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ON THE COHEN-MACAULAY PROPERTY
IN COMMUTATIVE ALGEBRA AND

SIMPLICIAL TOPOLOGY

DEAN E. SMITH

A ring R is called a "ring of sections" provided R is the section ring
of a sheaf (J/, X) of commutative rings defined over a base space X
which is a finite partially ordered set given the order topology. Regard
X as a finite abstract complex, where a chain in X corresponds to a
simplex. In specific instances of (s/ ,X), certain algebraic invariants
of R are equivalent to certain topological invariants of X.

Introduction. The work of Reisner [16] shows a connection between
the Cohen-Macaulay (CM) property in commutative algebra with a
certain homological property of finite simplicial complexes. The pur-
pose of this paper is to demonstrate a stronger connection. The main
object of study in Reisner's Thesis is the face ring of a complex Σ
with coefficients in a field F. In this paper the ring, hereby called the
Stanley-Reisner ring and written SR(i%Σ), is also the main object of
study.

The intent is to investigate the depth of factor rings of SR(i% Σ). The
procedure is to regard SR(F, Σ) as the ring of sections of a sheaf of
polynomial rings over a base space X = X(Σ) where X is the partially
ordered set of all simplices of Σ with order being reverse-inclusion.
The method is to make statements about the depth of factor rings in
the general section ring setting and then to particularize to the ring
SR(F,Σ).

The homological property referred to in Reisner's Theorem [16]
later proven to be a topological property [13] can be defined as follows.
Let F be a field and Δ be a finite simplicial complex, or complex. Call
Δ an F-bouquet of spheres if Hι(A,F) = 0 for each / < dimΔ, the
dimension of Δ, where Hι(A, F) denotes reduced singular cohomology
with coefficients in F. A complex Σ is defined to be CM(F) provided
the link subcomplex link (cr,Σ) is an F-bouquet of spheres for each
σ G Σ (including φeΣ).

Fix a field F. This paper shows CM(F) complexes are ubiqui-
tous in the following sense. Let Σ be a complex with vertex set
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V = {xo,...,xn}. Let S be the polynomial ring S = F[X0,...yXn]
and let S act on SR(F,Σ) by natural projection. Then pdsSR(F,Σ)
denotes the projective (or homological) dimension of the S-module
SR(i%Σ). Let the invariant α(Σ) := n -pdsSR{F,Σ). α(Σ) is defined
in the paper of Munkres [13]. It will be proven (Theorem 4.8) that
a = α(Σ) measures the dimension of the skeleton Σα maximal with
respect to the property of being CM(F), i.e. Σa is CM(F) and if j > a
then Σ* is not CM(F). Theorem 4.8 was a consequence of looking
carefully at the work of Munkres, knowing the result to be true in the
special case where Σ is pure, i.e. where all maximal simplices have a
fixed dimension.

Fix a field F and a complex Σ. Munkres proves the algebraic in-
variant α(Σ) is a topological invariant (Thm. 3.1, p. 116 [13]). It then
follows from the last paragraph that the dimension α(Σ) of a maximal
CM(F) skeleton is a topological invariant.

Fix a field F and a complex Σ. Stanley [20] shows that (*)α(Σ) =
d - 1 where d := depthMSR(F, Σ) with M the homogeneous maximal
ideal of SR(F, Σ) and depthMSR(F, Σ) being the length of the longest
regular sequence of SR(F,Σ) within M. In this paper (*) is proven in
case Σ is pure using sheaf theoretic methods (see Cor. 4.4)

Finally for a field F and complex Σ one can state:
If d = depth M SR(F^), then d - 1 is a topological invariant of the

complex equal to the dimension of a maximal CM(JF) skeleton. This
statement affords a generalization of Reisner's Theorem: simply set d
equal to d i m Σ + 1.

1. The basic pair (s/,X). In the following all partially ordered sets
(posets) and all abstract simplicial complexes (complexes) will be fi-
nite. All rings will be associative and commutative with identity. All
ring homomorphisms carry identity to identity. All modules over a
ring are unitary.

Let X be a poset. The (order) topology on X is defined as the
collection of all increasing subsets of X, i.e. U c X is open if whenever
x G U and y > x, then y e U. For every z e X set Xz = {x e X\x >
z},Xz = {xe X\x > z},Xz = {xe X\x < z},Xz = {xe X\x < z}.

The sheaves considered in this paper will all be sheaves of rings
with base space a poset X, with the above topology. The general def-
inition of a sheaf on a topological space (see for example [6]) yields
the following construction. A sheaf s/ of rings on X is a collection
of rings (s/)x = Ax for all x e X which are the stalks of J / , and ring
homomorphisms pyx: Ax —• Ay for every x,y e X with x < y. The
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homomorphisms satisfy the following conditions: (1) pxx: Ax —> Ax is
the identity map all x e X and (2) pzypyx = pzx for every x,y,z e X
with x < y < z. Note that the general notions of sheaf homomor-
phisms, restrictions to subsets, sub-sheaves and quotient sheaves could
be found, for example in [3], and easily specialized to this category of
sheaves.

If j / is a sheaf of rings on X, form the ring S = Y\{Aχ\x e X}
and if s e S, denote by s(x) its projection to Ax. Let Γ ( J / ) = {s e
S\pyxs(x) = s(y),x,y e X and x < y} and call the elements of Γ ( J / )
the sections of J / on X. Clearly Γ ( J / ) is a subring of S, called the
section ring of J / . For each subset Y C X, Y φ 0, denote by py
the restriction homomorphism Γ ( J / ) —> Γ ( J / | Γ ) . The sheaf is called
flasque if pυ is an epimorphism for all non-empty open subsets U of
X. Note that Γ ( J / | X X ) = Ax for each x e X where it is recalled that
~χx = {z G X\z > X} is open and T(ssf\Xx) is the ring of sections de-
fined on Xx. If ρx = pu, where U = Xx and x e X, then /^/Jx = />>;
for all x < y. In particular, if J / is a flasque sheaf, all morphisms ρyx

are epimorphisms. J / is said to be a sharp sheaf provided Kcτpyx Φ 0
all x and y with x < y. Set P x = { r€ T($f)\r(x) = 0} for each x e X.
Clearly Px is an ideal of Γ ( J / ) and Px c P^ for all x < y. The preced-
ing definitions and notation will be used throughout this entire paper
without further comment.

From now on the symbol " ( J / , X ) " will indicate a sheaf of rings
j / over a poset X. Furthermore, given ( J / , X ) , all stalk rings Ax will
always be assumed to be integral domains. This means the ideals Px

are prime for each x e X.
The following general lemmas will be utilized in the proof of Propo-

sition 1.4.

LEMMA 1.1. Let R be a unique factorization domain (UFD). Then
every height 1 prime ideal is principal

Proof. Let P be a height 1 prime ideal of i?, i.e. P is minimal over
0. By a basic result (p. 4 [9]), P contains a principal prime (a) ψ 0.
By minimality of P over 0, P = (α), and the argument is finished.

LEMMA 1.2. Let R be an integral domain. For each /, 1 < / < n,
let (aϊ) be be a principal height 1 prime ideal ofR with (ai) Φ (α,) for
i Φ j . Then P = Π{(^/)U ^ i ^ n)> is a principal ideal with generator
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Proof. The proof is by induction on n with trivial base step. So let
1 < k < n and for the inductive step assume K = Π(α/U < * < }̂? is
principal with generator Πί^/U ^ ' ^ ^} Now consider Λf n (flfc+i).
If L = (Πl^/I1 < i < k + I}), obviously L c Kn (ak+ι). It suffices
to show the reverse containment. So let b = Π{fl/U - ' ^ }̂> a n c ^
consider (1) r = ab = cak+x,r G K n (α^+i) and a,c e R. Then
r G (αi). As (#i) is prime and there are no inclusion relations amongst
the (ai),c G (a\). So r = c'tfi^+i, some c' G R. Arguing similarly,
r G (^2), so d G (^2) and so r = c"a2a\ak+u some c" G i?. Continuing
this argument inductively it is seen that r G L. This finishes the
inductive step and the proof.

Letting X be a poset, it is possible to provide X with a consis-
tent enumeration which is a one-to-one monotone mapping X —•
{ 1 , . . . , Λ } , A2 being the number of elements in X. Then every state-
ment using x G X as a parameter can be proven by induction using
this enumeration. This method of proof is referred to as "induction
on x" or "induction with respect to X".

Let X be a poset. Define X as lower-ranked provided that for each
x G X then every maximal chain ending at x,y\ < < j ^ = x, has
the same length. Note that in a lower-ranked poset X it is possible to
define a rank function rk: X —> yf where rk( c) = « provided # is the
length of any maximal chain of the above kind ending at x.

Let n be a positive integer and define a poset X to be ranked of rank
n if the length of any two maximal chains is n. It is easy to see that a
ranked poset is lower ranked so as a consequence, each ranked poset
carries with it a rank function. Note also that a poset can be lower
ranked but not ranked.

Let X be a poset and let x,y G X. They y covers x provided y > x
and there does not exist z G X with y > z > x.

Let ( stf,X) be given, s/ a sheaf of integral domains, X a lower
ranked poset. (sf,X) is said to satisfy the height 1 kernel condition
provided ht(Ker/?yx) = 1 whenever x,y e X with y covering x.

From now on, whenever (s/9X) is a sheaf of rings over the poset X
it will generally be assumed that all stalk rings Ax are Noetherian. (Re-
call that it is also understood that all stalk rings are integral domains.)
It is a simple fact that as a consequence R = Γ ( J / ) is Noetherian (see
Sec. 2.1, Exer. 9 [9]). In fact it can safely be assumed from now on
that every ring is Noetherian unless otherwise specified.
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LEMMA 1.3. Let (sf,X) be given, si a sharp flasque sheaf of Noethe-
rian integral domains and X lower ranked. Consider the following
statements:

(a) (sf,X) satisfies the height one kernel condition
(b) ht Px = rk( c) - 1 for each xeX.

