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SOMMES EXPONENTIELLES
DONT LA GEOMETRIE EST TRES BELLE:
p-ADIC ESTIMATES

MICHEL CARPENTIER

In the present work we examine a family of multivariable expo-
nential sums on a connected variety defined over a finite field.

0. Introduction. Let K = F, be the field with g elements (charK =
p#2,q=p/),xe€K*, g,...,8g positive integers relatively prime
and prime to p (n > 2) and let 7% be the variety defined over K by

f tf‘ = X. Let Q be a complete algebraically closed field containing
Qp, ©: K — Q* an additive character and for each i € {1,...,n} let
xi- K* — QX be a multiplicative character. Let ¢y,...,¢, be non-zero
elements of K, and let f(¢) = i Eitf?f, where ki,...,k, are positive
integers prime to p. For each m € Z, let K,,, be the extension of K of
degree m. We consider the twisted exponential sums

0.1) Su(f,75)= Y [ltio Nk, (@) x©0 Ty, (f(D)

(Fryeenrfn) €EZ(K,) i=1

and the associated L function:

[e o]
02)  L=LF.% D) =exp( = Y Su(FIT"/m).
m=1
Our main results are the following:
A. We show that L(-1)" is a polynomial of degree

h = (lz;:gi/ki) iljlki-

B. We compute explicitly a lower bound for the Newton polygon
of L(=1)"; this lower bound is independent of the prime number
p and its endpoints coincide with those of the Newton polygon
(Theorem 5.1 and Corollary 5.1).

C. Provided p lies in certain congruence classes, we show that
our lower bound is in fact the exact Newton polygon of L(-1)"
(Theorem 5.3).
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D. As a consequence we obtain p-adic estimates for the sums (0.1),
since they are related to the reciprocal roots {y;}7_, of (0.2) by
the equation

(0.3) Sm(f,2%) = (1" 7 + -+ ).

We emphasize that our lower bound for the Newton polygon can be
computed explicitly: To fix notations, we assume that the multiplica-
tive characters y; are of the form y;(¢) = w(z)~~1?/" where r and

p; are natural integers, r|g — 1,0 < p; < r. For a = (Og,---,an) ez",
let g(a) = Inf;a;/g; and J(a) = ;31 a;/k;. Let A, be the finite
subset of Z" defined by
0<aog(a)<r
aezlpé a; = p; (modr), i=1,...,n

o(e) <a;/g <a(a)+rki/g, i=1,...,n.

Whenever two elements o and S of Z’p satisfy J(a) = J(B) and o; =
Bi (modk;) for all i, we only keep the first of these two elements
for the lexicographic order and eliminate the other: let Z,, be the
resulting set. K,, contains 4 = (3_7_; gi/ki) [1}-, ki elements, and the
slopes of our lower bound are the values on Zp of the weight function
w(a) = J(a) - La(a) X0, gi/ki. For example, if % is the variety
115383 = 1 and f(t) = £} +13+13, with trivial twisting characters ;, then
L~ is a polynomial of degree 26. When p = 1 (mod 18) its reciprocal
roots have p-adic ordinal 0, 1/3, 7/18, 4/9, 1/2, 2/3 (twice), 13/18,
7/9,5/6, 8/9, 17/18, 1 (twice), 19/18, 10/9, 7/6, 11/9, 23/18, 4/3
(twice), 3/2, 14/9, 29/18, 5/3, 2. When p # 1 (mod 18), the Newton
polygon of L~! lies above the Newton polygon whose sides have these
slopes and their endpoints coincide.

Ifn=2k =k =1, g = g =1, and the twisting charac-
ters are trivial, the sum (0.1) is the Kloosterman sum, which was
first investigated from a p-adic point of view by B. Dwork in [9].
More general situations have been studied by S. Sperber ([13], [14],
[15]) and Adolphson-Sperber ([1], [2]). We have made extensive use
of the work of these authors, especially from [15]. On the other
hand, using /-adic cohomology, P. Deligne [6] has shown, in the case
g == gy=k ==k, = 1, that the reciprocal roots {y;}"_,
of L(=1" have complex absolute value g"~!/2; this was later extended
by N. Katz [10]—from whom we borrow the title of this article—to
include the case k; = --- = k, and general gy,..., g,. We complement
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here this result, by obtaining p-adic estimates for the y;’s. Our ap-
proach departs from previous literature on the subject by the use of
a new trace formula (Theorem 1.1) which provides a more balanced
treatment and avoids the restriction g, = k, = 1 ([4], [15]).

Using Dwork’s methods, we construct cohomology spaces Wy , on
which a Frobenius map acts, F: Wy — Wy p. These spaces have
dimension 4, and if x = x7 is a Teichmiiller point, the eigenvalues of
Z x are the reciprocal zeros of (0.2). The choice of a good basis for the
space W, , is crucial in obtaining estimates for the Newton polygon of
the L-function: its elements are those of the set {x~?@/"t%|a € A,},
chosen so as to minimize the weight function w(a).

Define p© = p, p(, ..., p\/) = p by the conditions
ppl”'l pl.J) =0 (modr)
0<p¥ <r Vi, j

For each o) € A ou), there exist (Lemma 2.8) unique elements o) €
Ay and 6U) € 7" satisfying

(J+1) )]
p(aik _ O.(a(j+l));%) _ (i’r‘;c_ — g (al) SI’CI > 5(1)
1

rK;

0< 6,.(’ V< r
Ifa=a® €A, let Z(a) = E{;Ol w(al)). We show that the Newton
polygon of L(1)" lies below that of %,(T) =[] ; (1 -~ p*“T), and
their endpoints coincide (Theorem 5.2 and Coroliary 5.1). On the
other hand, if p = 1 (modr), the Newton polygon of the L-function
lies above that of % (T) = Han,,(l — ¢g*(T) (Theorem 5.1). If fur-
thermore pg; = g mod(k;g;) for all i, j, then .%,(T) = #,(T) and
therefore their common Newton polygon is that of L(-1)".

The precise determination of the Newton polygon in other congru-
ence classes requires finer estimates for the Frobenius matrix. This
question has been solved by Adolphson-Sperber ([2]) in the case n = 2,
g1 = & =1, ky = ko. We expect to address this question more fully
in a subsequent article.

In [5], we studied the deformation equation when k, = g, = 1.
With only minor changes, this treatment can be reconciled with the
point of view adopted here. Let us simply indicate that the deforma-
tion operator of [5, p. 9-04] should be replaced by

d
ny = E, + nMc,,a—"tﬁ,’",
n
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where
E,(Y71%) = (y+M31'-)Yyta.
an
1. Trace formula. Let g;,...,g, be positive integers (n > 2),
g = (g1,.-.,8n). We assume that g.c.d.(gy,...,8,) = 1. For a =
(ay,...,a,) € Z" we define:

ww(a):gﬁ_ﬂ, j,jzl’”.,n;
(1 1) 8i &j
ot =t {22, 221,
81 &n

Let u be a fixed positive integer; for any a € 7" let ¢,:2" — Z/uZ
be the group homomorphism defined by @q(y1,...,7) = > 1y Vit

LEMMA 1.1. Let o € ZV; the following conditions are equivalent:
(1) There exists B € I" such that w; j(a) = uw; ;(B) for all i,j =
1,...,n
(ii) There exist p € 7" and | € {1,...,n} such that w;;(a) =
pw;(B) foralli=1,...,n.
(i1i) Ker(¢g) C Ker(¢,).

Proof. The equivalence of (i) and (ii) is obvious from the defini-
tions. Suppose that « satisfies condition (ii) and let y = (yy,...,7) €
Ker(¢g). By assumption, o;g = oy g; + u(Big — B1&:) for all i, hence:

n n n
gy vioi = (Z J’igi) (o1 — uBy) +1gr Y viBi.
i=1 i=1 i=1

Since gj(a;—up;) = g(a;—up;) forall i and g.c.d.(g1,...,81) = 1,
it follows that g; divides oy — uf;. Hence ). | yia; = 0 (mod ) i.e.
y € Ker(¢,) and (ii)=-(iii).

Suppose that Ker(¢g) C Ker(¢,) and, fori=1,...,n—1,let 7; =

g-c.d.(gi, &n)-
Since g 2
n i _
T, &i T 8&n =V,
our assumption implies the existence of integers zy, ..., z,_ satisfying
&ai——gian=uzi foralli=1,...,n—1.
T Ti

Furthermore, for each such i, there are integers f; and Bni ) such that:

- g8 _ g8
(1.2()) 2= & - gL
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Thus

| g0
&_&=ﬂ(ﬁ_ﬁ"_) forall i=1,...,n—1.
8i  &n 8  &n

Observe that, if (8, (D) is a solution of equation (1.2(i)), then so
is (Bi + &i/7i, B,(,') + gn/7i). We must show the existence of solutions
satisfying B\ = --- = B" V. Let i,j € {1,...,n — 1} with i # j:

o0y (B b 2 = B BB
8 & &n 8 &

On the other hand, just as above, we can find integers ¢; and ¢; such

that:

8& & & &
Hence, letting 6; = B;—¢;, d; = Bj—¢; and 7, ; = g.c.d. (1;, 7;) we can
write:

) _ p8i&iTi,j _ gnTi,j o S o
(B = BVELEH = 226181 big).
Since g,7;;/7;7; and g;g;7; ;/tiT; are relatively prime, there exists
Z € Z such that
8nTi,j
TiTj )

- Bni) =Z
In turn, there exist £, n € Z such that Zt; ; = {7; + nt; and therefore
_ﬂni) =€gn + ’7&1‘
T Tj
If we let rp, = g/t (kK =1,...,n— 1), we have just proved that, for
alli,je{l,...,n—1}:
(1.3) BY - B\ e ik + ;1.

We now proceed by 1nduct10n Let kK < n — 1 and suppose that we
have found solutlons (ﬂ,, ﬂ,, ) of eguations (1.2(1)) for all i, with the
property that ") = --- = B (= By).

Let my =l.c.m. (r1,..., 7). By (1.3), Ba— B\ € myZ+r,,Z and
therefore there are integers 4, { such that /in + Amy, = (k 4 Crics
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Let:

(B = B + amy 1<i<k
Bi = Bi+25im 1<i<k
&n
Br+1 = ﬂk+1 + Cgk+:
+
B = By j>k+1
L Bi=B; ji>k+1
Foreachi =1,...,n -1, (B, ,(,’)) is a solution of (1.2(i)) and we
have B\ = ... = B%*D_ Finally we obtain 8 = (B,..., B,) with
Win(a) = pw;(B)Vi=1,...,n
Hence (iii)=>(ii). O

Notation. If o, p € 7" satisfy w; j(a) = pw; ;(B) foralli,j =1,...,n
we shall write:

(1.4) w(a) = po(B).

REMARK 1.1. Let a, f € Z" satisfying (1.4) and let / € {1,...,n},
then

(1.5) o(@) = 2L & o(p) = £ ’9’
1
Let:
(1.6) S={ac2"|0<a(a)<1}.

LEMMA 1.2. Let o, B € S; then a = f & w(a) = w(B).

