10. Let 1 < s < 00 and / e N. We say m e M(sJ) if

there is a constant B such that |m(x)| < B and

[ \ { ) \ R > 0, \β\ < /. D
{x: R<\x\<2R} J

For / > n/2,M(29l) is the usual Hόrmander condition. The condi-
tion above was studied in [16] where it was shown that for 1 < s < 2,
n/s < I < n, and r > njl, there is constant A so that (T^f)#(x) <
AMrf(x). Here, TN is defined by a smooth cutoff of m, TN converges
to T as N —• 00, and the constant A is independent of N. Thus, we
get the analog of Theorem 9 for these multiplier operators.

THEOREM 11. Let w e A^. Let 1 < s < 2, n/s < I < n, and m e

M(sJ). Then there exist constants C and po, depending on w,B,sJ,
and n, such that

\\Tf\\p,w <C p\\f\\p,w, Po<P<oo. Π
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Again, the linear growth of the norm of the operator is sharp, as
can be seen by considering the multiplier associated to the Hubert
transform.

This technique can also be used to study square functions, although
in the unweighted case this does not yield the best possible estimates.
Let / be defined on RΛ. For x e Rn and t > 0, let f(x,t) be the
Poisson integral of / and V/ the gradient of f(x91). The Littlewood-
Paley functions of / are defined as

αoo \ 1/2

t\s?Aχ,t)\2dή ,
S(f)(x)=ίίί tl-»\Vf(z,t)\2dzdt) ,

\jJ{(z9t)eR?1: \z-x\<t} J
and

ή
IR"+

1

These operators can be generalized to involve less standard kernels as
follows. Let φ be a Schwartz function with integral mean value zero,
f φ = 0. For t > 0, set φt{x) = Γnφ(x/t). We define the analogs of
the Littlewood-Paley operators by:

αoo \ 1/2

\φt*f(x)\2rιdή ,
S[φ]{f){x) = ( ίί \φt*f(z)\2Γι-ndzdt) ,

\JJ{(z,t)€Rl+':\z-x\<t} J

and

gχ[φ](f)(χ)

\<λ.

Each of these operators can be shown to satisfy an estimate ( Γ / ) # ( J C ) <
AMrf(x)9 where r > 1 depends on the operator and can always be
taken to be 2.

Let w € Aoo. It follows that all of these operators have norms
that grow at most linearly in p on the weighted LP spaces. When we
consider unweighted spaces, the norms of these operators are known
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to grow like yfp (as long as λ > (n + l)/n). See for example [3, 6, 10].
For the weighted spaces, such an estimate is unknown.

Let σ(x,ξ) be a function defined on Rn x RΛ, and define the op-
erator A by Af(x) = fHne

2πix<σ(x,ξ)f(ξ)dζ. We call A a pseudo-
differential operator with symbol σ. We say that σ e S™δ if for every

da dβ

dxa

and call σ a symbol of order m if σ e S^o. In [17], Miller showed that
for a symbol σ of order 0 and 1 < r < oo, there is a constant C such
that (Af)*(x) < CMrf(x). He used this to study pseudo-differential
operators with symbols of order 0 on weighted Lp spaces and ones with
symbols of order m on weighted Sobolev spaces. Since then, many
authors have used this technique to study pseudo-differential operators
for symbols in various classes, S™δ. Note that when σ is independent
of x, A is a multiplier operator. One sees that this technique yields
best possible estimates for pseudo-differential operators in some cases
since the multiplier associated with the Hubert transform is a symbol
in S™δ for all m, /?, and δ, with m > 0.

Related to the operators above are the convolution operators with
oscillating kernels. For t € R, these operators are defined by the kernels
KaMiyW = exp(/|ί|fl)(l + |ί|)-*-'>. For 0 < a φ 1 and 1 < r < oo,
there is a constant C so that (Ka \+iy * /)#(x) < C(l + \y\)Mrf(x).
(See [8].)

Let 0 < a < n. Suppose T is a convolution operator with a kernel
AT which satisfies

( W I / V /Ξ: O/I IfcΎvΛI \ 2\l ^ f i—nlin—cx)

(ii) |A (x -y)- K(x)\ < C\y\/\x\n+i-<*, \x\ > 2\y\
or a multiplier operator with a multiplier m which satisfies |τn(;t)| <
B\x\~a and

ί r V/s

J βs\β\+sa-n \D^m(x)\sdx I < 5, i? > 0,
\ Λ^: Λ<U|<2Λ} ) ~

for some 5,1 < 5 < 2, and all \β\ < n/s. For 1 < r < n/a, define Ma r

by

Mβ>Γ/(x) = sup (\Q\("r/»)-ι [ \f{y)\"dy] r.
Q \ JQ /
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As shown in [15], we have (Tf)*(x) < AMa^f{x), where r > 1 and
depends on the conditions satisfied by K or ra. (For the multiplier
operators, we must use truncations of m as mentioned above.) This
applies to the fractional integral operators

**/(*) = ΊΓiί fiy)\χ-y\a~ndy,

Thus, this can be used to study operators from LP into Lq with q
different than /?.

The last application involves some recent work on operators with
kernels which satisfy properties defined in terms of an A\ weight [11].
Such operators T satisfy the estimate (Tf)*(x) < Cλ(f)(x) for some
q > 0. Here λ = λfyε is an infinite sum of Lι averages of / times
averages of the weight, w.
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