Then (b) implies (a). IfT(si) is catenaryy then (a) implies (b).

Proof. First prove (b) implies (a). Assume \ΛPX = τk(x) - 1 each
x e X. Let x,y e X with y covering x. Now ht Py/Px + ht Px < h\Py.
But by (b), (1) htPy/Px < 1. As si is sharp, Py/Px φ 0. By (1),
(2) ht Py/Px = 1. Given the sequence (/ the usual isomorphism and

(3) / o Px: R -+ Γ(sf\Xx) - Ax where Py -> px(Py) -> KtτpyX9

one has the isomorphism of rings R/Px = ,4* where /y//* corre-
sponds to Ker pyx. As this correspondence preserves height, (2) im-
plies htKcτpyx = 1. This proves (a).

Now let R be catenary and assume (a). The proof is by induction
on x. For the base step assume rk(x) = 1, i.e. x is an atom of X. By
a basic result (Prop. 1.4 [21]), htPx = 0 = τk(x) - 1.

For the inductive step assume htPz = rk(z) - 1 all z with rk(z) <
rk( c) and let y cover x. It suffices to show htPy = τk(y) - 1 = rk(x).
As i? is catenary, ht Py/Px + htPx = htPy. By (a) and the inductive
step derive 1 + rk( c) - 1 = τk(x) = htPy. The argument is complete.

Let {sf,X) be a given sheaf pair with X a ranked poset of rank
n. Let (ri,...,r r t_i) denote a sequence of length n - 1 within the
section ring R = Γ ( J / ) . This sequence is said to be ranked if for each
/, 1 < / < n - 1, n(x) φ 0 for all x with rk(x) < / and r/(x) = 0 for all
x with rk(x) > /.

Let R be a ring. In the following, for / an ideal of i?, Rad(/) is the
usual nil-radical of /.

PROPOSITION 1.4. Let X be a ranked poset of rank n,n > 1, and let
srf be a flasque sheaf of UFD's (possibly non-Noetheriaή) on X satisfy-
ing the height 1 kernel condition. Then

(a) there exists a ranked sequence ( r 1 ? . . . , r w _ i ) in R = T{sf) and
letting P(k) = f]{Pw\rk(w) = k}> for each positive integer k, then

Proof. First prove (a). Induct on n with base step n — 2. Pick
a regular (i.e. non-zero divisor) element r\ in the following manner.
First fix x of rank 1. Let y cover x. By the assumptions, Ker/λμX is a
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height 1 prime ideal in Ax. By Lemma 1.1, Ker pyx is principal and
by Lemma 1.2, 0 Φ f|{Kerpyx\y covers x) is a principal ideal. Let
0 Φ r\ (•*) be the generator of the above ideal. Define for each x of
rank 1, rx(x) similarly.

Define rx G R by the projections r\(z) = 0,rk(z) > 1, and rx(z) as
above if rk(z) = 1. Note rx is a non-zero divisor of R and (rx) is a
ranked sequence.

For the induction step assume n > k > 1 and that ( r 1 ? . . . , rk_x) is a
ranked sequence. The goal is to define rk e R. Fix z of rank k. Define
rk{z) Φ 0 as in the base step as the generator of the ideal {\{¥Jtx pwz\w
covers z}. Now let X(k - 1) = X - {x e X\τk(x) < k - 1}. Define
r'k G T{s*\X{k-1)) by rk(z) for rk(z) = fc and ^(z) = 0 for rk(z) > k.
Because sf is flasque and X(k - 1) is an open subset of X9r(k) G R
can be defined as any preimage of r'k via the restriction epimorphism
R -> Γ(sf\X(k - 1)). This completes the proof of (a).

For the proof of (b) it is clear that P(k) 2 ReLd(ru...9rk_x) for
each k,2 < k < n. What remains to be proven is that P(k) c
Rad(r!,.. ., rk_ λ) for each k, 2 <k<n. The proof is by induction.

For the base step let k = 2. Let s G P(2). For each x of rank
1, s(x) = t(x)rχ(x),t(x) G Ax. Now s2(x) = t2(x)rx(x)rx(x). The
element r e{l\Ax\x e X}, defined by r(z) = ί(z)ί(z)ri(z),rk(z) = 1,
and r(z) = 05rk(z) > 1, is contained in R. So s1 G (r\). This shows
P(2)CRad(rO.

For the induction step let k > 2 and assume the proposition that
P(j) c Rad(r1?..., r/_i) all j < k. Take s G P(fc). For all w of rank
/: - l9s(w) = rk_ι(w)t(w), t(w) eAw. Now

Define the element r1 e T{sf\X{k - 2)) by r'{z) = rk_x{z)t2{z) for
z of rank k - 1 and r'(z) = 0 for rk(z) > k - 1. As before use the
epimorphism R —• Γ ( J / |X(A:-2)) to produce a preimage r for r', r G iϊ.

Consider s2 - rk_xr = q G P(/c - 1). By the inductive assumption
q G Rad(ri,...,Γfc_2) so there exists an integer m such that qm G
(^, . . . ,^-2) . S θ 5 2 m G ( r i , . . . , ^ ! ) , and s G R a d ( r ! , . . . , r ^ ) . This
shows P(k) C Rad(ri,.. ., rk_x). The proof of (b) is done by induction.

Recall a definition from commutative algebra. (For instance see
[12].) Let R be a ring and (r\9...,rm) be a sequence in R. This se-
quence is regular provided (i) for each integer /, 1 < / < m, r, is a non-
zero divisor in the i?-module R/(r\,..., r/_i) and (ii) ( r 1 ? . . . , rm) Φ R.
This sequence is a height sequence provided ht(ri, . . . , r, ) = / for each
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i,l < i < k. For R a Noetherian ring, every regular sequence is a
height sequence (see the proof of Lemma 1.7).

THEOREM 1.5. Let X be a ranked poset of rank n,n > I, let stf be a
flasque sharp sheaf of Noetherian UFD's on X satisfying the condition
htPx = rk(x) - 1 all x € X. Then the ranked sequence (r1?..., rn-\) of
Proposition 1.4 is a height sequence.

Proof. By Lemma 1.3, (s/,X) satisfies the height one kernel condi-
tion and by Proposition 1.4 the ranked sequence (r1? . . . , rn_{) exists.
Fix k, 2 < k < n, and let B(k) = {P e Speci?|P is a minimal over
prime ideal of (r\,..., rk_ {)} where

Claim 1.
B(k)C{Pz\rk(z) = k}.

Proof of Claim 1. Take P in the left hand side, i.e. let P D
(ri, . . .,rJfc_1),/

> a minimal over-prime of (r\,...,rk_x). By Proposi-
tion 1.4, P D P(k) D ( r 1 ? . . . , r ^ j ) , so that P is a minimal over-
prime of P(k). By a fundamental result (see Prop. 1.4 [21]), {Pw +
P(k)\rk(w) = k} is the complete set of minimal over-primes of 0 in
R/P(k) = Γ(j/|ΛΓ(fc - 1)). So P = Pw some w of rank k and this
completes the proof of the claim. (Note that Lemma 1.3 enabled
Proposition 1.4 to be used above.)

Claim 2.
{Pz\rk(z) = k}CB(k).

Proof of Claim 2. Take Pz with rk(z) = k. Suppose by way of
contradiction there exists P e Spec/? with Pz D P D ( r 1 ? . . . , rk_1). By
Proposition 1.4, Pz D P D P{k). But this contradicts Pz minimal over
P{k) as in the proof of Claim 1. The proof is complete. By use of
Claims 1 and 2 above, {Pz|rk(z) = k} = B(k). All the Pz have height
k - 1 by hypothesis. So h t ( n , . . . , rk_ x) = k - 1 by definition of height.

COROLLARY 1.6. With hypotheses as in Theorem 1.5, if in addition
R is Cohen-Macaulay (CM) then (ru..., rΛ_i) is regular.

Proof. By Theorem 1.5 (ru..., rn_{) is a height sequence, so it suf-
fices to prove the following general lemma, which is proven in the
graded case by Smoke [18].
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LEMMA 1.7. Let R be CM. Then the sequence ( r 1 ? . . . , rn_\) of R is

a height sequence if and only if(r\9...9rn-\) is a regular sequence.

Proof. Assume (r\,..., rw_j) is regular. We prove that (r{,..., rk) is
a height sequence each k, 1 < k < n - 1. The proof is by induction.
For k = 1, (r\) is regular so (η) is not contained in any height zero
prime ideal of R. So ht(ri) = 1 by the Principal Ideal Theorem (see
P. 104 [9]).

For the inductive step suppose ht(r 1 ? . . . , rk) = k, some k, 1 < k <
n - 2, and prove ht(r 1 ? . . . ? r^ + 1 ) = fc + 1. By assumption rk+x is
not a zero divisor in R/(rι,. ..,rk). So r^+1 is in no minimal over-
prime of (r\,..., rk). Using the Generalized Principal Ideal Theorem,
ht(ri , . . . ,r k + x ) = k + 1. This finishes the induction. Note this part of
the proof did not require R to be CM.