Proof. The first implication is obvious. Conversely, suppose that
w(a) = w(f) and let / be an index such that g(a) = «a;/g;. By the
remark above, a(f) = B/ g

By assumption, g;(a; — ;) = g/(a; — B;) for all i. If yy,...,y, are
integers satisfying 7, ;g =1, thena;— g, = g >}, 7i(a; — B;) and
therefore g; divides o; — f;.

Since a and g are elements of S, —g; < oy — B; < g, hence a; = f;
and it follows that o; = B; for all i.

We fix r, a positive integer, and for each a € Z" we set

(1.7) sa) = %O'(a).
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Let:

(1.8) E={ae?"|0<s(a)<1}={aecZ"|0<0g(a)<Tr}.
If p e 7", with 0 < p; < r we set

(1.9) ZP ={ael"|a;=p; (modr) for all i},

(1.10) EP) =7 nE.
LEMMA 1.3. Let a, B € EP); then a = B & w(a) = o(p).

Proof. Suppose that w(a) = w(f) and assume that «; > f; for
some index /. Then «; > B; for all i and, letting y; = (a; — Bi)/7,
7y = (¥1,...,7x) is an element of S, with w(y) = 0. Lemma 1.2 implies
that y = (0,---,0). 0

We now fix p, a prime number, with (p,r) =1. If pe 72", 0< p; < 1,
we let p' € Z" be the unique element satisfying

{0§p§-<r,

1.11
( ) pp;—pi=0 (modr).

LEMMA 1.4. Let a € Z'P) satisfying the equivalent conditions of
Lemma 1.1 with u = p. Then, in (1) and (ii), B can be chosen uniquely
so that

(1) B eEY;
(2) s(a) —ps(B) € L

Proof. Suppose that w(a) = pw(d). Certainly, § may be chosen
(uniquely) so that 0 < ¢(d) < 1. By Remark 1.1, g;(c(a) — po(d)) =
a; — pd; Vi. Let yy,...,y, be integers satisfying -7 | y;g; = I:

Y &i(a(a) —pa(B)) =) vilai — pdy),
i=1 i=1

hence g(a)—po(d) € Z. In particular, pd —a belongs to the cyclic sub-
group of Z” generated by g. Sinceg.c.d. (p,r) =1=g.c.d.(g,...,8n),
there is a unique integer 4, 0 < A < r, such that p(d + Ag) — a € rZ".
Now set f =0 + Ag. O

Let @, be the completion of the field of rational numbers for the
p-adic valuation, and Q an algebraically closed field containing Q,.
We denote by “ord” the valuation on  normalized so that ordp = 1.
Let / be a positive integer such that r | p/ — 1, let ¢ = p/ and let
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x € Q% be a Teichmiiller point: x¢ = x. Let K be an extension of
Q, in Q containing x. Let #;,...,#, be indeterminates. We shall use
multi-index notation: if a = (ay,...,a,) €N, 1* =" ... 15"

Fix ki, ..., k, positive integers. Given b, ¢ € R with b > 0, let:

n
(1.12) Z(b,c) = {é = Y Bat*| B, €K and ord B, > bZ% +c};
1

a€eN” i=1

(1.13) 2b)=J=20,0).

ceR
For each p = (py,...,pn) € Z" with 0 < p; < r we let

(1L14) b, ={¢=Y But" € Z(b,¢) | Ba=0if a ¢ 2P };

(1.15) Z ()= J % (b,0).

ceR
Z(b,c),Z(b), Z(b,c),Z,(b) are p-adic Banach spaces with the norm

n
I€ll = Supp®,  ca=b) 7t —ordB..
@ =1
Let.7 =37 , gi/ki and

(1.16) Z(b,c) = {n =Y Cat”|Co€K and

a€E

ord C, > b(z % ——/Va(a)) + c};
i=1 ¢

(1.17) Zb)=J=Z0,0);

ceR

(1.18) Zy(b,c) = {n =Y Cut*€Z(b,c)|Ca=0 ifa¢E(/’)};

a€E

(1.19) Z,(b) =] Z,b,c).

ceR

P(b,c),Z(b),Z p(b,c),Z »(b) are p-adic Banach spaces with the
norm

n
|In|| = Sup p*, Ca=b(z%‘/’fa(a)) — ord B,.
“ i=1
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If a, B € Z", there exist T € Z and § € E, uniquely defined, such that
a+ B =0 + trg and we set
(1.20) 1% %t = X710,

Since o(a + B) > o(a) + o(B) and o(d + 1rg) = 0(d) + tr, this
operation makes -Z(b) (respectively £ ,(b)) into a K-algebra; if { is
an element of Z (b, '), then n — { *n maps Z (b, ¢) continuously into

Z(b,c+¢").
Let ¢ be the K-linear map whose action on monomials is given by
(1.21) G(*) = 1] %132 % - % Ly".

For each p, ¢ is a continuous algebra homomorphism from %, (b, ¢)
into Z(b,c¢). If a € Z(») we define

x*@)—pB)¢B if 38 € E(P') such that w(a) = pw (),
(122 p(e) = {

0 otherwise.
Note that if «, f € Z", then
(1.23) w(t® « tP) = y(1°*h).

It follows from Lemma 1.4 that y extends to a continuous linear
map from Z (b, c) into £, (pb,c). Sincer | g—1, y/ maps Z (b, c)
into Z,(gb,c). If b’ > b, then Z ,(b', ¢) is a subspace of Z (b, c) and
the canonical injection i:.Z ,(b',c) — £ »(b, ) is completely continu-
ous [12, §9].

We fix F(t) = 3 cne Bat® an element of Z(rb) and we let F(¢) =
P(F(t")) € Zo(b). We define F, to be the composition:

—_ i — * —
Z,(qb) - Z,(b) L Z,(b) X2 2, (gb).

By [12, §3], .%, is a completely continuous endomorphism of Z(qb).
Its trace and Fredholm determinant are well defined and

det(I - T%,) = exp ( Z te(F,") —) is a p-adic entire function.
For m e N* we let

(1.24) Zp={(t1,...,tn) €K" | 9" ' =1and 5 x --- x t§" = x}.
THEOREM 1.1.

(@- )", |3p<qb>—2(nz“<q ”’"”)F(r)

tezr “Ni=1
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Proof. Write F(t) = EaGS Y eN Ba+,1gt°‘“g. Let G(t) = Zaes Cat°,
with C, =), .\ B ang Foreachi=1,...,nletd; = —pi(q—1)/r
and set X,(¢) = [T, t*. Then Yter Xp(OF(8) = X e Xp(1)G(2).

On the other hand, F(t) = ¢(F (")) = EaeS Cot™ = G(1").

Note that for each f € Z" we can find y € Z" such that w(y) =
(g—1)w(pB). Since r | g—1, we can choose y so that y; = 0 (mod r) for
all i. Furthermore, after adding or subtracting multiples of rg, we may
assume that y € E. Accordingly, for each g € Z", we denote by S the
unique (by Lemma 1.3) element of S satisfying w(rf) = (¢ — 1)w(p).

For fixed § € E(),

F(tP) =Y Cay/ (0 5 1P) = Y CoxelretP=atyr,
a€S

where the last sum is indexed by the set of all @« € § such that
w(ra + B) = qo(y), y € E). The coefficient of t# in this sum is

C;x’(’ B)=(a-1)+(B) and therefore,

— Y B)— —1)s
(1.25) (%)= Y, Cyx (rB)=(a—1)s(B)
ﬂeE(ﬂ)
There remains to show that (g —1)""' tr(%,) = 3,5 X,(£)G(2), and

it is sufficient to check this when G(¢) is a smgle monomial, G(t) =
Cyt*. Let G=(Z/(q - 1)2)"; if a = (@y,...,d,) and b = (51, ,by)
are two elements of G, we let Geb = Yor,a; b;. Fix { a primitive
(g — 1)-st root of unity. Since g.c.d.(gy,...,8») = 1, we can find
7€ Gsuchthat x =(78. Let H={€ G |7eg = 0}:

S X, (0 = (PO 3 (76,

teEn neH

The homomorphism from G into Z/(q — 1)Z sending 77 € G into
7/+g is surjective, with kernel H; hence |H| = (¢ - 1)*~1. Furthermore,
77— 7™ s a character of H. Therefore

N1 ifqe(d+a@)=0 VieH,

3 (e - { (g -
£ 0 otherwise.
TEH

By Lemma 1.1, (0 + @) = 0 Vi € H if and only if there exists
¢ € Z" such that w(d + a) = (¢ — 1)w(e) or equivalently w(ra) =
(g — Now(re + p).
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Thus 77« (d + @) = 0 V5§ € H if and only if there exists § € E)
(necessarily unique) such that w(ra) = (¢ — l)w(p). If so,

(g—1)

r

a; = pi = gils(ra) — (¢ — 1)+(B)] (modg — 1) for all j;

hence (7-0+®) — xs(ra)=(a=1):(8) o
LEMMA 1.5. Let F(t) € Z(rb); then y/ o (+xF(19)) = «F(t) o y/ .

Proof. 1t is sufficient to check that, for a monomial t#, g € 7":
w/ (198 xt)y=tP xy/(t*) forallacE.

Aapta)-a:0)(  if — 2(5):
y//(tqﬂ*ta)={x if w(gp + o) = go(5);

0 otherwise.
Suppose that w(gf + a) = gw(d). Then w(a) =qw(d — f);let A€ Z
be such that d — B + Arg = y is an element of E:
v,/(ta) = x’(a)_q’(y)ty; hence
thx y/ (1%) = x ()9 0)+A g
Suppose that g(d) = J;/g;; Remark 1.1 shows that a(g¢f + a) =
(gB; +a;)/ g Thus,

1 1
s(gB +a)—qs(6) = —(qB1 + oy — qd;) = —(a; — q7;) + qA.
rg rg

Likewise, if o(a) = a; /g, then

yk 1 1
()=~ and —(a;— = —(ay — .
(7) 2 gl( 1 —avr) gk( k—4qVk)

Hence
s(qp+a)—qs0) =s(a)—qs(y)+ 4 modg = 1. ]

COROLLARY 1.1.

(4" = )" 0G| Z (b))

22(

1EZm =

n

t;“?”’“”f"/’)F(t)F(tq) F(T.
1

2. Special subsets of Z". Let a = (ay,...,a,) and d = (dy,...,dy)
be two n-tuples of positive integers.
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Let M = l.cm.(ay,...,a,) and D = L.c.m.(dy,...,d,). If a =
(ag,...,an) € Z" we let

al’ ‘)an

(2.1) s(a):Inf{ﬂ . a"}.

Let J:Z" — 47 be the map defined by
n

(27}
E.
i=1 ¢

(2.2) J(a) =

We define an equivalence relation on Z” by setting:
(2.3) a~d ifand only if a; = o} (modd,) forall i =1,...,n.

There are []}_, d; equivalence classes, which we call “congruence
classes”; if a € Z", we denote by @ its congruence class.
Let

(2.4) A’={a€Z"ls(a)§9—i§s(a)+-cﬁ Vi=1,...,n}.
a; a;

If a and B are two elements of A’ we set

{ aZ p if and only if a ~ # and J(a) = J(f);

(2:3) A=N/|Z.

We identify A with the subset of A’ obtained by choosing, in each
equivalence class for %, the first element in lexicographic order.

LEMMA 2.1. Let a € A and let B € 7" be such that B ~ a and
J(B) = J(a); then

s(B) < s(a).

Proof. If B # a, there is an index i such that 8; < ;. Since 8 ~ a,
we have in fact f; < a; — d;. Hence
Bi L ai _di

— - — < s(a). m]
a;, — a; a,-‘()

For each i € {1,...,n} we denote by U, the element of Z” with 1 in
the i-th position and O elsewhere.
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LEMMA 2.2. Let K € L7 and let @ be a congruence class in 1" such
thatan J~Y(K) # @. Then there exists a unique element B € A such
that p €@ and J(f) = K.

Proof. Let S(a, K) = Max{s(d) | d ea and J(d) = K}.

Pick 6 € @ with J(d) = K and s(d) = S(a, K).

If 6;/a; < s(6) +d;/a; for all i, then § € A’ so AN J~(K) # & and
we are done.

Suppose now that d;/a; > s(d) + d;/a; for some index i and let k
be the index such that d; /a; is maximum among those satisfying the
last inequality. Let also / be an index such that s(d) = J;/a;; note that
necessarily k # /.

Let

- . Yk I
y=0—-d U, +dU: =>s() and = >s(d).
ax a
Hence s(y) > s(d) and Lemma 2.1 implies s(y) = s(J).

Furthermore y,/a; = s(y)+d,/a;. Repeating the process if necessary,

after a finite number of steps we obtain e € A'Na with J(¢) =K. O

Notation. If B satisfies the conditions of Lemma 2.2 we write

(2.6) g = 1(a, K).

Let

(2.7) N=J@=3 %
i=1 !

Observe that a € A < a+a € A. Thus, if an J~1(K) # @
(2.8) (@, K)+a=r1t(a+a,K+N).

LEMMA 2.3. Let K € %Z and let & be a congruence class in 7" such
thatanJ-Y(K) # @; let B = 1(a,K),d = (@, K + 1); there exists an
index A = A(@,K) € {1,...,n} such that p = 6 — d,U,. Furthermore
s(B) = Bi/a;.

Proof. Let

cey

a; ) an

Szmax{al—dl, 5n—dn}
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and let / be the smallest index such that s = (J; — d;)/a;. Let y =
0—dUy: foralli# l

5 -d;

— >s(d) 2 > = ==, hence s(y) =y;/a; =s.
al a

Furthermore, forall i # 1, (y; —d;)/a; < s(y) so y € A'. Suppose that

there exists ¢ € A’ such that e%y and ¢ precedes y in the lexicographic

ordering. Let j be the smallest index such that ¢; # y;; thene¢; < y;—d;

and there exists k > j such that ¢, > y; + d;:

ej _yj—d;
<L <% <
s) S L Ho <),
Yk o &k — 4k
<<k K < s(e).
s0) < 7 < H K < s(e)
Hence s(y) = s(e) = s, &¢j = y; — dj, & = yx + di; in particular
s = (y; —dj)/a; so we must have j # [; hence ¢; = J; — d; and
therefore j > I. Let now ¢’ =d —d;U; + d, Uy:

aj a;
s@) < k=T
A A Ay
Thus Y
s=s(8")=s0)=-2L= 9% -4
aj aj
Furthermore,
d; 0 no di e, Oy _ Otd _
Z1;__21;53(6)+a—i if i # j,k, and o (5)"‘

Hence ¢' € A,0'#6 and &' precedes ¢ in the lexicographic orderlng.
This contradicts the choice of . Hence y = g = t(a,K) and / =

M@, K). 0
We now let

(2.9) A={a€A|0<s(e)< 1}

(2.10) A={aeA|0< J(a)< N}

LemMa 2.4. [A| = [A].

Proof. We construct two maps:

[
*

NN
B> B

RN
4 —
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Let a € A: we can find Uo EN, 1y € %N, unique such that J(a) =
Nu, + r, and we set:

(2.11) (o) = a— Uqa.

Clearly, 1(a) € A with s(1(@)) = s(@) — pa and 0 < J(i(a)) < N; hence
(a) € A. If B € A, there exist vz € N and kg < 1 unique such that
5(B) = vp + kg; we set:

(2.12) 1*(B) = B - vga.

Clearly 1*(B) € A with 0 < s(1*(B)) < 1, i.e. 1*(B) €A.
It is now straightforward to check that : and * are inverse to each
other. O

LEMMA 2.5. Let 6 = 1[I di. If K € 5Z, then J~'(K) meets
exactly 0 congruence classes in Z7".

Proof. Let G=1Z7/d;Z x ---x1/d,Z and let H = $Z/7. J:1" — }Z
induces a group homomorphism:

(2.13) 7:G — H.

. . ——1
It is sufficient to prove that |J "(h)| =6 for any h € H. Let

si= I 4

1<j<n
J#
Observe that § = g.c.d. (dy,...,d,) and therefore there exist integers
ap,...,a, such that § = Y7 | a;0;. Dividing by []}_, d; we obtain
L =", a;/d;, showing that J is surjective. Hence, for 4 € H,

L=
_ 16l _ I, 4

1| D =J. a

|77 ()|

LEMMA 2.6. |A| = NTIL, d:.

Proof. By Lemma 2.5, J~!(K) N A has exactly J elements for each
K € %Z. Hence, using the definition of A, |A|] = N]],d;. The
conclusion follows from Lemma 2.4. o

Let r be a fixed positive integer and let g¢ = (g1,...,8x), kK =

(ki,...,k,) be n-tuples of positive integers, with g.c.d.(g;,...,8x) =
1.
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From now on we shall assume that a; = rg; and d; = rk; for all
i=1,...,n. Thus, in (1.7) and (2.1):

(2.14) s(a) =s(a) Vael".
If p=(p1,...,pn) €Z", with 0 < p; < r we let

(2.15) Ap={a€A|a;=p; modr};

(2.16) A,, —AnAp,

(2.17) A, =ANA,.

LemMa 2.7. |A,| = [A,] = NI, k;

Proof. The map 1 A— A of Lemma 2.4 restricts to a bijection
between A,, and A,. Hence lA,,l |A,l. Let 4 = (n1,...,1m) € I,
with0 <y, <. IfaeA welety =a—-p+n. Therelsaunique
integer A, such that K, = J (y) + Ao N satisfies 0 < K, < N, and we
set Fy,(a) = 71(y + 4aa,K,). F,, maps A, and A, and is easily seen
to be injective. Hence, the r” sets Zp, 0 < p; < r, all have the same
cardinality

_ 1 — n
|Ap|=r_,,|A|=NHki- a]

LEMMA 2.8. Let p be a prime number, with (p,a;) = (p,d;) = 1 for
all i; let p € 7", with 0 < p; < r and let p' € 7" satzsszmg 0<pi<r

andppi—p; =0 (modr)Vi. Ifd € A,,:, there exist o € A,, and integers

o1,...,0n uniquely determined by the conditions:
% o) - (% g% =
{p(Z S(a)di) (di S(a)di) =
0<d;i<p-1.
Furthermore:

(i) Letl € {1,...n}, then
I
s(a) = @S(a)——1©5[=0.
a
(ii) ' —aisa bijection between Z,,/ and Z,,.

Proof. Certainly, using notation (1.4), there exists # € Z" such that
w(f) = pw(c'), and an argument similar to that of Lemma 1.4 shows
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that B can be chosen uniquely in E(¥). Furthermore, if s(o/) = o}/a,
then s(B) = B;/a,. Since o' € A, we have

0< a_/i - _1 i
a; a a
hence 4
o<hi B 4
a a a;
for all i.
If J
Bi B4
a; a a;

there is a unique integer J;, 0 < Jd; < p — 1, such that
OSBi“éidi__&<¢_{£

a; a a;’
If
a q a;

wesetd, =p— 1.
Now let «; = B; — 0;d; for all i. It is straightforward to check that
a=(ay,...,a,) and é = (Jy,...,0,) have the required properties. O

LEMMA 2.9. Let p = (py1,...,pn) €N, with 0 < p; < r. Then

z -1
3 @) =Ngk,.(” . )

a€l,

Proof. Let G =[]/_,Z/d;Z and let .:G — (Z/rZ)" and 4: 7" — G
be the natural quotient maps. Let 7 = - 0 4(p) and K, = ~~'(p).
Note that

n
IK,| =[] ki» a€A, s at+ach, and FEK, < T+y(a)€K,.
i=1

Let H be the cyclic subgroup of G generated by #(a) and let {GI}ESH )
be the orbits of G under addition by elements of H: G = HES}H )
We have K, = [1x 40 G/ and 8, = 1974, (1), where A,(I) =
{aeA|4(a) e K,NG}.

Let / be such that K, N G; # @ and let n € A,(/) be such that
J(n) is minimum. Let ¢ = |H|; ¢ is the smallest integer such that
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ea; = 0 (mod d;) for all i. For any a € A,(/), there is a unique integer
1 € N such that 0 < u < ¢ and a; + ua; = n; (modd;) for all i, and
we have J(n) < J(a+ ua) < J(n) + eN. Conversely, if f € A satisfies
J(n) < J(B) < J(n) + &N and B; = n; (modd,) for all i, there is a
unique v € N, 0 < v < g such that J(n)+vN < J(B) < J(n)+(v+1)N
Let y = f—va; then J(n) < J(y) < J(n) + N. If J(y) > N, then
J(y —a) > 0 and J(y — a) < J(n), contradicting the minimality of
J(n). Hence y € A.

Let Dy(l) = {a € Ala; = n; (mod d;) Vi and J(n) < J(a) < J(n) +
eN}. Since w(a + a) = w(a) for all « € 2" we deduce that:

(G:H)
Y ow@=> w@=Y Y w(.
aezp O‘GKP =1 aGD 1)

It follows from Lemma 2.3 that D,(/) = {z(7,J(n) + k) | 0 < k <
eN — 1}. For each k e N, let o¥) = ©(7, J(n) + k), s = s(a¥)), J; =
J(@®)) = Jo+ k, Ay = A(7, J;). By Lemma 2.3, o¥) = ok~ 4+ 4, U,,
and s = a;.l;), /a;,.,- Foreach i € {l,...n} let u; be the integer satisfy-
ing ea; = p;d;. Since atN) = 5 + ea, it follows that ea = ¢~ d; U,
and u; =#{k| 1<k <eN and 4, =i}.

We have
eN-1 u,—1
> 5= Y el a =3 g (S
k=0 Jj=1Je=j Jj=1

ST

J=1

On the other hand:

eN—-1
Y Je=eNJ+ l@zf—“—l—)
k=0
Thus
eN-1
> wl@) =Y (J—Nsg)
a€D,(l) k=0

= sN(n; D_ikx,nG v . b,
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Hence

3 w(a) = 1k, IN 5 b, o

a€A,

3. Cohomology: The generic case.

a. Definitions. Let K, be the unramified extension of Q, in Q of
degree r, {, € Q a primitive p-th root of unity, Qy = K,({,) and let
7 € Gal(€ | @,({p)) denote the Frobenius automorphism. Let & be
the ring of integers of Q.