For the remainder, let (ri,...,rΛ_i) be a height sequence. Prove
(r\9- '>rk) i s regular for each k, 1 < k < n - 1. For the base step
consider (r\). As ht(ri) = l,rj is not contained in any height zero
prime. By [12] (Theorem 32) the associated primes of 0 are exactly
the height zero primes. Thus rx is not in an associated prime of 0,
and is regular. For the inductive step let 1 < k < n - 2 and assume
(r\9"-»rk) i s regular. To prove: (^i,...,^+ 1) is regular. rk+{ can be
in no associated prime of ( r 1 ? . . . , rk) since by the above result of [12],
each associated prime of ( η , . . . , rk) has height k. So rk+x is non-zero
divisor of R/{r\,..., rk) and (rx,..., rk+x) is regular. The induction is
done.

DEFINITION 1.8. Let (J/\X) be a pair with si a sheaf of integral
domains on X a poset. Call (J/\X) a basic pair if X is a ranked
poset, si a sharp flasque sheaf of Noetherian UFD's on X such that
ht Px = τk(x) - 1 for each x e X. Given ( J / , X) a basic pair call Γ ( J / ) ,

the section ring arising from (si\X) the section ring of a basic pair.

2. Making depth statements for section rings T(si) of a basic pair.

PROPOSITION 2.1. Let [si\X) be a basic pair, ranker = n. Suppose
furthermore Ax is CM for each x of rank 1. Given the ranked height
sequence (r{,..., r̂ _ \) and R-module P(2) as in § 1, then (rx,..., rw_γ)
is a P(2)-regular sequence.

Proof. First let s G P(2) and fix x of rank 1. For y of rank 2 with
y > x, PyχS(x) = s(y) = 0 so s(x) e Kerp y x . Argue similarly for each
y > x, and see that s(x) e f]{Kcτpyx\y covers x}. Arguing as in the
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proof of Proposition 1.4, (r\(x)) = Π{Kerpyx\y covers x} so write
s(χ) = t{x)r{{x) some t(x) e Ax.

By varying the x above it is apparent that P(2) = 0{^4xrj
= 1} where the direct sum is internal and the isomorphism is as
left i?-modules. As each of the Ax is an integral domain, the Ax-
isomorphism Ax = Axr\(x) induces the i?-isomorphism P{2) =
φ{Ax\τk(x) = 1} with R acting on the direct sum as follows: for
r e R and b e φ{Ax\τk(x) = 1}, i.e. b = (b(x),b(x')9...,) write

Let x have rank 1.

Claim. (sf\XX9Xx) is a basic pair.

Proof of Claim. First show that 3S = srf\Xx is flasque. Suppose
U C Xx is open. Then £/ is open in X. The restriction epimorphism
Pa: Γ ( J / ) —• Γ(j/|t/) can be factored as

(1) Λ \

Conclude that the map δ is an epimorphism. This shows S% is flasque.
Now let ρx: Γ ( J / ) —• Γ ( ^ ) , Py —• /^ be as in Section 1. It remains to
show that h t ? = rk(y) - 1 each y e Xx. Certainly h t P y < rk(y) - 1
each y e Xx by reason that px can only lower height. But htPy >
rk(y) - 1 each y e Xx since X x contains a chain x = X[i] < <
x[τk(y)] = y As J / is sharp, Px[i] c Px[2] c •• c P y so that applying
px it follows ^^[l] Q -" Q Py with all inclusions proper as px is the
restriction map. Thus for each y eXx,htPy = rk(y) - 1. This finishes
the proof of the Claim.

Now fix x of rank 1. The sequence {px(r\),...,px(rn_ι)) is the
ranked sequence in Γ(s/\XX) as in Proposition 1.4 and since the Claim
states that Γ(^\XX) is the section ring of a basic pair, (ρx(r\)9...9

Pχ(rn-i)) is a height sequence by Theorem 1.5. By Lemma 1.7 and
the assumption of T(sf\Xx) = Ax being CM, (px(r\)9...,px(rn_χ)) is
Γ(sf\Xx)-regular: but whereas px(rj) = rz(x) under the isomorphism
T{sf\xx) —• ̂ ίjc, then conclude (*) that ( ^ ( x ) , . . . , ^ . ! ^ ) ) is regular
for each x of rank 1. To finish the proof, as before regard P(2) =
@{Ax\rk(x) = 1} with the given action of R. It is clear by (*) that
<ri,...,rΛ-.i> is P(2)-regular.
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Let R be a ring, TV be an i?-module and / be an ideal of R. Denote
by depth/iV (see [12]) the length of the longest Λ^-regular sequence of
elements taken from /.

THEOREM 2.2. Let {sf9X) be a basic pair with rankX = n, and
suppose Ax is CM for each x of rank 1. Furthermore suppose X has
a unique maximal element m with rk(m) = n > 1, and let the Krull
dimension ofR(dimR) be n- 1. Letting M = Pm,

depths/P(2) _ I ( b ) d e p t h ^ ,/depthMi? < n - 1.

Proof. Note by the definition of basic that htM = n - I = dimi?.
It follows that M is a maximal ideal of R. (Note also that in Case (a),
depth^i? is as big as it can be, i.e. in general for an ideal / of a ring R
depth/R < ht/. As a result the localization RM is CM. See the proof
of Theorem 3.6.)

Consider first Case (a). There is a short exact sequence of R-
modules

(1) 0 -> P(2) -+R-+ R/P{2) -> 0

where R acts on R/P(2) by r(s + P{2)) = rs + P(2) for all r,s e
R. (1) induces the long exact sequence in the usual derived functor

(2) -+ Ext7'(R/M, R) -> Ext*(R/M, R/P{2)

By the last proposition and [12] (Theorem 28), in Case (a)
Exti(R/M,R/P(2)) = 0 all i < n - 1, and by assumption and [12]
again, Ext1 (R/M,R) = 0 all / < n - 1. Consider the following exact
sequences extracted from (2) for 3 < j <n:

(3) Extn~j(R/M,R) -• Extn-J(R/M,R/P(2))

-+Extn-j+ι(R/M,P{2)).

One must conclude

(4) Extn-j(R/M,R/P(2)) = 0

for all j with 3 < j < n. By [12] (Theorem 28), depthMi?/P(2) >
n - 2. To prove the result in Case (a) it suffices to prove the reverse
inequality.
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Looking at the ideal P(2) of i?,htP(2) = 1 whereas P(2) could
not be contained in a height 0 prime ideal as these are of the form
Px,rk(x) = 1 ([21]). From the inequality htP(2) + dimi?/P(2) <
dimi? (see page 72 [12]) conclude

(5) dimR/P(2)<n-2

Now assume by the way of contradiction that depthMR/P(2) >
n - 2. Then there is an jR//>(2)-regular sequence (s\9...,sn-\) in-
side of M. If R —> R/P(2), where 5 —• J, is given by the natu-
ral homomorphism, then (s\,... ,sΛ_i) is an i?/P(2)-regular sequence
in the maximal ideal M/P(2) of the ring R/P(2). By Lemma 1.7,
ht(5i,...,JΛ_i) = Λ - 1. Thus dimi?/P(2) > π - 1. This contradicts
(5) and concludes the proof in Case (a).

In case (b) let β = depthMi?. By assumption β < n - 1. Consider
the exact sequence:

• -> Extβ-ι(R/M,P(2)) -> Extβ~ι (R/M,R)

-> Extβ-ι(R/M,R/P(2)) -> Extβ{R/M,P(2))

-> Extβ(R/M,R) Λ Extβ(R/M,R/P(2)) ->•••.

One sees that for all j < βyExtj-{(R/M,R) = 0 = Extj(R/M,P(2))y

by the last proposition and assumption on R (see [12]). Thus
Extj~ι(R/M,R/P(2)) = 0 for all j < β. But / must be a monomor-
phism and Extβ(R/M,R) φ 0 so that Extβ(R/M,R/P(2)) φ 0. By
[12] (Theorem 28) depthMi?/P(2) = β = depthMi?. This completes
the proof of the theorem.

3. Depth and the Stanley-Reisner ring. Recall the definition of the
Stanley-Reisner ring of a complex Σ with coefficients in a field F, writ-
ten SR(F,Σ) (see [19] for example). Let Σ be a complex (including
0) with vertex set V(Σ) — {x\,... ,xm} and F be a field. Denote by
/(Σ) the ideal of the polynomial ring F[X\,..., Xm] = S generated by
all square free monomials of the form X/[i],..., Xi[k\ w ^ h the corre-
sponding set {x/[i],..., Xi[k]} $ Σ. SR(i7, Σ) is defined as S/I(Σ).

What follows is a description showing that the Stanley-Reisner ring
is the section ring of a sheaf of polynomial rings over a poset. Given
a complex Σ define X — X(Σ) to be the poset of all simplices of Σ
with order relation the opposite of inclusion. Define a sheaf stf of
polynomial rings on X. (In fact si is a sheaf of F-algebras but this
aspect will not be emphasized.) For each simplex σ = {x/[i],..., Xi[t]}
put Aσ = F[Xi[\],..., Xi[t]]. In particular F® = F. If σ C τ, i.e. τ < σ,
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define pστ: Aτ -• Aσ by pστ(Xj) = Xj if Xj e a and pστ{Xi) = 0 if
Xj φ σ. Clearly the collection of Aσ and /?στ form a sheaf ( J / ? J Γ ) of
rings on X. Note the stalk rings are Noetherian by the Hubert Basis
Theorem so by an earlier observation T(sf) is a Noetherian ring. The
following proposition (see Prop. 7.6 [21]) is a basic for all of the results
of this section.

PROPOSITION 3.1. The sheaf {si, X) described above is flasque and

Here are some definitions and easy observations which will allow
the statement of the main results of this section.

Let X be any poset. For x,y e X, {x,y} is bounded provided there
exists w G X with x < w and y < w. X is a prelattice provided
whenever x,y e X and {x,y} is bounded, then {x,y} has a least
upper bound z, i.e. z is an upper bound for {x,y} and if w is an
upper bound for {x,y}, then z < w. It follows easily that for X a
prelattice, {x,y} has at most one least upper bound. Note that the
poset X(Σ) is a prelattice with σvτ = σ Π τ, σvτ the least upper bound
of {x,y}.