Let M =1l.c.m.(ay,...,a,) and, for m € N*:

(3.1) Su={(7)eN"XZ|y>-mMs(a)};

(32) Em={(g7)€EXZI|y=>-mMs(a)};

(3.3) Am = Qp-algebra generated by {*°Y” | (a;y) € Sm};
(3.4) PM =y-mM _ 1.

(3.5) Zm = Am/(P(m));

(3.6) Fm = Qo-span of {t*Y7? | (a;y) € Epn}.

Ifa€Z”, yeZ, we set:

p) = Ny
(3.7) Wm(ayy) = J(@) + ==
REMARKS.
(3.8) Wy(a;y) 20 forall (a;y) € Sy

(3.9) If W e Q, the set {(a;y) € Ep | wm(a;y) = W} is finite.

If o, B € 7", there exist d = d(a, B) € E, A = A(a, B) € Z unique,
such that a + f = J + Aa and we set:

(3.10) 1% sy, tB = YAMM S

If (o; ) and (B;¢) are two elements of S, d = d(a, B), A = Aa, B)
as above, then (J,y + ¢ + A) € E,. In particular, the operation
makes %, into an Qy[Y] algebra and, if we set

(3.11) Dy (1%) = 19 gy (8 g % 120 (@ €T,

then ®,,, extends to an Qy[Y]-algebra homomorphism ®,,: A, — F,.
Furthermore, ®,, induces an Qy[Y]-algebra isomorphism.
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A, A, #,n are graded algebras with
(3.13) W (Y71%) = W (s ).

Both ®,, and Em are homogeneous of degree 0.

Note. When no confusion can arise, we shall omit the subscript “m
and write * instead of *,,.

For b,ceR, b >0, let

(3.14) L(b,c)={n=>)_A(@)t*|a eN", A(a) € Qq,
ord A(a) > bJ(a) + c};

(3.15) L(b) = | L(b,¢).

ceR
L(b) and L(b,c) are p-adic Banach spaces with the norm
(3.16) [Inl| = Supp™, co = ord A(a) — bJ(a).
Let

(3.17) Ly(b,c) = { =Y B(a;7)t*Y" | (0;7) € Em, B(a;7) € Qq,

ord B(as 7) > bwm(as 7) + c};

(3.18) Li(b) = |J Lm(b, 0.

ceR

L,,(b) and L,,(b,c) are p-adic Banach spaces with the norm

(3.19)  |[&llm = Sup(asyy P, Cay = 0Ord B(a;y) — bw,,(e; ).
Let
(3.20) Rin(b,c) = Qo[[Y]IN Lm(b,c),
(3.21) Rin(b) = Qol[Y]IN Lin(b) = | ] Rm(b,c).
ceER

The operation *,, described in (3.10) makes L,,(b) into an R,,(b)-
algebra. (3.9) ensures that this is well defined. Furthermore, if n €
L,,(b), the mapping & — 75 %, & is a continuous endomoprhism of
L,,(b). Note that L,,(b) is the completion of %, for the norm || ||,.
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For each ¢ € R, there is a continuous Qy-linear map from L(b,c)
into L,,(b, c) whose action on monomials is given by (3.11). This map
will again be denoted ®,,,.

Let Cy,...,C, be non-zero elements of F, and, for each i let ¢; be
the Teichmiiller representative of ¢; in Qg (so ¢/ = ¢;).

Let:

n
(3.22) fy=3 k.
i=1
Let {y j}320 be a sequence of elements of Q,({,) such that
ord Yo=—"7>
p—1
(3.23) it
ordy; 2 S = (j+ 1),  Jjx1

If Y7 is a monomial, we set

(3.24) Ei(1°Y7) = (

=i ﬂ)zaw, i=1,...,n—1
a, an

Note that E;(t* * tF) = E;(t*) * t# + t « E;(t#) so that E; acts as a
derivation on all the rings and Banach spaces which have been defined
so far.

Let
(3.25)H(t) = y o f(1).

2010 =3 170 = Son( L)
=0 =0 i=1

(3.27) H;,=EH(t) =y (ci%tﬁl‘ — an—”tg"), i=1,...,n—1;
1

n

(3.28) Hy=EH(t), i=1,....n—1;

(3.29) D;=E;+ H,, i=1,...,n—-1;
From now on we assume:

(3.30) g.c.d.(p,M)=g.d.c.(p,D) =1,

and we let

(3.31) sizciﬂ, i=1,...,n.
a;

Each ¢; is therefore a unit in &. .
Lete = b—1/(p—1): wehave H; € L(b,—¢) and H; € L,,(b, —e) Vm.
Also,if b<p/(p - 1), H; € L(b,—e) and H; € L,,(b, —e) Vm.

b. Reduction.
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LEMMA 3.1. Let a e N", K = J(a), B = 1(a, K); then t* = u(a)t? +
Yo S0 Hipio, where u(e) € @ is a unit and, for each i, p;, €
Ooltis....tn)

Furthermore, p; , has unit coefficients and, if t° is any monomial of
Di having non-zero coefficient, then

(i) J(0)=J(a)-1

(i) s(9) = s(a).

Proof. If 6 € Z", we can write
0 =g 10U ol (H - H)re~ 4V, dj=1,...,n—1;
0 = gpe; e dUADUn 4y le Vo4 j=1,...,n— 1.

By assumption, there are integers A;,...,A4, such that a« = 8 +
" 4idiU;, with Y27 A; = 0. The result follows immediately, ex-
cept maybe for (ii): if o # B, there is an index i such that 4; > 0;
hence @; > B; +d;. Thus (e; —d;)/a; > Bi/a; > s(B) and s(B) = s(a)

since f € A. o

LEMMA 3.2. Let Y?t* be a monomial in %,, and let a € A 1 eN,
satisfying a ~ a + ta and J(a) = J(a) + tN. Then
- n—1
Y7t = u(@) Y M 95N " H ki Gy
i=1
where u(a) € & is a unit and, for each i, q;,, € F#m. Furthermore,
each q; .., has unit coefficients and, if Y°# is a monomial of g; o, With
non-zero coefficient, then w,,(&;0) = Wm(a;y) — 1.

Proof. Using Lemma 3.1 we can write:
n—1
(3.32) Y7 = u(@)Y'tP + 351y Hipio,y,
i=1
where f is the unique element of A such that fZ«, and p; o, = Y7 p; 4.
Let #° be a monomial of Dio With non-zero coefficient:
Lemma 3.2 (ii)= y > —mMs(J) so that p;,, € A, and equation
(3.32) is valid in 4,,.
Applying the map ®,,: 4, — %, to equation (3.32) we obtain the
desired result with g, , , = ®p(Di o). o

Let V,,(b) be the R,,(b)-vector space generated by
{Yy-mMs@) | o € A},
and let V,,(b,c) = Vin(b) N Ly(b,c).
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ProrosiTION 3.1.
n—1 .
Lin(b,c) = Vin(b,c)+ Y Hi* Ly(b,c +e).
i=1

Proof. Let & = 3 ,..\ck, A(a;7)t°Y? € Ly(b,c). We apply Lemma
3.2 to all the monomials in ¢.
Ifa€Aand v > -mMs(a) we let

(3.33) Bi(v) = A(as y)u(e),

where u(a) has been defined in Lemma 3.2 and the sum is taken over
the set

E(@,v) ={(0;7) € Em | v = umM+y, a ~ a+ua, J(a) = J(@)+uN}.

If (a,y) € E(a,v), then wy(a;y) = wy(a;v); hence by (3.9) the
sum (3.33) is finite and ordB~(1/) > bwpy(a;v) +c.

Thus, for each & € A, B~(Y)ta = EW mMs(a) (I/)Y"ta is an ele-

ment of V,(b, c). On the other hand, let {; = 7, Z(a;y)e £, A(e;7) i,y
and write

(3.34) L= ). Gy, i=1,..,n-1

(B,v)EEn

If (a;7) € E;y we can write g; oy = 3. D o.5(€;0)£Y?, the sum being
taken over all (¢;d) € E,, such that w,,(¢;0) = wy(a;y) — 1. Thus

(3.35) Ci(B,v) =75" Y Diay(B,v)A(es7),

the sum being over the set {(a;y) € Ey, | Wm(a;?) = wm(B;v) + 1}.
This set is finite and

ord Ci(B;v) > blw,(B;v)+ 11+ ¢c— p%l =bwn,(B;v)+c+e.

Hence the sum (3.34) is meaningful, {; € L,,(b,c + e), and we can
write

- n=1
(3.36) =) By(Y)*+ ) H;i*{i
aGZ i=1

PROPOSITION 3.2. V;,(b) N 72 H; % Lyy(b) = (0).
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Proof. Let v € V,,(b). For W € @ we let v") be the compo-
nent of v which is of homogeneous weight W: we can write v(") =
Zan P,(Y)t*, where each P,(Y) is a Laurent polynomial in Y.

Let 1:A — A be the map described in the proof of Lemma 2.4. Let
Z =Y"M and, fora€Alet B =1(a) =a—1a (T €N):
=2+ (- Z) T+ 2T 4 27T,
Hence we can write:
v =3 QNP + (1 - Z) Y Ry(1,Y),
BeA BeA

where for each B, Qg(Y) is a Laurent polynomial in Y and Rg(2,Y)
is a Laurent polynomial in Y, ¢y,...,¢,. Furthermore:
(i) if y € Q% and a € A, then Po(y) = 0 & Qyey(») = 0;
(ii) if Y?#° is any monomial in R(¢, Y) with non-zero coefficient,
then J(6) > 0.

Suppose v € Y-"= H; * Ly, (b): we can write

n—1
=) Hix{;,
i

o)

I

!

where, for each i, {; € Qo[Y,+,,...,,] and is of homogeneous
weight W — 1.

Let o, € E and suppose o+ f = + ta, withd € E and 1 € N:
1 %, t/i — t(H—ﬂ _ (ta+ﬁ—a + Ztoz+/3—2a oot ZT—lta+ﬂ—ta)(ta _ Z).
Hence we can write

— — . 1
Hix{i=H;{i+n(t*-2), with ﬂiEQO[Y,?,l‘l,m,ln].

Foreachi=1,...,n, fix £ € Q with éf" = 8,,81.“ and let u; be the
group of d;-th roots of unity in Q.

Let s; = [1,,d), s = [1}_,d;. Let 9(Y,t) = EﬂeZQﬂ(Y)tﬂ and
suppose v") #£ 0: there exists @ € A such that P,(Y) # 0; hence
there exists 8 = 1(a) € A such that Q4(Y) # 0. For such a fixed 8 let
A(B)={yeA|J(y)=J(B)} and let y € Q* such that Qg(y) # 0.

We claim that there exists ({y,...,{,) € [[}-, #4 such that

(3.37) DY,y ... tn) #0,

where u; =&{ity, i=1,...,n.
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Indeed, the coefficient of #”#) in (3.37) is
> QEnr..E .

y€A(B)
For each y = (1,...,71) €AB), xy: ({1,.--,Cn) — L' ... " is a char-
acter of J[7, ug.