LEMMA 3.2. In the poset X = X(Σ),Σ a complex, whenever σ covers
τ then htKer/>στ = 1.

Proof. For σ to cover τ means τ has one more vertex than σ.
Say τ - σ — {x/}. Then Ker/>στ = (Xj) c F[Xni]9...,Xj[t]] where
{*/[i],...,*/[/]} = T. The result follows easily (see Corollary p. 83
[12]).

Define a complex Σ to be pure of dimension N provided every
maximal simplex has dimension N. (Alternatively every σ e Σ is a
face of an TV-dimensional simplex.) Note that if X is pure complex
then the poset X(Σ) is ranked.

Note. Let Σ be a pure complex with dimΣ = N and let V(Σ) be the
vertex set of Σ. For σ e Σ define the ideal Iσ of Aσ by Iσ = ({Xj e
S\Xj e F(Σ), Xj £ σ}). Then Aσ = S\Iσ. By Yuzvinsky (Prop. 1.10, p.
177 [21]) there is a natural ring homomorphism φ: SR(F,Σ) —> Γ(sf)
defined by Φ(a+Ij)(σ) = a+Iσ for a e S, σ e Σ. 0 is the isomorphism
referred to in Proposition 3.1. For some j,l<j<N+l let
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Clearly a,j is a homogeneous element of degree N — j + 2. For every

τ = { */[l]> 9 Xi[N-j+2]} £ Σ,

Â τ := P){Ker/?στ|σ covers τ}

= Γ[{(Xm)\l<k<N-j + 2}

= (U{Xι[k]\l<k<N-j + 2})

by Lemmas 3.2 and 1.2. But for τ of dimension N-j+1 as above, r7 (τ)
is defined as the generator of Kτ, cτ := Π{A^ ̂ ]11 < K < N-j+2}, and
furthermore φ(aj)(τ) = cτ. By the proof of Proposition 1.4, it follows
that (r 1 ? . . . , rN+\) may be chosen so that φ{dj) = η for I < j < N+l.
It is clear that φ(aj)(σ) is homogeneous in Aσ for each σ G Σ. In
summary, (r 1 ? . . . , r# + 1 ) can be chosen so that there is correspondence
via φ to a homogeneous sequence of SR(/% Σ) with the property that
for each j and for each σ e Σ, r/(σ) is a homogeneous polynomial in

Given any complex Σ, X(Σ), and the sheaf of polynomial rings stf
on X(Σ) described above, Lemma 3.2 states that (s/,X) satisfies the
height 1 kernel condition. Note also that Γ(sf) = SR(F,£) is catenary
(see Thm. 33, p. I l l , [12]). If it is assumed Σ is pure, then as X(Σ)
is ranked, Lemma 1.3 yields the result that htPσ = rk(σ) - 1 for each
σ e Σ .

It is now possible to catalogue the above information.

PROPOSITION 3.3. Let Σ be a pure complex with (sf,X) as above.
Then X = X(Σ) is a ranked prelattice and srf is a flasque sharp sheaf
ofNoetherian UFD's on X satisfying htP σ = rk(σ) - 1 for each σ e Σ.

In short, the proposition yields a basic pair (s/9X). The theory
developed in the last two sections can be applied in the context of
Stanley-Reisner rings of pure complexes.

First here is a condition that insures purity in a complex. Define
for a complex Σ(0 e Σ) and σ e Σ,link(σ,Σ) = {TG Σ|τ U σ e Σ and

PROPOSITION 3.4. Let Σbea complex with the property that link(σ, Σ)
is connected for each σ e Σ for which dimlink(σ,Σ) > 0. Then Σ is
pure.

Proof. See "Proof, Step 1" (p. 117 [13]).
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Let Σ be a complex and F be a field. Recall the definition of what
it means for Σ to be Cohen-Macaulay (see [16]): For Δ a complex,
Hι(A,F) denotes reduced singular cohomology with coefficients in F.
Σ is said to be CM(F) provided for each σ e Σ9β

i(]iήk(σ9Σ)9F) = 0
for all / < dimlink(σ,Σ). Given Σ which is C M ( J F ) , Σ satisfies the
hypothesis of the above proposition. Therefore any CM(F) complex
is pure.

Here is a simple Lemma.

LEMMA 3.5. Let X be a ranked poset with ranker > 2 and si be
a flasque sheaf of integral domains on X. Letting X(l) = X - {x e
X\τk(x) = 1} andP(2) = f]{Py\τk(y) = 2}, then R/P{2) = Γ ( J / | X ( 1 ) )

as rings.

Proof The natural homomorphism R = Γ ( J / ) -• Γ(j/|X(l)) is
an epimorphism of rings whereas srf is flasque. It is clear that the
following sequence is exact: 0 -• P(l) -> R -> Γ ( J / | X ( 1 ) ) -+ 0. The
proof is complete by Noether's isomoφhism theorem.

The following proposition follows from the work of Baclawski (Thm.
6.4, p. 247 [1]) and of Munkres (Cor. 6.6, p. 127 [13]). The following
is a new proof using sheaf theory techniques.

PROPOSITION 3.6. Let Σbean N dimensional CM(F) complex. The
N - 1 skeleton (ΣN~ι) is CM(F).

Proof. Given Σ and F with ΣCM(F). Let ^ denote the homoge-
neous maximal ideal of SR(F,Σ), i.e. if {x\,... ,xm} is the vertex set
for Σ then M is the image of (X\9... ,Xm) under the natural homo-
morphism F[XX9...9Xm]-*> SR(F,Σ).

Fix the following notation, letting M and M1 be the respective ho-
mogeneous maximal ideals of SR(i%Σ) and SR(F,ΣN~ι) respectively.
Let Jt and Jt1 be ideals of R = Γ(sf) and Rf = Γ(s/\X{1)) corre-
sponding to M and Mf respectively by means of the isomorphisms
R = SR(F,Σ) and R' = SR(F,ΣN~ι) of Proposition 3.1. (Recall
X(l) = X - {x e X\τk(x) = 1}.) There exists a natural epimor-
phism η: SR(F,Σ) -> SR(F,ΣN-{) such that the following diagram
commutes:

Rf > S R ^ Σ ^ " 1 ) jt' > Mf

(1) Av[.)T ] η where T T

R > SR(F,Σ) jt • M

and the horizontal maps are the above isomorphisms.
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Consider the basic pair (s/,X) of Propositions 3.1 and 3.3. Note the
hypotheses of Theorem 2.2, are satisfied. In this case 0 is the unique
maximal element of X = X(Σ) and N+ 1 = dimSR(F,Σ) = dimΓ(j/)
(see p. 63 [19]), with Jt = ife. By Theorem 2.2 and Lemma 3.5,
TV = depth^i?/P(2) = depthsRf where R acts on R' via restriction;
ra = pX[\](r)a for r e R,a e R'. Consider operations in the ring Rr

and conclude (2) deρth^,i?' = N.
Let (r 1 ?..., rjv+i) denote the usual height sequence in Γ ( J / ) . Note

(rf

2,..., r'N+ι) is the ranked height sequence of R' where for each /, r\ =
Px[\](n)' Noting the pair (jt/\X(l),X(l)) is basic, Theorem 1.5, im-
plies (rf

2,...,r'N+ι) is a height sequence in the ring R'. But C =
(>2,...,^+ 1) C jtf. Thus TV = h t C < h t ^ ' < dimΓ(j/|X(l)) = iV.
Conclude (3) htJt'= N.

Consider the localization ring R1^,. By (2) and (3) above: N =
depth^,i?' < depth R!^, < N. Conclude depth R'^, = dimi?^, and
R!^, is CM.

Appealing to (1), SR(F,ΣN-ι)M, is CM. Now M' is the homoge-
neous maximal ideal of a graded ring so by a well known result (see
p. 125 [11]), SR(F,ΣN-{) is CM. The argument is finished by an ap-
plication of Reisner's Theorem (see [16]).

THEOREM 3.7. Let Σbea pure complex of dimension N, F be afield,
and M be the homogeneous maximal ideal ofSR(F, Σ). The following
are equivalent.

(a)depthMSR(F,Σ) = rf.
(b) Σ contains the skeleton Σd~ι maximal in the property of being

CM(F), i.e. if) >d-\ then ΣJ is not CM(F).

Proof. To simplify notation let SR(i%Σ>) = SR(Σ^) for each y',0 <
j < N. Prove first that (a) implies (b). Given depthMSR(Σ) = d.
Write </ = N-fc,£e{-l,O,l, . . . ,JV-l} .

Now prove (a) implies (b) in case k = - 1 , i.e. d = N + 1. In
this situation depthMSR(Σ) = dimSR(Σ) = N+ 1. In the localization
SR(Σ)M, depth SR(Σ)M = dimSR(Σ)M = N+1 so SR(Σ)M is CM. But
as M is the homogeneous maximal ideal (as in the proof of the last
proposition), SR(Σ) is CM. By Reisner's Theorem Σ = Σ^ is CM(F).
(b) is proven.

Now assume d = N-k, k e {0,1,..., N-1}. Consider the following
figure where the M(i) are the homogeneous maximal ideals in the
respective rings SRφ^"') for each /,0 <i<N.
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SR(Σ)

SRfΣ*-1)

SR(ΣN-k~ι)

depthM/](-)

N-k

N-k

N-k

dim(-)

N+ 1

N

N-k

The Krull dimension numbers are verified as in the proof of the last
proposition.

The top entry in the middle column states: N-k = depthM[0]SR(Z),
which is (a).

Note N + 1 > N - k, by choice of A:. So applying the isomor-
phism Γ(J/) = SR(Σ) (Proposition 3.1) and recalling Lemma 3.5,
Γ(J/)//>(2) = Γ ( J / | X ( 1 ) ) = S R ^ " 1 ) ; and through a use of Theorem
2.2, it follows that N-k belongs in the second row, i.e. depthM[1]SR^)
= N-k. Argue in exactly the same fashion and see that N-k belongs
in rows 2 through k + 1 also.

Note d e p t h ^ + ^ S R ^ - * - 1 ) = d i m S R ^ - * - 1 ) = N-k. By pre-
cisely the same argument as for the case k = — 1, Σ^"^" 1 = Σd~ι is
CM(77). To finish the argument it suffices to show none of Σ, , Σ^"^
are CM(F). So choose z',0 < / < k and consider ΣN~ι. By Reisner's
Theorem it suffices to show SRίΣ^"') is not CM. Suppose by way of
contradiction SR(Σ*-'") is CM. Then T{β) = SR(Σ^-<) is CM where
33 is the sheaf of polynomial rings over the poset of simplices of ΣN~ι.
Then the ranked height sequence oϊT{β) is regular by Lemma 1.7. So
depth^φjSRΐΣ^"7) = N- i+1 by this train of thought and contradicts
the table's assumption of N-k = d e p t h ^ j S R ^ - O < N-i+l. As
/ was arbitrary the proof of (a) implies (b) is complete.

Now suppose Σd~ι is a maximal CM(F) skeleton in the sense of (b).
Look at the basic pair [β, Y) where 3§ is the usual sheaf of polynomial
rings over the poset Y = Y(Σd) of all simplices of Σd. By (b) and Reis-
ner's Theorem, Y{β) = SR(Σ^) is not CM and Γ(&\Y(1) = SRίΣ^"1)
is CM where Y(l) = Y - {σ e Σ|dimσ = d}. Let M(d - i) be the
homogeneous maximal ideal of SR(Σί/~/), for / = 0 and 1. As before,
as S R ^ - 1 ) is CM, depth^^.^SRCΣ^"1) = d. (Look at the ranked
height sequence of length d in Γ(&\Y(l)). It is regular by Lemma 1.7,
and by Theorem 2.2, depthM[ί/]SR(Σ^) = d.

The last paragraph of the proof is iterated to skeleta Σd+ι,..., Σ^ =
Σ and one obtains deρthΛ/[Ar]SR(Σ) = d,M(N) being the maximal
homogeneous ideal of SR(Σ). This is (a).
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COROLLARY 3.8. Let Σbea pure complex of dimension N. Let M be
the homogeneous maximal ideal ofSR(F9 Σ). Then depthMSR(jF, Σ) =
depth SR(F,Σ)M.

Proof. Consider the isomorphism η: SR(F,Σ) —• Γ ( J / ) and let Jf =
η(M). By general facts about localization (see p. 179 [21]), T{s/)jt =
T{β) where 3S is a sheaf of rings over the poset X — X(Σ) with
{β)σ — (Aσ\#/Pσ for all σ e X. Note {β9 X) is a basic pair: The stalks
are regular local rings which are UFD's by an Auslander-Buchsbaum
Theorem (p. 142, [12]). For the flasque property see [21] (Theo-
rem 2.1). Also the height 1 kernel condition holds for 3S and T{β)
is a catenary, so by Lemma 1.3, htP£ = rk(σ) - 1 for all σ e Σ
where P'σ = {r e Y{β)\r[a) — 0}. By the same argument as in the
proof of Theorem 3.7, if d = depthSR(F,Σ)M, then SR(F9Σ

d'ι)M'
is CM where M' is the image of M under the natural epimorphism
SR(JF, Σ) -+ SR(F, Σd~ι). But M' is the homogeneous maximal ideal of
S R ί ^ Σ ^ - 1 ) and reasoning as in the proof of Theorem 3.7, S R ^ Σ ^ " 1 )
is CM. Then Σd~x is CM(F) by Reisner's Theorem. By Theorem 3.7,
d < depthMSR(jF,Σ). Whereas the reverse inequality is always true,
the argument is complete.

4. A topological invariant for finite complexes. Given a complex
Σ |Σ| will denote the realization of Σ (for details see [14]). Given a
property P of abstract simplicial complexes (e.g. dimension), P is a
topological invariant means if Σ and Σ' are abstract simplicial com-
plexes and |Σ| is homeomorphic with |Σ'| and furthermore Σ has P,
then Σ' has P.

The following property of finite complexes is the main subject of
this section. Fix F a field, Σ a complex of dimension Ny and let d be
an integer 0 < d < N. P(F,d,Σ) denotes the property that Σd~ι is
CM(iΓ), i.e. Σd~ι is a maximal CM(F) skeleton. In this section it will
algebraically be proven that P(F,d>Σ) is a topological invariant for
pure complexes by showing that if d — depthΛ/SR(i7, Σ) then d - 1 =
α(Σ), where M is the homogeneous maximal ideal of SR(F,Σ) and
α(Σ) is the topological invariant found in the work of Munkres [13].
(See Theorem 4.3). Then it will be proven by doing a variation on
[13] that P(F9d,Σ) is a topological invariant for all complexes.

The following notation is fixed for this entire section. Let Σ be a
complex with vertex set {xo> > Xn} Let F be a field and F[X0,..., Xn]
= S be the polynomial ring in indeterminants X/. Regard SR(i% Σ) as
a cyclic S-module. The action of S on SR(/7,Σ) is: sr = (s + Iγ)r for
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s e S and r e SR(F,Σ). Then pd5SR(i%Σ) will denote the projective
(or homological) dimension of the ^-module SR(i% Σ). For a maximal
ideal n of S with Sf = Sn let pd5/SR(i% Σ) denote the projective dimen-
sion of the (localization) S'-module Sn ®s SR(F,Σ) =s, SR(F,Σ). Let
m be the ideal (Xo,...9Xn)cS.

LEMMA 4.1. Let Σ be a pure complex of dimension N. Then for any

PeSpec(SR(F,Σ)),

N + 1 = dim SR(F, Σ) = ht P + dim SR(i% Σ)/P.

In particular for Mf any maximal ideal ofSR(F, Σ)9 ht M1 = N + 1.

Proof. Let P be any minimal prime ideal ofΓ(sf) = SR(7%Σ) where
s/ is the sheaf of polynomial rings over the poset of simplices X of
Σ as in Proposition 3.1. By a basic result (see Prop. 1.4 [21]) P = Pσ

for some minimal σ, i.e. σ is maximal in Σ. There exists a chain
a = o\ < θ2 < < ON+2 = 0 in X, so the strictly ascending chain
of prime ideals P = Pσ c Pσ2 c c PffN+ι c P& is of length Λ̂  +
2. Thus dim R/P > N + 1 = dimiϊ. As the reverse inequality is
automatic it is established that dim R/P = N + 1 for each minimal
/>eSpec(SR(F,Σ)).

As a consequence of the Noether Normalization Theorem (Cor.
3.6, p. 53 [10]), dimSR(i%Σ) = h t P + dimSR(F,Σ)/P for each P e
Spec(SR(F,Σ)).

PROPOSITION 4.2. With notation as above, Σ a pure complex, and
S" = 5 m , pd s,SR(F, Σ) < pd^.SRί/7, Σ), for each maximal ideal n ofS.
Consequently pd^SR(F,Σ) = pd5SR(F,Σ).

Proof. First see the second statement follows from the first: It is
known that pd^SR^, Σ) = sup{pds,SR(F, Σ)|S" = Sn, n c S maximal}
(Lemma 5, p. 129 [12]).

Now set some notation. Let γ: S —> SR(F,Σ),s -+ s + 1^ be the
projection epimorphism. Let η: SR(/%Σ) —• T{sf) be the usual iso-
moφhism. Let λ = η o γ. S acts on T(sf) by sa = λ(s)a for s e S and
aeT{sf).

Now let n be a fixed maximal ideal in S and Sf = Sn. Because local-
ization gives an exact functor and 0 -• P{2) -> T{s/) -+ T{s/\X{\)) -^
0 is an exact sequence of S-modules, 0 —>$* P{2) -+sf Γ ( J / ) ->$'
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Γ(sf\X(l)) -> 0 is exact. (The action of S on T{sf) is gotten by using
λ as above and S acts on T{s/\X(l)) via projection.) By a standard
result (Exercise 9.12, p. 243 [17]),

(0) V&s n*) < max{pd5,P(2),pd5,Γ(;/|X(l))}.

Claim. vάs.P{2) <
Note by (0) that the following is true once the Claim is established:

(+) pd5,Γ(j/) < pd5,Γ(j/|X(l)) will hold.

Proof of Claim. ,y/P(2) = ®s, 4*,rk(jc) = 1, by a standard isomor-
phism. By additivity of the Extι

s,(_,B) functor for B an £"-module, to
prove the Claim it suffices to prove

(1) pds,Ax < pds>Γ(jf\X(l)) for x of rank 1. Consider Ax with x
of rank 1. By the Auslander Buchsbaum (A-B) Theorem (p. 263 [15]),
χ>άs,Ax = depthS1 - depth?, 4 γ . By a basic result (see Cor. 3 p. 92
[12]),

(2) vάs,Ax =Jn + 1) - depthsA x . Now depth^,^ = depth(^ x ) τ [ n ]

where δ: T(sf\Xx) —• Ax is the usual isomorphism and τ = δ o ρx o
A: 5 -^ Γ ( J / ) -^ Γ ( J / | X X ) -> ^ x . But ^ = F[Zu...,ZN+ι] where
{Zi, . . . ,Z# + 1 } c {Xo,...,Xn}. But by the same basic result quoted
above, conclude from (2),

(3) pds,Ax = n +1 - (N+1) = n -N for all x of rank 1. By the A-B
Theorem, where />' = p x [ 1 ] ,pd^Γ(j/ |X(l)) = n+l -depth?, Γ(V|X(1))
= Λ + 1 - depthΓ(j/|JΓ(l)Vo A [ l l ] > n + l - &mΓ(j/\X(l))p,oλ[n] =
n + l - N with the last equality following from Lemma 4.1. Thus the
following is established:

(4) pds,Γ(j*\X(l)) > n + 1 - N. (3) and (4) yield (1) immediately.
This finishes the proof of the Claim.