The elements of A(B) all belong to distinct congruence classes, so
these characters are all distinct, and therefore linearly independent.
Our claim follows since Qg(y) # 0.

Let now

S(¥;0) =" mi - Y Rs(¥:0),

i=1 seh

n n n
U= H(éici)ai and A= Za,-r; = NHd,
i=1 i=1

i=1
We have:
(3.38) D(Y;uLy. .. Un) = (utd —y™)Ssuy,. .., uy).

The left-hand side of (3.38) is a non-zero polynomial in z,,, of degree
less than A4, while the right-hand side vanishes for any choice of 7,

satisfying ¢t/ = u~!y™M a contradiction. Hence v(") = 0. O
LEMMA 3.3. Let K be a field of arbitrary characteristic, u,,...,u,
elements of K*,vy,...,vn, A positive integers; let

B=K[t},....tn, , Y10,  f=(X"19" -1,

B = B/(f), hi = uit! —untyy (i = 1,...,n—1); then the family {h;}"~}
in any order forms a regular sequence on B.

Proof.LetI G {1,...,n—1} and let 2; be the ideal of B generated by
{hi}ic;. We must show that (2;: 4, ) = 2; for any k ¢ I. By relabelling
we may assume that I = {1,...,j}, with j <n—1,and that k = j+ 1.
Accordingly, we write 2; instead of 2;. Let B = K[¢y,...,,,Y,Z]
and B, = B,/(Z* - 1,YZ —1%).

The mapping Z — Y ~!£4 induces a ring isomorphism from B, into
B. Thus, if %8, is the ideal of B; generated by {hy,...,h;,Z — 1,
YZ — 1%}, we must show that (B;:h;,,) = B;, or equivalently that
hj.1 does not belong to any associated prime of B;. Since B; has
j + 2 generators, its dimension is at least » — j. On the other hand,
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the ring B, /B; is integral over K[¢;,1,...,t,] (note that Y -t =0
in B,/%B;). Hence dim®B; = n — j. By Macaulay’s theorem [16, Ch.
VII, §8], B, is unmixed. Likewise, B, = (B},4;;) is unmixed, of
dimension n — j — 1. Let p be an associated prime of %B; and suppose
that 4;.; € pip DO (Bj,hjy1) = Bjyy; hence dimp < n—-j—1, a

contradiction since dimp = n — j. O
Let

(3.39) R=Qolt;,..., 1, Y, Y 121%]

(3.40) fim = (y~-1aymM _ 1

(3.41) R™ = R/f(™)

(3.42) B = gmMdi _ g M 1 n— 1.

For any monomial 1*Y? we set:
- . 1
: = 2Y?) = ——
(3.43) Wi (ayp) = W (YY) mM(J(a) + Ny).

@,, makes R"™ into a graded ring, and each h§m) is homogeneous of
weight 1.

LEMMA 3.4. Let I be a non-empty subset of {1,...,n — 1} and let
{P;}ics be a family of elements of R"™ such that Yicl Pihgm) = 0. Then

there exists a skew-symmetric set {n; j}; jer such that P; =y jer i, jhﬁ"’)
for each i € 1. Furthermore, if each P; is of homogeneous weight
Wm(P;) = W independent of i:
(@) if W > 1, each n;j may be chosen of homogeneous weight
Wm(Nij) = W — 1 with Minje;{ordn; ;} > ord P; for all i € I,
(b) if W < 1then P, =0 foralli €I (i.e. each n;; may be chosen
to be zero).

Proof. To simplify notation, we write 4; instead of hl(m). We proceed
by induction on the number of elements in /. By relabelling, we may
assume that I = {1,...,r+ 1}, r > 0. If r = 0, then P, = 0 and

hence we can assume r > 1. Let 2, be the ideal of r™ generated by
{hi};_; by Lemma 3.3, (,: k1) = 2,; hence P,,; € A,. Thus there

exist yy,...,)r € R such that

,
(3.44) Py =) yihi
i=1
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Now

r r r
> (Pi+yihp)hi =D Pihi + (Zyihi) hri
i=1 i=1 i=1
r+1

=) Ph=0.
i=1

By induction hypothesis, there exists a skew-symmetric set {#; ;}
such that P; + yih,.1 = > ;_ mijh; fori=1,...,r.

We can now set 7,1, = y; and 7,41 = —y;, i = 1,...,r and the
first assertion follows.

If each P; is of homogeneous weight W > 1, in (3.44) we can
choose each y; to be of homogeneous weight W — 1. If W < 1, since
Wy, (h;) = 1 both sides of equation (3.44) must be zero and the induc-
tion hypothesis shows that each P, =0,i=1,...,r + 1.

For the estimate on ord 5, ; we refer the reader to [7, Lemma 3.1]
where a similar result is proved. O

The argument of Lemmas 3.5 and 3.6 is due to S. Sperber and can be
used to close a gap in the proof of directness of sum in [15, Theorem
3.9].

r.
i,j=1

LEMMA 3.5. Let T, = {(a;y) € (mMZ)" X Z | t*Y? € R}; then
the mapping (a;y) — (mMa; ) establishes a bijection between S, and
T,,. In particular, t; — t,’.”M (i=1,...,n) maps Ay, into a subring of

R and Ay, into a subring of R™.

Proof. Let (a;y) € Sy, and let B = mMa:
tBY? = (Y~ 112)S B yr+s(B)gh—s(Ba,

s(B) = mMs(a) is an integer and, by assumption, y > —mMs(a) and
a; > s(a)a; for all i. Hence y + s(f) > 0, B; — s(B)a; > 0 Vi and
tFY? € R.

Conversely, if °Y” is a monomial in R, then y > —s(d): this is
clearly true of the generators of R and, for any d,¢e € 7", s(d + ¢) >
5(8) + s(¢). Thus, if (B;y) € T, with B = mMa, then (o;y) € Syy. O

LEMMA 3.6. Let I be a non-empty subset of {1,...,n — 1}; then the
Samily {H ;}c; in any order forms a regular sequence in %,,. More pre-
cisely, if {Pi(t,Y)}icr is a set of non-zero elements of #,, of
homogeneous weight w,,(P;) = W independent of i, and such that
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Yic1 Hi * Pi = 0, then there exists a skew-symmetric set {&; j}ijer
of elements of #,, such that
(1) Pi(t,Y)= ZIGIH *&i s
(i1) each ¢ij has homogeneous weight wy,(; ;) = W — 1 for all
(i,))el x I,
(iii) Minje;{ord¢; ;} >ordP;—1/(p —1) forall i € I.

Proof. Assume that
(3.45) > H;xP(1,Y)=0.
iel
Applying 5,;1 to equation (3.45) we obtain the following equation
in A,

(3.46) Y HP(t,Y)=0
icl
Replacing ¢; by t™M (i = 1,...,n), and multiplying by y; ', we get
(3.47) S h"P (M, Y) = 0.
iel

Let Q;(¢t,Y) = P;(t™M,Y); by Lemma 3.5, Q;(t,Y) € R,, and,
if 1*Y? is any monomial in Q;(z,Y) with non-zero coefficient, then
W (a;y) = W. Lemma 3.4 implies the existence of a skew-symmetric
set {1; j}i jer of elements of Ry, such that Q;(¢,Y) = 3", m;, jhﬁm) for
each i € I, with W,,(n; j) = W — 1 and ord#; ; > ord P; for all 7, ;.

If t*Y7 is any monomial in Q;(¢,Y) with non-zero coefficient then
(a;y) € T,,. The same is true of each hfm). Hence we may choose the
elements 7; ; so that 7, ; = & (1M, Y):

(3.48) P(tmM,Y) =) & (™M, Y)h
JerI

Therefore, letting &; ;(2,Y) = Vo &, Y):

(3.49) P(1,Y) =) & ;(t,Y)H,
jel

Equation (3.49) is now valid in4,, and, for any monomial *Y” in
¢ j(t,Y) with non-zero coefficient, w,,(a;7) = Wp(mMMa;y) = W — 1.
Applying ®,, to equation (3.49) yields the result. ]

Using the results already attained in this section, Lemmas 3.7 and
3.8 and Theorems 3.1, 3.2, and 3.3 can be obtained with a slight
reworking of the arguments in [7, §3]. We shall therefore omit the
proofs.
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LEMMA 3.7 (see [T, Lemma 3.4)). If b <p/(p — 1), then

n—1
Lin(b,c) = Vn(b,c) + Y H;* Ly(b,c +e).

i=1

LEMMA 3.8 (see [7, Lemma 3.5)). If b<p/(p — 1), then

n—1
Vin(b) N> H; % Lyn(b) = (0).
i=1

THEOREM 3.1 (see [7, Lemma 3.6]). If 1/(p —1) < b < p/(p - 1),
then
n—1
Lin(b,¢) = Vin(b,c) + Y Di* Ly(b,c +e).

i=1

THEOREM 3.2 (see [7, Lemma 3.10]). Let I be a non-empty subset
of {1,...,n—1} and assume that 1/(p — 1) < b < p/(p — 1), if {&}icr
is a set of elements of Ly,(b,c) such that ), ; D; x&; = 0, then there
exists a skew-symmetric set {n; j}i jer in Ly(b,c + €) such that &; =
S jcrDj* nij for all i € I. In particular, the family {D;}!~|' in any
order forms a regular sequence on the R,,(b)-module L,,(b,c).

THEOREM 3.3 (see [7, Lemma 3.11]). If 1/(p —1) < b <p/(p - 1),
then
n—1
V(b)Y Dj % Lin(b) = (0).

i=1

d. A Comparison Theorem.
We now undertake to compare reduction modulo

n—1 n-1
> HixLy(b,c+e) (respectively Y Di* Ly(b,c+ e))

with reduction modulo 37" H; * L,,(b, ¢ + e) studied in §2.
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Fix ¢ € L,,,(b,c). Using Theorem 3.1, Lemma 3.8, and Proposition
3.1 we write:

n—1
(3'50) €=U+ZD[*CI'9 veVm(b,c), CleLm(bac+e)9

i=1

n—1
(3.51) E=0+) Hisliy,  VEVu(bo), {i € Lm(b,c+e);
i=1

n—1
(3.52) E=V+ )Y Hi*l;, TEVn(b,c), {; € Ln(b,c+e).

i=1

LemMA 3.9. Let ,v,{y,...,{y—1 be as in (3.50); then in (3.51) v
satisfies v — v € V,,(b,c+e) and each {; can be chosen so that {; —{; €
Ly (b, c + 2e).

Proof.

n—1 n—1 n—1
Y Dix{i—Y Hix{i=)Y E{i€Lnb,c+e).
i=1 i=1 i=1
By Lemma 3.8, there exist v’ € Vj,(b,c +e) and {} € L,,,(b,c + 2e),
i=1,...,n— 1, such that

n—1 n—1
ZE,‘C,‘ =0+ ZH,‘ * C;
i=1 i=1

Hence
n—1

E=v+v'+ ) Hix((i+{)

i=1
andwemaysetz7=11+v’,f,-=C,~+C§,i=1,...,n—1. O
In the rest of this section we fix b=1/(p — 1) (so e = 1).
LEMMA 3.10. For each i€ {1,...,n — 1} there exist

IieLulp/(p—1),0) and G;€ Ly(p/(p-1),0)

such that H; = H; * G; + T';. Furthermore, G; is invertible and Gi~1 €
Lu(p/(p - 1),0).

Proof. By definition,

o0 / pldl pldl pldn pld
Hi = Zp VARY —ti —Cp — 1l
=0 a; an

(recall that ¢/ = c;, and therefore ¢} = 7).
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Let
o0 o0 !
= / ﬁ_ é ([P pldi _ [ ﬁ_ i’lp o' p'd,
F,—lz_‘ap )’z[ai (ai)p]cf’t,- gp y,[an (an ch .,
Then
> ! d !
H=Yp'n [(e,-t;")l’ - (snw] 4T
/=0
If we set

o0 p'—1
Gi=1+Y_ 75 mp" Y (eitd) (entd =71,
=1 Jj=0
then formally: H; = H,G; +T;.
Since d;/a;, € Q and (p, M) = 1 we have
pl
ord [ik—— (ﬂ) ] >1 forallk=1,...,n.
ay
Hence both I'; and G; are elements of L(p/(p — 1),0). G, is of the
form G; = 1-37_ 5 C,t%; such a series is invertible in L(p/(p—1),0),
with inverse G;' =1+ 322(3,, 50 Cat®)’.
Now apply ®@,: L(p/(p — 1)) = Lm(p/(p — 1)). 0

LEMMA 3.11. Let &,0, El,...,f,,-l be as in (3.51); then in (3.52) v
satisfies U —U € Vyy(p/(p — 1),c + 1) and each {; can be chosen so that

Zi—Gi*ZiGLm<—~p ,c+2>.

p—1
Proof. We construct a sequence (), v(®), CE"), . Cfl”_)l),,eN with
) p ) p
4 ELm(p_ l,c+1/>, v\ e Vm(p— 1,C+1/),

p
CI(V)GLm<p—_T,C+V+ 1)

by letting £©@) = ¢, v = 7, C,(O) = {; and the following recursion.
Given &) € L,(p/(p — 1), c + v) we can write, using Lemma 3.8:

n—1
ZERCES > A AR (LR

) 14
ngy eLm<p_1,c+l/+l>.
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By Lemma 3.10,

n—1
(3.53) EW =v® 4+ 3 Hx G+ () + Y, with
i=1
é(y+l) = l",- * Cl(’/) € Lm (EI_)_I,C + v+ 1)
Let s € N. Writing equation (3.53) for 0 < v < s and adding yields,
after cancellations:

) n—1 K
E=S"oM+STHi Y G ) + 6D,
v=0 i=1 v=0

Letting s — oo, Y »_ov® converges to T € Vu(p/(p — 1),¢),
S 0 CE") converges to {; € L, (p/(p — 1),c + 1) and E6+D converges
to zero. o

THEOREM 3.4. Let &£ € L,,(p/(p — 1),¢); if we express & in the form
E=v+ " H; +{; on the one hand, withv € V,,(p/(p — 1),¢), {; €
L,,(p/(p-1),c+1) and if we express £ in the form & = U+Z§-’=’ll D;x{;
on the other hand, withv € V,,(p/(p — 1),¢), {i € Ly(p/(p — 1),c+ 1),
then v — v € Vyu(p/(p — 1),c + 1) and ¢; and {; may be chosen so that
(i—GixC,€Ly(p/(p—1),c+2) foralli.

Proof. This is a consequence of Lemmas 3.9 and 3.11. o

4. Specialization. In order to obtain estimates for the exponential
sum (0.4), we need to specialize the spaces L,,(b,c) by setting Y =y
for some y € Q*. We first observe that elements of L, (b,c) are
convergent for ord¢; > —b/d; and ordY > —Nb/mM. Furthermore,
if we fix Y = y withordy > —Nb/mM, the resulting series in ¢y, ...,,
are convergent for ¢; satisfying ord¢; > (mM/d;N)ordy.

Throughout this section, we assume that (p, M) = 1 = (p,D) and
1/p-1)<b<p/(p-1).

For a € Z" we let
4.1) w(a) = J(a) — Ns(a).

For x € Qj, let

(4.2) L(x;b,c) = {: = 3" A(a)r* | A(a) € Qy,

a€FE

ord A(a) > bw(a) — s(a) - ord x + c};
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(4.3) L(x;b) = | J L(x,b,0);
ceR

(4.4) V = Qp-span of {¢t* | a € Z};

(4.5) V(x;b,c) =V N L(x,b,c).

L(x;b) is a Banach space with the norm

(4.6) [|€]lx = Supp~©, ¢, =ordA(a)— bw(a)+ s(a)ordx.
a€FE

We equip L(x;b,c) with an Qq-algebra structure in the following
way: if a, f € E, there exist 6 € E, A € N unique such that o + f =
J + Aa and we set:

(4.7) 12« th = x40,

If n =3 ,cr B(a)t* is an element of L(x;b,c’'), then{ — n+isa
continuous mapping from L(x;b,¢) into L(x;b,c + ¢'). Note that H;
and H; (as defined in (3.27) and (3.28) respectively) can be viewed
as elements of L(x;b,0) and that H;, H;, and D; act continuously on
L(x;b,c) for any ¢ € R. Given x € QF, ordx™ > —Nb, we fix y € Q*
with yM = x. Let L,,(b,c)’, Ln(b)', Vm(b,c)', L(x;b,c)’, L(x;b), V'
be defined as their unprimed counterparts, with the difference that
the coefficients are allowed to lie in Qf = Q(y). We can define an
Q-linear specialization map

Ly(b) — L(x™;b)
by sending Y into y. S, is continuous of norm 1 and is surjective,

sending V;,,(b)' onto V' and D; x Ln,(b)' onto D; x L(x™,b)' for all i.
Indeed, there is an j-linear section

(4.8) Ty: Z Ale)t™ — Z x™Ms(@) y—mMs(a) s

a€FE a€FE

ProrosITION 4.1. Ker(Sy | Ly (b,c)') = (Y — y)Lu(b,c — ordy).
In particular, Ly,(b)'/(Y —y)Lm(b) = L(x™;b)".

Proof. Let & = 3 ,.\ek, A(; 9)1°Y? € Ly (b,c)’ and assume that
Sy(&) =
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For each o € E we must have 3,5 _,,4/5(o) A(e; 7)y? = 0. Multiply-
ing by y™Ms(®) we obtain ), A(a;y — mMs(a))t” = 0. Thus

=% |

3= Alasy = mMs(@)(¥7 = y7) | Y@= (Y - )¢, with

a€E - y>0
y—1
= Z [}: A(a;y — mMs(a)) Z Y"yy—x—l] ymMs(a)sa
a€E *y>0 1=0
& € Ly(b,c —ordy) since ordy > —Nb/mM. 0

It follows from Theorem 3.2 that the operators D;, i = 1,...,
n — 1, acting on the R,,(b)-module L,,(b) (respectively the R,,(b)-
module L,,(b)’") form a completely secant family ([3, §9, n° 5, Propo-
sition 5]). In other words, the associated Koszul complexes are acyclic:
if
H,({D;}}=', Lm(b)) [respectively H,({D;}%, Lm(b)')]
is the u-th homology group of the corresponding complex, then:

(4.9) Ho (DY L) =0, w2 1;
(4.10) H, (D L)) =0, w2 1.

LEMMA 4.1. (Y —y) is not a zero divisor in Ly (b)'/ S7=' Di* Ly (b)'.

Proof. Let & € L,(b)' and assume that

n—1
(4.11) (Y=p)E=)_Di*li, (i €Lm(b).

i=1
By Theorem 3.1, we can write

n—1
(4.12) E=v+) Dixni, v EVn(b), n; € Ln(b).

i=1
Thus (4.11), (4.12), and Theorem 3.3 imply (Y — y)v = 0; hence
v =0. O

THEOREM 4.1.
(1) H,({D; }f’ ,‘,L(x’" b)’

y=0 forall u>1,
(i) Ho({D:}'', L(x™, b));*
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Proof. (i) Let D,, = Y —y. As a consequence of Lemma 4.1, the
family {D,}?_, forms a regular sequence on the R, (b)'-module L,,(d)'.
In particular,

(4.13) H.({Di}{,Lm(b)') =0 forall u>1.

Using [11, Ch. 8, Theorem 4] and Proposition 4.1, for all x4 > 0 there
is an ) -linear isomorphism.
(4.14) Hu({Di}1 ), Lm(b)) = Hy({D;}/Z, L(x™; b)').
(ii) S, maps V,(b,c) onto V' (x™;b,c) and D; x L,,(b,c + e)' onto
D;* L(x™;b,c+e) foralli=1,...,n—1.
Hence using Theorems 3.1 and 3.3:
n—1
(4.15) L(x™;b,c) = V(x™;b,¢) + Y Dix L(x™;b,c +e).
i=1

Now
n—1

Ho({D;}"=}, L(x™; b)') = L(x™;b)'/ Y D; * L(x™; b)'. u)

i=1
PrOPOSITION 4.2. L(x;b,c) =V (x;b,c) + Z;’;ll D;« L(x;b,c+e).

Proof. Let n = Y . A(a)t* be an element of L(x;b,c). Assume
that, for any a € E such that A(a) # 0, s(a) is equal to some value s
independent of e, and let & = y~MST, ().

Let ¢ = 5 - ordx; & = Y g A(@)t*Y~M5 is an element of
L(b,c + ¢s) and, by Theorem 3.1, there exist v = ZBGA Pﬂ(Y)tﬂ €
Vi(b, c+cs) and {; € Ly(b,c+cs+e)suchthaté = v+ 7 'D; *C, For
each B € A, write Pp(Y) =3, Pg,Y? and, for each i = 1 -1,

E(a,y) Cl,a,yt Yy
ForleN,0§l<Mwelet:

Pu(¥)= Y PYY,
7+Ms=! (mod M)
iy = Z Ciayt®Y?, i=1,...,n—1.

y+Ms=l (mod M)

Note that if 1*Y? is any monomial in D; * {;; with non-zero coeffi-
cient, then again y + Ms =/ (mod M). Thus, if / # 0:

n-1
Y Py (Y)+) Dixliy=0.
i=1

BeA
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Applying Theorem 3.3, P ,(Y) =0 forall B € A and we may choose
each {;; to be zero. Therefore:

&= ZP/zo Y)tﬂ+ZD * {i0-

peA
Certainly yMSPg o(Y) € Qo forall B € A and yM5S,(¢; ) has its coef-
ficients in Qg for all i = 1,...,n — 1. Hence

n—1
nevVix;b,c)+ ZD,- x* L(x;b,c+e).
i=1

Now observe that if o € E, s(a) can assume only a finite set of
values. Finally, directness of sum follows from (4.15). O

COROLLARY 4.1.
(1) Hu({D;};Z ll,L(x’" b)=0 forall u>1.
(i) Ho({D}1o), L(x™; b)) = V.