Now use (+) repeatedly where M = γ(m) and

(*) d = depths SR(/% Σ) = depth SR(i% Σ)

by Corollary 3.8:

) < pds,SR(F,Σn-1) < < ^ 1

= n + 1 - depth?,SR^Σ^ 1 ), by the A-B Theorem,

= n + 1 - depth S R ^ Σ ^ 1 ) ^ ,

where M' is the image of n under S - ^

= n + 1 - d9
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whereas by (*), Theorem 3.7, and Reisner's Theorem SR(F,Σd~{) is
CM and by Lemma 4.1,

d = d i m S R ^ Σ ^ " 1 ) ^ = depth SR(F,Σd-ι)M>

= n + 1 - depths,/SR(F,Σ), by (*),

= pds,,SR(i% Σ) by the A-B Theorem.

Putting together the two ends of the string of inequalities, the proof
is complete.

THEOREM 4.3. Let Σ be a pure complex and F be a field. Then
P(F, d, Σ) is a topological invariant.

Proof. Let the notation be as in the proposition preceding. Munkres
(Thm. 3.1, p. 116 [13]) has proven that α(Σ) = n - pd5SR(i%Σ) is a
topological invariant. By the proposition above and the Auslander-
Buchsbaum Theorem,

α(Σ) = n - pd5//SR(F,Σ) = n-[n + 1 - depth?,, SR(F,Σ)]

= - 1 + depths SR(F,Σ).

Since α(Σ) is a topological invariant, then so is depthiS-,,SR(i7,Σ) =
depthSR(F,Σ)M = d e p t h ^ S R ^ Σ ) by Corollary 3.8. Theorem 3.7
implies the dimension α(Σ) of the maximal CM(F) skeleton is a topo-
logical invariant. This is what was required to be shown.

The following result is contained within the body of the proof above.

COROLLARY 4.4. Let Σ be pure and d = depth M SR(F^),M the
homogeneous maximal ideal ofSR(F, Σ). Then d - 1 = α(Σ).

Corollary 4.4 is a special case of the following.

THEOREM 4.5 (Stanley [19]). Let Σ be any complex and d =
depthMSR(i% Σ), M the homogeneous maximal ideal ofSR(F, Σ). Then
d-l= α(Σ)

Theorem 4.5 may be used in the proof of the following.

PROPOSITION 4.6. With notation as above and Σ any complex the
following are equivalent.

(a) depthMSR(F,Σ) = depth SR(F,Σ)M.
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(b) pd5SR(i%Z) = pds,(S' ®s SR(F,Σ)), S' = Sm.

Proof.

depthMSR(i%Σ = α(Σ) + 1, by Theorem 4.5,

= n + 1 - p d ^ S R ^ Σ ) , by Hochster's formula (see p. 114 [13]),

< depth Sm - pds*(S' ® SR(F,Σ)), by [12] (Lemma 5, p. 129),

= depth^ (S" <g> SR(i%Σ)), by the Auslander-Buchsbaum Theorem,

= depth SR(JF, Σ)Λ/, by definitions of localization.

The result follows.

Note 4.7. In case Σ is pure, Corollary 3.7 implies that

depthMSR(isΣ) = depth SR{F,Σ)M.

Now Proposition 4.2 is a consequence of Proposition 4.6.
Techniques developed by Munkres allow a generalization of The-

orem 4.3. The assumption "Σ pure" can be eliminated from the hy-
pothesis.

THEOREM 4.8. Let Σ be a complex and F be afield. Let a = α(Σ)
be as above. Then

(a) Σ" is a CM(F) subcomplex.
(b) ΣJ is not CM(F) for each j with N > j > a, i.e. Σa is a maximal

CM(F) skeleton.

First prove an easy result.

LEMMA 4.9. Let Σ be a complex, 0 < i < dimΣ and σ e Σ'. Then
l i n k ( σ , Σ θ = l i *

Proof. Take τ e link(σ,Σ'). Then τ U σ e Σ1 and τ n σ = 0. Thus
dim τ + dim σ = dim(τ U σ) - 1 < i - 1. So dim τ < / - dim σ - 1, and
τGl ink(σ,Σ) / - d i m σ - 1 .

Take τ e link(σ, Σ ) ^ 0 1 " 1 σ ~ ι . Then dim τ < / - dim σ - 1, σ U τ e Σ,
andσΠτ = 0. Sodim(τUcr)-l = dimτ-hdimσ < / - I andτUσ e Σz.
Thus τ€link(σ,Σ').

Proof of Theorem 4.8. Let Σ be a complex, X = |Σ| and singular
cohomology groups H'(X) be defined with coefficients in F. By [13]
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(Theorem 3.1) σ(Σ) = a is the smallest integer j such that at least one
of W{X) or {HJ{X,X-p)\p € X} is non-trivial.

Record the fact (1) for 0 < / < dimΣ, HJ(Σ) = Wip) whenever
j < i (see Prop. 3.1, p. 166 [2]).

For the proof of (a) let Xa = \Σa\. By [13] (Corollary 3.4) it suffices
to prove W{Xa) = W{Xa, Xa-p) = 0 for all j < a and all p e Xa.
But (2) HJ{Xa) = Hj{X) = 0 for j < a by (1) and the definition of α.

Let p € Xa and choose a e Σa with p e Int|σ|, the interior of \σ\.
Then

Hj(Xa,Xa-p)

= ^- d i m- ( T-1(link(σ,ΣQ)), by [13] (Lemma 3.3),

= ^- d i m σ - 1 ( l ink(σ,Σ) Ω - d i m σ - 1 ) , by Lemma 4.9,

= Hj-dimσ-ι{link(σ,Σ)), by (1) for j < a,

= Hj(X, X - p), by [13] (Lemma 3.3),

= 0 by definition of a for all j < a.

So (3) for all p e Xa and for all j < a,HJ{Xa,Xa - p) = 0. (2), (3)
and [13] (Corollary 3.4) finish the proof of (a).

To prove (b), note by Proposition 3.6 if any Σ' is CM(F), then ΊJ is
CM(F) for all j < i. Thus it suffices to prove (4) Σα + 1 is not CM{F).

Assume by way of contradiction Σα + 1 is CM{F). By [13] (Corollary
3.4) HJ'(Σa+ι) = 0 for all j < a + 1 and ^ ( Σ α + 1 , Σ α + 1 -p) = 0 for all
p € Xa+ι and for all j < a + 1.

As before, (5) 0 = HJ(Σa+x) = HJ{Σ) for all j < a + 1. For p e
Xa+ι,σ e Σa+\p e Int |σ | , and for all j < a + \ ,

0 = Hj{Xa+\Xa+x -p) = i7->-dimσ-1(link(σ,Σα+1))
a-1 ( l i n k ( σ 5 Σ )«+1 -dim σ-1)

1(link(σ,Σ)) = W{X,X-p).

So (6) for all p e Xa+ι, for all j < a + \,W{X,X - p) = 0. Fur-
thermore (7) for all p e X - Xa+ι, with σ € Σ - Σα+1 and p e
Int\σ\,HJ{X,X-p) = HJ-dimσ-ι(link(σ,Σ)) = 0 for all j < a + 1.
(5), (6) and (7) contradict the definition of a. This finishes the proof.

THEOREM 4.10. P(F,β,Σ) is a topological invariant for finite sim-
plicial complexes.

Proof. Assume Σ satisfies P(F,β,Σ). Then Σ^"1 is CM(F) and for
all j with j > β -l,ΣJ is not CM(F). But replacing β by a = a(Σ) in
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the last two sentences, conclude by means of Theorem 4.8 that β = α.
The proof is done by [13] (Theorem 3.1).

5. The notion of regularity has topological consequences-a begin-
ning. Let (s/yX) be as in §2 a basic pair. Let (r\,...,rn-ι) be the
usual ranked height sequence of R = T{sf) and consider the subse-
quence (ri,r2). In case {r\,r2) is not regular one can ask whether one
can find an obstruction in X = X(Σ) preventing regularity. Theorem
5.2 below will answer this question. Now ask in case n > 3 whether,
given (r1? r2) is regular, an obstruction in X preventing (r\9 r2, r3) from
being regular can be found. This question seems difficult to answer.

First a general lemma:

LEMMA 5.1. Let X be a rankedposet with rank X > 29sf be a sheaf
of rings on X. Suppose

(1) For all x e X with rk(x) > 2,XX = {z e X\z < x} is connected
and

(2) There exists b1 e H{Ax\rk(x) = 1} (the Cartesian product), such
that whenever rk(x) = rk(jt') = 1 andy covers x and xf then pyxb'(x) =
pyx>b'(x'). Then there is an element b eR = T{s/) with b{x) = b'(x)
for all x of rank 1.

Proof b is constructed by induction on x. Let 3°{k) be the propo-
sition defined for all positive integers k by "b(w) is defined for all
w € X such that vk(w) < k and for u,uf < w such that rk(tu) <
k,pwub(u) = Pwwb(uf)" In other words &>(k) says that b is defined
up to the kth rank.