Proof. (i) follows from Theorem 4.1 and the fact that
H.({D:}/Z), L(x™; b)) = Hu({Di}/Z, L(x™; b)) ®q, X

(i1) follows from Proposition 4.2 and the fact that

n—1
Ho({D;}7=}', L(x™; b)) = L(x™;b)/ Y D; » L(x™; b). o

i=1
5. The Frobenius map. We first review some of the definitions and
results in [7, §4] concerning the lifting of characters. Let

E(z) =exp (io Zp—lj)
j=

be the Artin-Hasse exponential series. For s € N* U {0}, fix y59 €
Qp({p) satisfying

e

and —S—
Z »

and let 6; be the splitting function

(5.1) 05(z) = E(75,02)-

ord V5,0 = =
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Let
(L) sew,
(5.2) ag=1{"? 1 p p
. if s =00
p—1
As a power series in z:
o0
(5.3) 0s5(z)=>_ Bz
1=0
with
ord B(S) >la,,, foralll>0.
(5.4) y!
B[(S)- ;'0 for0<I<p-1.
In particular:
/
(5.5) ordB,(S) =571 for0<I/<p-1.
For a fixed choice of s, we can choose y; ¢ so that
(5.6) 0s(t) = 6(f) whenever 1 =,

where 0 is the additive character of F, chosen in (0.5). Let
{ F(2) =TTk, Os(citf);

G(t) =TT F7 ().
As a consequence of [7, §4], for all m > 0:

(58) Sm(_f%@’/’)-z(Ht‘(""'“”'/’> (OG- G,

1€V
Clearly, F(t) € L(ras;1,0) and G(¢) € L(2rag1,0).
Let p € N*, 0 < p; < r. We define elements p©@ = p, p/ =
p, ..., pV¥) = p satisfying:
pp,f“ p§f> =0 (modr),
(5.9)
0< ,Di
For each of the Banach spaces which have been defined, we indicate

by the subscript “p” the subspace where all monomials * have zero
coefficient unless a € Z(»), Thus, for example,

Ly,p(b,c)
= (6= Be:)*Y7 € L(b,) | Blas7) = 0if a ¢ EV}.

(5.7)
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Let X =YM. If a € Z(P) we set

/P, ifpla;, 1<i<n;
5.10 1) =
( ) w() { 0, otherwise.

(5.11)  wx (%)
B { Xs)=ps(B)¢Bif 38 € E() such that w(a) = pw(B);

0, otherwise.

(5.12) V(1) = Sy 0w (1%).

v defines a continuous Qp-linear map y:L,(b/p,c) — Ly (b,c); wx
defines a continuous R;(b)-linear map wx:L; ,(b/p,c) — Ly p(b,c);
¥y defines a continuous Qy-linear map y: L,(x;b/p,c)— Ly (xP;b,c).
For all m > 0 the following diagram is commutative:

Ly(b/p) 2% Ly ,(b/p) —2— L,(x";b/p) ®q, @

(5.13) lw l”’” l%m@d
m Sy
Ly(b) —2 Lymp(b) —2— L, (x";b)®q,
Let:
/[ — .
Wy = Wxaw © Wyyp2 © °Vx;
(5.14) X
Yy = Wxaw © l//xq/pZ 00 VYx.
sa5) { B0 [bp (FUI” € Lp/(a521,0), 0<j </ =1;
Go(t, X) = ¢1(G(7")).

If b < pag,, we define maps

G(t" s
FiLy(b,c) = Ly(b/a,c) =2 Ly(bg,¢) Y5 Ly(b,c);

v
(5.16) Fri Liplb.c) = Lip(b/a.0) “25 L, (b/g,c) L Ly, (b.0):

*Go(1,X)
_—

/
FxiLp(x;b,¢) — Lp(x;b/q,¢) Ly(x;b/q,c¢) B Ly(x9;b,0).

By [12, §9], & (respectively Zyx, respectively %) is a completely
continuous Q-linear map (respectively R;(b)-linear, respectively Q-

linear).
Let 6 be the operator defined on 1+ TQ[[T]] by
(5.17) 2(1y’ = £1).

g(qT)
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If x € Qg is the Teichmiiller lifting of X € F, it follows from Corol-
lary 1.1 that

(5.18) L(f, 7,0, p, T)"V" = det(I - T%)?"™".
We now fix the choice of constants in (3.23) by setting
iyt
Z—O—l if j<s-—1,

=0 P

0, if j >s.

(5.19) yj =

Let F(t") = exp H(t) (H(t) has been defined in (3.26)).
We recall ([7, (4.22)]) that

FO= Frs
(5.20) (1)
G(t) = ——.
F(19)
As operators on L(0):
1 , .
(5.21) D; = o )oE o F(¢"), i=1,....,n-1.

On the other hand, & = y# oG(¢") maps L(0) into itself, and it follows
from (5.20) that

(5.22) oy’ o F(1").

~F@n)
Since w/ o E; = gE; o y/ for all i, we deduce:
(5.23) FoD=qD;o%, i=1,...,n—-1,

¢

and this last equation is now valid in L(b) c L(0). Using (5.13) and
the definition of ¢,, we deduce:

(5.24) { Fx o D; = qD; 0 F,
FxoD;=qDj;o .
Let
(5.25) { Wxmp = Lm,p(b)/ 2?2_11 Djx Ly, ,(b);
Wi = Ly(x;0)/ T75) Dj * Ly(x;b).

As a consequence of (5.24), % acts on the Koszul complex
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K({D;}}-, I, L,(x;b)). Specifically, there is a commutative diagram:

0= Ly(;b) —-— Lyb)"T) oo Ly(ub) - Wi, —0
(5.26) lo s Lz 1% 17«
0 Ly(x%h) — - > Lyx%b) "7 oo Ly(x43b) — Wy, —0

Corollary 4.1 implies that both rows of diagram (5.26) are exact.
Therefore, taking the alternating product of the Fredholm determi-
nants, we obtain

(5.27) det(I - T%)% ™' =det(] — TF ).

For j > 0 let

FU =y o F¥(17);

(5.28) F = Wy o [¥Fj(1, X);

| F =y, o [*Fj(t, x)]. |
9}\5’ ) maps L, po(b,c) into Ly puen(b,c), while F) maps
Ly (xP';b,¢) into Ly (xP";b,¢). If we set:
(5.29) DY =E;+HY, i=1,...,n-1,j=0,...,/,
then, as above,

(5.30) FU) o DY) = pDI™V o 57U,
Hence: 0 , . )
(5.31) {3‘}(] oD} =pD™V o 53
xj) ODI(J) —pDﬁ’“)
Let .
(5.32) { W)(ff; =Lpf,p<f>(1?)/ Y1 DY x Ly, (),
W)gj’z = Lo (x”;b)/ Ti) Dz('j) * Lo (x?’;b)

Z‘fj ) and 9}” ) define quotient maps:

W, ) (+1).
{9 Wy, — Wy s

FIwi) — wiHh,
With these notations, W)((f;) = Wxa,p, Wx({;) = Wy, and the following
factorizations hold:

(5.33)

Fi=FY Voo TP FY,
(5.34) = =/-1) =) =(0)
gng'x O---Og—x o?x.
We now fix:
(5.35) s=o0; b=—2_.

p—1
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PROPOSITION 5.1. (i) Let CU(Y) = (C/(,{()I(Y)) be the matrix of
7Y W) — wy "V with respect to the bases {Y =M@ | a € Ay}
of W/\(,{/)) and {Y~Mp"'s(@)ge | o € Zpum} of W)(({;” respectively, then
for any a € me and B € Zp(m), Cé{()l(Y) is analytic in the disk
{ylordy > -N/Mp/(p - 1)}.

(ii) Let x € Q% withord x = 0 and let AU) = (A;{;)a(x)) be the matrix
of & §g’>; Wx(fz — W)ﬁ’j,;”) with respect to the bases {t* | a € me} of W)ﬁ,j)
and {t* | € ZPW)} of W)c(f;l) respectively; then for any a € Z,,m and
B €Ayn,ord A (x) > (pw(B) — w(a))/(p - 1).

Proof. (1) If a € Zp“*"’ then

e et (7 5ey)

so that

G PM) € Ly (;’i—f ;“’_(Cf))'

Using Theorem 3.1, we may write
(5.36) %((j)(y—les(a)ta)
n—1
= > Py BB LN DU w41, Y).
ﬂGZ,(J+I> i=1

with

) p  pw(B)-w(a)
Cﬂ,a(Y) € Ry (p 1’ > 1 and

1) € Lyn (25,255 1),

(ii) Applying the map S, to equation (5.36) and multiplying by
x?’5(®) we obtain:

(5.37) FOy = 32 CY) p)xps@r s Bh

BEA 4y

n—1 )
+ ZDI(-]H) * (it ).

i=1
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Since 9§(j ) is defined over Qy, Proposition 4.2 shows that in fact
C/(,’L(y)xp’s(")“i””s(ﬁ) € Q, and we may write:

(5.38) AP (x) = CY) () xPstr-pis(h),
The estimates now follow from the fact that

J+1 w —-w !
Cﬂ,a(Y)eL(xp §p_lil’p (f))—l (a)) N <.

THEOREM 5.1. Let p = (py1,...,pn) € 2" 0 < p; < r and suppose
that p =0 or p =1 (modr); let Z,(T) =] 5 (1 - q¥T). Then the

Newton polygon of L(f,®, p, T) lies over the Newton polygon of Z2,(T).
Proof. Let 7 be the completion of the maximal unramified exten-

sion of Q, in Q. For x € 7({,) satisfying ordx > 0 and 7(x) = x?
we can define

(5.39) twl) - wl =wy,
by sending & = )" g A(@)t* € Ly(xP;b,c) into
&) = ) N A(a)* € Ly(x;b,¢).

aEE®
Certainly,
(D) %, L(x?;b)) C D; +; L(x;b) for all i,
so that t~! is defined on the quotient. Let x € Q(’; with x? = x and
let
(5.40) Fl =110 F O,

If p =1 (modr), then pU) = p for all j € N and % is a T~ !-semi-
linear map and a completely continuous endomorphism of L,(x;b)
over Q; = Q,({p). If we let

(5.41) Fo=11oF0
then:
(5.42) Fe= (T .

It follows from [8, Lemma 7.1] that the Newton polygon of
detq,(I — T x) can be obtained from that of detq, (I — T.F ) by



EXPONENTIAL SUMS AND p-ADIC ESTIMATES 271

reducing both ordinates and abscissae by the factor 1// and inter-
preting the ordinates as normalized so that ordg = 1. If x € Qg is the
Teichmiiller representative of X € F,, we let &/ (x) = (%,4(x)) be
the matrix of F: Wy, — Wy, over Q, with respect to the basis

{t"|ae Zp}. By Proposition 5.1:
pw(B) — w(a)
p—1
We fix an integral basis {n,-}j/ , of Q over Q; with the property
that {7; } _; 1s a basis of F; over F,. In particular, if w € Qp, w =
?:1 w;N;, w; € Qy, then ord w = Inf ;< ,{ord w;}. Write:

(5.44) Folmt®y=Y_ 3 A ((B,J) (e D))’

ﬂGZ,, 1<]</

(5.43) ord.oZp o (x) > for all o, B € A,.

F_ isan Q;-linear endomorphism of W, , with matrix
x P

= [Z((B,]), (e, 0))]
with respect to the basis {1,1* | a € Z,,, 1 <i< /}. Furthermore:
ord# (8, 1) () > ZHELZ0 por a5
We now proceed as in [8, §7]:

Y
detg,(I - TF,) =1+ m;T’,
j=1
where @ = /N[ ki and m; is (up to sign) the sum of the
J X j principal minors of the matrix .«/’. Thus, ord m; is greater than

or equal to the minimum of all j-fold sums 21 1 ,8(1)) in which
{(ﬂ(l),zl)}, | 1s a set of j distinct elements in {(f,i) | f € Ap, 1<i<
0

PROPOSITION 5.2. For each a € Z,,m, let o/ € Z,,(,-H) and 6 € 7" be
the unique elements such that 0 < J; <p —1 and

o a; o a\ _ ¢ .
p<7’ —s(a’ )dz) - (d—z —s(a)z> =9; foralli;

Let CU) = (C(j (Y)) be the matrix of TV W ( W(”l).
Then:

(i) ord C),(0) = eledw(e) — s 5,
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(ii) If B # o then
; w(p)—w
ord CY)(0) > ”————(’; ) 1 @
provided one of the following conditions holds:
(a) B and o lie in distinct congruence classes;

(b) B~ and s(B) # s(a);
(©) B~ s(B) =s(), w(B) <w(a).

Proof. To simplify notation, we shall assume that j = 0. For each
| € N we write B, instead of Bl(°°) in (5.3). For a e N” let

B, g, if d;| o for all i
otherwise.

(5.45) B(a) = { o

By (5.4), ordB(a) > J(a)/(p — 1), and by (5.5), ordB(a) =
J(@)/(p—-1),if a;/d; <p—1forall i.

With these notations:
{ F(tr) = ZQGN" B(a)taa

5.46
(>:46) Fot, X) = Toer aen Bla + 1) Y,

Let eK,,:

(5.47) ,93.(0)(Y_Ms(a)la)
= Z Z B(n + Aa) YMS(OH'”)"PMS(U)—MS(a)+AMta"
AeN
where the inner sum is indexed by the set

{(n,0) e EO x E?®) | y; + Aa; =0 modd,, w(a+ p)=pw(s)}.
Let
D ) 40
é € Lp (pTl, C), f = Z A(a, J’)t Y’.
(o,7)EE,
If we write 1
n
=) Ep()P+) Hi«(,
peA i=1
we saw in the proof of Proposition 3.1 that the coefficient of Y —?4/5(8)
in Eg(Y) is ) u(@)A(@;y), where the sum is indexed by the set
{(@7) € EXN|—-pMs(B)=upM +y, &~ B+ pa,
J(@)=J(B) +pa, p €N},
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and where each u(a@) is a unit in &p. Thus, if we write

' n—1
(5.48)  FO(Y M@y = 3™ CTp (Y)Y PMBP L S H] 5 L,
per, i=1

then the constant coefficient of Cj ,(Y) is
(5.49) Cpo(0)=> u(o)B(u+Aa),

where the sum is indexed by the set S(B8,a) of all (n,0,4) € E® x
E(") x N satisfying;
( ps(B) —s(a) +s(a+n) —ps(o) +A+pu=0
o~ f+ua, neN
(5.50) q J(o)=J(B)+ ua
w;j(a+n)=pw;je) ij=1,...,n
L 7 +Aa; =0 modd; i=1,...,n.
Let (n,0,A) € S(B,a). If 6 ~ B+ pua and J(o) = J(B) + una for

some x4 € N, then necessarily s(6) < s(8) + u. On the other hand,
s(a+n) > s(a) + s(n). Hence:

0=ps(B) —s(a) +s(a+n)—ps(a) +A+pu
>s(a+n)—s(a)+A>s(n)+41>0.
We conclude that s(a + ) = s(a), s(6) = s(B) +u, A =0, s(n) = 0.

Furthermore, since g and S are elements of E, s(¢) < 1 and s(8) < 1;
hence u = 0. Thus

(5.51) Cpa(0) = 3 u(0)B(n),

where the sum is indexed by the set 7(8,a) of all (,06) € E©® x E(#)
which satisfy
( s(a+1n) =s(a)
s(n) =0
s(a) = s(B)
(5.52) { o~8,
J(o)=J(B)
w;j(a+n) =pw; (o) foralli,j
L 7, =0 modd; foralli.
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Let (n,0) € T(B,a): there is an index / such that n; = 0 and s(a) =
s(a+ n) = oy/a; and, by Remark 1.1, s(g) = g;/a;. Hence:

(5.53) p( s(o)= )—( s(a)= )—E—V,EN for all i.

By assumption:

(5.54) p(— - s(a')= ) (a’ —s(a)gﬁ) =d,eN foralli.
d; d;
by Lemma 2.8, s(@') = o}/a; and we deduce from (5.53) and (5.54)

that I)
pg,.(_alg_al_el foralli=1,...,n
1

Since g.c.d.(g1,.-.,82) = 1 and (p,M) = 1, this implies g, =
o) mod g; but ¢ and o are elements of E?): g;/g, <1, o)/g <
and 0; = o), modr. Hence 0; = o} and s(g) = s(a’). (5.53) and (5.54)
now imply p(o; — o)) =0 modd; for all i; since (p, D) = 1 we deduce
o' ~ o ~ B. In particular, T(f,a) = & if B and o lie in distinct con-
gruence classes, or if s(8) # s(o/). Furthermore, since s(o) = s(f),
(5.53) yields

(5.55) p( —s(p)X ) (Zl'—s(a):;—i>=s,~62 for all i.

Suppose f # o': by Lemma 2.8 there exists an index j such thate; < 0
or alternatively an index k such that g > p — 1.

If ¢; <0, (5.53) and (5.54) imply p(o;/d; — B;/d;) =v; —¢; > 0,
hence o; > f; and therefore o; > f;+d;; but J(o) = J(B), hence there
exists an index m such that S,, > o), + d,,. Subtracting (5.53) from
(5.54) then yields &, — v,,, > p; hence ¢, > p — 1. Now subtracting
(5.54) from (5.55) we obtain

/f_m_%>_ _
p<dm dm —8m 6m>0>

hence B,, > aof,. If B ~ <, this last inequality implies that 8; > o}
for all i (Lemma 2.3) and therefore w(f) > w(c') since s(f) = s(a’).
Thus, if 8 ~ o, B # o, s(ﬂ) = s(a’), and w(f) < w(a') the set
T(B, ) is empty and Cg, a(O)

Suppose finally that f = o'. Smce J(o) = J(d'), if 0 # o there is
an index i such that o} > o; +d;; but this implies d; — v; > p in (5.53)
and (5.54); hence J; > p, a contradiction. Hence o = o' and the set
T(d/, a) contains the single element (n,a') with 5 = (d,d},...,0ndy).
In particular, ord Co 4(0) = Y0, ;.
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Summarizing:
(i) ord Co,0(0) = (pw(a’) — w(e))/(p — 1);
(i) if B # o' then Cp ,(0) = 0 whenever one of the following holds:
(a) B and <’ lie in distinct congruence classes;
(b) B ~ ' and s(B) # s(e');
() B~ o, s(B) =s(a), and w(B) < w(a).
The proposition now follows from the fact that, by (5.36) and The-
orem 3.4:

(5.56) c,g,a(Y)—f,g,a(Y)eR,,< p pw(ﬂ)"w(a)H)

p-1 p—1
Vo, €A. O

Let 7 be a uniformizer of Q,({,) and let z’ be a root of ZMP — 7 in
Q. If 7 is the completion of the maximal unramified extension of Q,
in Q, we let 7 = 7 (n') and we extend 7 to 7' by setting 7(n’) = 7'

Let #U)(Y) be the matrix of ;7 D. wy - wr with respect to
the bases {7V @Y=t | o € A} of W,f,{l), and {n@B) Yy -p's(B)B |
ﬂ (S ZP(JH)} of W/\(;J’;l).

For x € QY, with ordx = 0, let also & ()(x) be the matrix of
FY). W) — wIFD with respect to the bases {nv@ | o € Ay} of
W) and (g2 BB | B € Ao} of WM.

By Proposition 5.2, the following estimates hold:

(ord%,)(0) > w(B) for all (a, B) € Ay X Ao

ord "5;/;31(0) =w(da/) forallae Z,,m;

#1(0) =0 if B and « satisfy condition (a),

\ (b), or (c) of Proposition 5.2 (ii).
(orde/)”)(x) > w(B) forall (a, B) € Ay x Ay
ord%(,{i(x) =w(d) forallae me;

ordMIf’Q (x) >w(pB) if B and a satisfy condition (a),
{ (b), or (c) of Proposition 5.2 (ii).

If a €A, we let Z(a) = w(a) + w(a!) + - + w(a”~D) and, for fixed
p, we let

(5.57) ¢

(5.58) |

2 (T) = [T (1 -p*@T) e QITI.
an,,
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THEOREM 5.2. The Newton polygon of L(f,®, p, T) lies below the
Newton polygon of %,(T) and their endpoints coincide at (0,0) and

(Q,0(n - 1)/2).

Proof. Let R = N[}, k; = dimg (WY, ,). We can write

R
deto,(I - TF x | Wy,) =1+ my(Y)T",
i=1
and by Proposition 5.1 each m;(Y) is analytic in the disk {y | ordy >
—Np/Mq(p — 1)}. If y satisfies ordy = 0, by the maximum /rvnodulus
theorem, ord(m;(y)) < ord(m;(0)). Observe that if a, f € A satisfy
a~ B, s(a) = s(f) and w(a) < w(B), then w(a') < w(p'). Thus,
using (5.57), we can order the elements of Ay for each j, 0 < j <
/ —1, so that the matrices U )(0) are simultaneously upper triangular,
with diagonal entries {%Of(ﬁ.)’a(,)(O) | @ € Ay} and ord %a(jz,,’a(,,(O) =
w(aU+*1). Hence for each i, 1 < i < R, ord(m;(0)) is the infimum of
all the i-fold sums }° Z(a), where a runs over a subset of i distinct
elements of A,. This establishes the first assertion. By Lemma 2.9,
Zan w(a) = R(n—1)/2 for any p. Hence ord mp(0) = /R(n—1)/2.
On the other hand, estimates (5.58) imply that, for all j, 0 < j <
/ -1
ord(detV(x)) = Y w(a).
o€l ()

The second assertion follows. O

COROLLARY 5.1. Ifp = 1 (modr), the endpoints of the Newton poly-
gons of L(/,0, p, T) and of #,(T) coincide.

THEOREM 5.3. If p = 1 (modr), (or p = (0,...,0)), and pg; =
g (modk;g;) for all i,j € {1,...,n}, the Newton polygons of
L(/,8,p,T) and of #,(T) coincide.

&)

Proof. Under our assumptions, the permutation o — o' of Lemma
2.8 is the identity on A,. Using the estimates (5.58), the remainder of
the proof is identical to that of [15, Theorem 5.46]. O

REMARK. Theorem 5.3 holds in particular when p = 1 (mod M D).
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