For the base step let k = 2 and prove ^ (2 ) . Let b(x) = b'(x) for
ank x = 1, and for y of rank 2 with y > x, let b(y) = ρyxb(x). By
(2), b(y) is well defined for y of rank 2. ^ ( 2 ) is proved.

For the induction step assume &{k— 1) is true and prove &{k) as
follows: Let rk(w) = k and consider Y = Xw which is connected by
(1). First consider x, xf atoms of Y. There is a path in Y from x to
x':

(3) χ ^ \ ^ 2 \ - y«~K f
v f X = X\ X2 X$ * * * X = Xn

By running a chain up to w from each yi9 it may be assumed each yt

has rank A: — 1. In order to show pwxb(x) = ρWχ'b(x') it suffices to
show by (3) that ρwxb(x) = pWX2b(x2). Now pyιXb(x) = pyιX2b(x2)
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by &>{k - 1). So (4) pwxb(x) = pwyιpyιXb{x) = Pwyιpyιx2b(x2) =

Pwx2b(x2).
Now consider any x,x' e Y and prove pWχb(x) = pwx'b(x'). Let

u < x and uf < x' where u and v! are atoms of Y. Using (4) and

Pwχb(x) = ρWχPxub{u) = ρwub{u) = pw

= Pwx'Px'wb(u') = pwx>b(xf).

So b(w) is well defined and the induction step is finished.

THEOREM 5.2. Let (s/9 X) be a basic pair with X a prelattice of rank
greater than 2 and R = Γ ( J / ) . The following are equivalent.

(a) Xx is connected for all x of rank bigger than 2.

(b) (r[,r2) is regular.

Proof. First prove (b) implies (a) by contraposition. Suppose Xz is
not connected for some z e X,rk(z) > 2. Consider the localization
RP:, and let φ: R —• Rpz,r —• [r/1] be the standard homomorphism.
As r1? r2 G Pz, assuming (r1? r2) is regular then implies ([π/l], [^/l]) is
regular in jR̂ _. Using the fact that Rpz = Γ ( ^ ) where ^ is a sheaf of
rings over the disconnected poset Xz this contradicts [21] (Proposition
6.1). One is forced to conclude {r\,r2) is not regular.

Now assume (a). Let Tϊ denote the i?-module ]R = R/(r\).

Claim. AssRR = {Py\τk{y) = 2}.

Proof of Claim. First suppose rk(j/) = 2. Then Py is a minimal over-
prime of P(2) as in the proof of Theorem 1.5. But by Proposition
1.4, P(2) = Rad(ri). It follows that Py is a minimal over-prime of
(ri). But such ideals are in AssRR. Thus the left hand side contains
the right hand side.

Next argue by contradiction and suppose P e ASSRR but P φPy for
each y of rank 2. By minimality of Py in Ass^ΐί, for all y of rank 2,
P £ Py. Supposing P C \J{Py\rk{y) = 2}, then by a basic fact, P C Py

for some y of rank 2. This contradiction establishes the existence of
an s G P - \J{Py\rk(y) = 2}. Say P = Ann(r + (r{))9 for some r e R.
Then sr G (r{) so (l)5r = cr1? some c e R. By (1) for each y of
rank 2, sΌ>)r(;y) = 0. Thus r(y) = 0 all y of rank 2 (by choice of s).
So r G P(2) and thus for each x of rank 1, r(x) = b'{x)rχ{x) where
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b'(x) G Ax. From (1) it follows that s(x)b'(x) = c(x) for each x of
rank 1. Now let y be of rank 2 and cover x and xf. Then

s{y)pyX(b'{x)) = pyXs{x)pyxb'{x) = / ^ ( . Ϊ (*)£'(*))

Using the fact s(y) ^ 0,pyxb
f(x) = pyx>bf(xf). This shows condition

(2) of Lemma 5.1 is satisfied. As condition (1) is hypothesis, conclude
by Lemma 5.1 that b1 defines an element b eR such that b(x) = &'(x)
for all x of rank 1. But then from the definition of b, r = br\ and then
r G (η). This contradicts the choice of P and the Claim is proved.

By a basic result, Ass^i? is a union of the zero divisors of R.
Whereas r2 $ Py for each y of rank 2, by the Claim r(2) is not a
zero divisor of the i?-module ΐί. So r2 + (π) is not a zero divisor of
the ring Ίί. So (π, r2) is regular. The proof is complete.

Note 5.3. Given (sf,X) is basic with X a prelattice of rank bigger
than two and R = Γ ( J / ) . Assuming R is local with depth R > 1, does
(ri,Γ2) have to be regular? The example here constructed shows the
answer to the question is no.

Let Σ consist of two tetrahedra a\ and σ2 joined on a common
1-simplex.

IΣI:

If F is a field and M is the homogeneous maximal ideal of SR(i% Σ),
then depth SR(F,Σ)M = 3. The reason for this is that Σ = Σ 3 is not
CM(F) for Δ = link((Ji n<72?Σ) is of dimension 1 but not connected so
/7°(Δ, F) φ 0. To show Σ 2 is CM(F) note if τ e Σ 2, then link(τ, Σ2) is
empty or of dimension 0 or a complex of dimension 1 and in all cases
an F-bouquet of spheres. So conclude that Σ 2 is a maximal CM(F)
skeleton and by Theorem 3.7 and Corollary 3.8 depth SR(i%Σ)^ = 3.
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Let a = G\ Π (72. The rank of σ in the poset X is 3. Xσ is:

σ2

Obviously Xσ is not connected. This shows (a) and thus (b) of Theo-
rem 5.2 is not satisfied.

Next a general Lemma of some usefulness.

LEMMA 5.4. Let X be a prelattice. IfxeXis not a join of atoms,
then Xx is contractible.

Proof. Suppose x e l ί s not a join of atoms. Let A = {z e X\z is
an atom and z < x}. Then ZQ = \/{z\z e A}, exists and z0 < x by
assumption so zoeXx.

Now let y € Xx. If z is an atom of X and z < y then z e A
by transitivity of <. So w(y) = \J{z\z an atom and z < y} exists in
^*> tt(j>) < ^o and w(j ) < y. Now define a function / : Xx —> Xx

by y —• M(y). It is clear / is a poset map. Now for all y e Xx,
y > f(y) < ZQ. Thus the identity map |Id|: \XX\ —• \XX\ is homotopic
to the constant map |zo |: \XX\ - • |XX| (see p. 103 [15]). Thus Xx is
contractible.

In the following proposition R = Γ ( J / ) is the section ring of the
sheaf of polynomial rings over the poset as in §3. Elements r\ and ri
are from the usual ranked height sequence of Γ ( J / ) .

PROPOSITION 5.5. Let Σbea simplicial complex of dimension N > 0
and F be afield. The following are equivalent.

(a) Σ is pure and (r\r2) is regular.
(b) link(cr, Σ) is connected for all σ £ Σ such that link(σ, Σ) > 0.
(c) link(σ, Σ) is connected for all a e Σ such that σ is the intersection

of a set of maximal simplices and dimlink(σ, Σ) > 0.

Proof, (c) implies (b) for if σ e Σ, by Lemma 5.4 it suffices to
consider σ a join of atoms, i.e. an intersection of maximal simplices.
(b) trivially implies (c).

Assume (a). Choose σ e Σ with dimlink(σ,Σ) > 0. Then dimσ <
N -2by the formula dim σ + dim link(σ, Σ) = iV — 1. So rk(σ) > 2 in
X and Xσ is connected by Theorem 5.2. But Xσ = X(link(σ,Σ)) - 0
(poset isomorphism). Thus link(σ,Σ) is connected. This proves (b).

Assume (b). Σ is pure by Proposition 3.4. Consider σ e Σ with
rk(σ) > 2, i.e. dimσ < N — 2. By the dimension formula above,
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dimlink(σ,Σ) > 0. Link(σ,Σ) is connected by hypothesis so Xσ =
X(link(σ,Σ)) - 0 is connected, σ is arbitrary so Theorem 5.2 finishes
the argument. This proves (a).

6. Explicit regular sequences in Stanley-Reisner rings. The follow-
ing lemmas are known and are recorded here for sake of completeness
(see p. 103, Exercise 14 [9]).

LEMMA 6.1. Let R be a ring and 0-^A^B-+C-+0bea short
exact sequence of R-modules. Suppose a given sequence (r\,...,rn) inR
is a C-regular sequence. Then 0-* A/(r9...9rn)A—> B/(rι9...,rn)B —>
C/(r i , . . . , rn)C —• 0 is an exact sequence of R-modules.

LEMMA 6.2. With the same assumptions as in Lemma 6.1 and in
addition (r\9...9rn) is B-regular, then {r\,...9rn) is A-regular.

LEMMA 6.3. Given the exact sequence of R-modules 0 -> A —• B —•
C —• 0 and given the sequence (r\9...9rn) ofR which is A-regular and
C'-regular, then (r\9...9rn) isB-regular.

Let R and Λ be rings with a ring homomorphism φ: R —• ΪJ. The
following theorem uses Lemma 6.3 to show how to pull back a regular
sequence in ]R to R in the special case where Έ and R are section rings
with φ being the restriction map.

THEOREM 6.4. Let {$/9 X) be basic with rank X = n and (r\,..., rn_ ι)
the usual ranked height sequence for R = Γ ( J / ) . Let m be an integer,
2 < m < n (= rank^Γ) and assume Ax is CM for all x e X with
rk(x) < m — 1. Assume either

(a): Ax is local for all x with rk(x) < m - 1 or
(b): Ax is a non-negatively 2-graded ring and each ρx{Ti) is homo-

geneous of positive degree for each i and all x with rk( c) < m - 1.
{Recall px: Γ(sf) - Γ(sf\Xx) = Ax.)
Finally let X(m - 1) = X - {x e X\τί(x) < m - 1}, and letr-*r
denote the restriction map Γ(sf) = R -> Γ(sf\X(m - 1)) = R. If(*)
U = ( r m , . . . , r n _i) is Tϊ-regular, U the ranked height sequence o/Λ,
then ( r m , . . . , rπ_i) is R-regular.

Proof. First prove the statement in the special case m = 2. By
Lemma 3.5 T{sf\X{\)) = R = ^7^(2) and regarding ϊ? as an i?-
module via projection R ->~R note that (1): (r 2 , . . . , rn_!) is R/P(2)-
regular.
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Consider the exact sequence of iΐ-modules 0 —• P{2) —• R ->
R/P(2) -• 0. Supposing ( r 2 , . . . , r Λ _ i ) is P(2)-regular then using (1),
Lemma 6.3 would finish off the argument.

Claim: (r2,...9rn-\) is P(2)-regular.

Proof of Claim. P{2) = @{Ax\τk(x) = 1}, as i?-modules. So it
suffices to prove for each x of rank 1 that (r 2 , . . . , rΛ_i) is ^-regular
where the i?-action on Ax is given by restriction. So fix x of rank 1.
Then Ax is CM by assumption and (pxr\,..., pxrn_γ) is the ranked
height sequence of T{s/\XX) = Ax so regular by Lemma 1.7. In case
(a) or in case (b), considering the local ring case or the graded ring
case, (pxr{,..., pxrn_χ) is quasi-regular (see p. 98, [12] with thanks to
Marie Vitulli), so that (pxr2,...,pxrn-ι) is Γ(J/|XX)-regular. Taking
into account the i?-action, (r 2,...,r / 7_ 1) is ^-regular. This is what
was needed for the Claim and completes the proof of the special case.

Now consider m, 1 < m < n. Let (rw«i,...,rΛ_i) be the ranked
height sequence of T{sf\X{m - 2)) where X(m - 1) = X - {x G
-ΛΓ|rk(jc) < m - 2} and let (r m , . . . , r^_ 1 ) be the ranked height se-
quence of ϊ? = T(stf\X(m - 1)) and let / be the restriction map,
/ : T{sf\X{m - 2)) -> Γ(tf\X(m - 1)), r -+ r. As in the hypothe-
sis suppose (fm,..., rΛ_i) is ^R-regular. Then claim: (2) {rm,..., rn-χ)
is T(s/\X{m - 2))-regular. For consider the exact sequence of R-
modules (i?-action via restriction) 0 -» K -> Y(srf\X{m - 2)) -•
T{sf\X{m - 1)) -+ 0 where K = ®{Ax\τk(x) = m - 1}. By pre-
cisely the same argument as for the Claim, {rm,..., rΛ_i) is A^-regular
and Lemma 6.3 yields the result (2). By an inductive assumption for
integers smaller than m - 2 the proof is complete.

COROLLARY 6.5. Let Σ be a pure complex of dimension N and let
d = depth SR(F,Σ)M,M the homogeneous maximal ideal Then U =
(rΛr_ ί / + 2,..., r#+i), the subsequence of the ranked height sequence for
Γ(A) = SR(F,Σ), is T(x?)-regular.

Proof. Let Σ be a pure complex with d = depth SR(F,Σ)M,M the
homogeneous maximal ideal. Let (s/9X) be the usual pair with

where

X(Λ

^) = SR(F,Σ), R

{σe Σlrk(σ) < i V - dλ

-1)) =

hl} =
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Let r —• r denote the restriction map, R-^ΊΪ. Let m = N + d + 2.
The hypotheses of Theorem 6.4 need to be satisfied: (sf,X) is a

basic pair and Aσ = F[Z]Zeσ is CM for all σ e Σ. To see that (b)
holds take rt e {ru..., rN+{} and let ao pσ: R -+ Γ(^f\Xσ) = ^4σ be
the restriction map followed by the isomorphism a. Then by the Note
after Lemma 3.2 (r 1 ? . . . , rN+{) can be chosen so that

_ fO, if rk(σ) > Ϊ,

\ a homogeneous sum of monomials, if rk(eτ) < /.

It remains to show (*) of the Theorem holds, i.e. (7>_</+2> >^v+i)
is ^R-regular. Note the sequence is regular following [2], Here is an-
other proof. By Theorem 3.7 and Corollary 3.8, Σd~ι is CF(F). By
Reisner's Theorem, SR(F,Σd~ι) is CM. By Theorem 1.5 and Lemma
1.7 (whereas restriction takes a ranked height sequence to likewise),
(r^_ ί / + 2 , . . . , rN+!) is ^-regular.

Apply the conclusion of the Theorem with m = N - d + 2 and
conclude U = (rN_dJrl,..., ^ + i ) is regular. The proof is complete.

Note that U is of length d so that by Corollary 3.8,

d < depthMSR(F,Σ) = depth SR(i% Σ ) M = d

and it can be concluded (using the isomorphism Γ ( J / ) = SR(i7,Σ))
that U is a maximal regular sequence within the "homogeneous max-
imal ideal" of Γ(s/).

REMARK 6.6. In the body of the last proof, reference is made to
Baclawski and Garsia [2]. By choice of (r\,..., r^+i) in the note after
Lemma 3.2, φ: SR(1%Σ) —• T{sf) has the property that φ{aj) = η for
j = 1,...,7V+ 1, with each a,j homogeneous. There is an induced
isomorphism of rings

φ: S R ^ Σ ^ " 1 ) -> R = Γ(tf\X(N -d+ 1)).

It happens that φiβj) = Tj where for j = N - d + 2,..., N + 1

{xι(]),...,xl{N-J+2)}eΣ

In terms of [2], (aN_d+2,...9άN+ι) is a frame of S R ^ Σ ^ " 1 ) , i.e.
dimSR(F,Σd-ι)/(rN_d+2,...,rN+\) = 0. By a result of [2] (Prop. 2.3,
p. 162) because S R ^ Σ ^ " 1 ) is CM it follows that {άN_d+2^"^N+\)
is regular. One then has a different proof that (ϊV-</+2> >^v+i) is
7?-regular.
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EXAMPLE 6.7. The following example (see 5.3) helps to justify the
title of §6.

Define Σ = Σ 3 so that |Σ| is as above. Before it was demonstrated that
Σ 2 is a maximal CM(F) skeleton for any F; hence depthMSR(is Σ) =
3. As in Remark 6.6, a maximal regular sequence of SR(F, Σ2) is given
by fa, #3, #4) where

χiχjxk

Σ χiχj + h^
{xi,xj}eΣ

a4= Σ x

Corollary 6.5 shows that (tf2>fl3>#4) is a maximal regular sequence of
SR(i%Σ) where

a2= Σ j
{x,,Xj}eΣ

{χ}eΣ

One has of course that the natural projection v: SR(F, Σ) —• SR(F, Σ2)
is defined so that for / = 2,3,4 that i/(α, ) = S/.

LEMMA 6.7 {DeConcini, k al [4]). Suppose 0 -+ A -• B -> C -> 0
w α« ^xαcί sequence of R-modules and (r\,...,rn) is a sequence of ring
elements such that r\C = 0. If(rι>...9rn) is B-regular and (r 2,. . .,r n)
is C-regular, then (r\,..., rn) is A-regular.

The lemma can be used to prove one implication of the following.
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THEOREM 6.8. Let (s/,X) be a basic pair with rankX = n,X be a
prelattice and R be CM and local with dim I? = n-ί. Then R/P(2) is
CM if and only if Ax is CM for all x of rank 1.

Proof, Assume Ax is CM all x of rank 1 along with the other
hypotheses. X has a unique maximal element m of rank n (Cor.
2.3, p. 180 [21]) and h t P m = n - 1 as in the definition of a basic
pair. So Pm is the unique maximal ideal of R. Theorem 2.2 gives
depth R/P{2) = n - 2. Whereas dimi?/P(2) = n - 2 by the
equation htP(2) + dim R/P (2) = dimi? (see p. 108, Theorem 31,
[12]) and the fact that htP(2) = 1, the argument is finished.

Now assume the hypotheses plus the condition that R/P{2) is CM.
Consider the exact sequence of i?-modules, with inaction gotten by re-
striction, 0 -+ P(2) -> Γ ( J / ) = R -> R/P (2) -> 0. Since R is CM The-
orem 1.5 and Lemma 1.7 imply that (ri,.. .,r n_i) is i?-regular. Note
the i?-module isomorphism R/P{2) = Γ ( J / | X ( 1 ) ) , so rι(R/P(2)) = 0.
Also (?2,..., rn-i) is the ranked height sequence of Γ(sf\X(l)) where
restriction is given by R -• Γ ( J / | X ( 1 ) ) , r -• r. Since Γ ( J / | X ( 1 ) ) is a
CM ring, as above (72,...,rn_i) is Γ(j/|X(l))-regular. But then con-
sidering i?-action, (r2,..., rΛ_i) is i?/.P(2)-regular. By Lemma 6.6, (1)
(ri,...,rΛ_i) is P(2)-regular.

Recalling P(2) = {0^jc|rk(x) = 1}, use (1) to conclude (ru...9rn^ι)
is ^4X -regular for each x of rank 1. Considering the i?-action on each
Ax is given by restriction, then (r\ (x), . . . , rn-\(x)) is ^jc-regular. Thus
depth Ax > n - 1. But dim^ί* < n - 1 by the homomorphism
px: R -+ T(s/\XX) = Ax. Conclude for all x of rank 1 depths* =

= n - 1. Ax is therefore CM for all x of rank 1.
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