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PIECEWISE SMOOTH APPROXIMATIONS
TO tf-PLURISUBHARMONIC FUNCTIONS

LUTZ BUNGART

It is shown that g-pluri sub harmonic functions can be approxi-
mated by piecewise smooth g-plurisubharmonic functions, and that
analytic multifunctions are intersections of analytic multifunctions
whose graphs are unions of complex analytic manifolds of the ap-
propriate dimensions.

1. Introduction. This research is an outgrowth of an attempt to an-
swer a question raised by Ted Gamelin in lectures delivered at the
University of Washington in the spring of 1986: Can an analytic mul-
tifunction on an open set W in C, whose values are subsets of Cn, be
approximated from above by analytic multifunctions whose graphs are
unions of analytic disks? The question is intimately related to approx-
imating (n - l)-plurisubharmonic functions on W xCn by functions
of the same type which are smooth enough to allow construction of
the disks.

A smooth C2 function on an open set in C" is said to be #-plurisub-
harmonic (0 < q < n - 1) if its complex Hessian has at least {n - q)
non-negative eigenvalues everywhere. The concept was introduced
by Andreotti and Grauert [AG], who call these functions (q + 1)-
plurisubharmonic. A broader definition that extends the notion to
upper semicontinuous functions was given by Hunt and Murray [HM],
who also seem to be responsible for changing the index q. We will here
follow the Hunt and Murray convention to minimize confusion.

The class of #-plurisubharmonic functions is not additive for q > 0
and thus standard smoothing techniques available for plurisubhar-
monic functions do not carry over, a fact which hampered early work
on the subject. A breakthrough was achieved by Slodkowski [SI]
who was able to show that continuous #-plurisubharmonic functions
are uniform limits of functions whose second order derivatives ex-
ist almost everywhere. We will show that the approximation can be
achieved by functions which are locally the maximum of a finite num-
ber of smooth (strictly) #-plurisubharmonic functions.
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228 LUTZ BUNGART

2. The Perron method. We will describe here a general Perron
Method which is a distillation of ideas in Bremermann [B], Walsh
[W], Hunt and Murray [HW], Kalka [K], and Slodkowski [SI]. We
will use an axiomatic approach which will allow us to apply the results
of this section to several different situations in Sections 3-5.

For each bounded open set D c Cn let there be given a family &>(D)
of continuous real functions on D satisfying the following axioms:

(1) c + &(D) c ^ ( 5 ) / ^ e R , c&(D) c^(D)forceR, c>0.
(2) IfDxcD then &φ)\D\ c &>(D{).
(3) Ty^(D) c &>{y + D) where Tyu{z) = u(z - y).
(4) Ifu, υ e ^(D) then max(w, v) e &>(D) where the closure is taken

in C(D) with respect to the uniform norm.
(5) Ifg is a real linear function or g = \z\2 then g + ̂ (D) c

Axiom (4) is stated more generally than needed for the examples in
this paper since we have future applications in mind. Axioms (1) and
(5) imply that for ε > 0 and x e Cn,

ε\z - x\2 + &>(D) c &>(D).

If D is a bounded open set then a subfamily ssf(D) c &{D) is ad-
missible for D relative to &>(D) if the following properties are satisfied:

(Al) c + jtf(D) c sf(p) for CGR, CJ*(D) CS/{D) forceR,c> 0.
(A2) Ifu,ve s/{Jΰ) then max(w,v) G s/(p) where the closure is

taken in C(D). _
(A3) If D\ is an open set with compact closure in D, u e

u\ e^°(D\) and
u\(x) < u(x) for xedDx

then the function

ί
viz) = <

{z), zeD\Dx,
belongs to$f(D).

Let D be an open set in Cn and assume s/(D) is admissible for D.
If g is any function on 5 with values in R U {+oo}, we define

s/(D9g) = {u: ue$/(D),u < g onZ)},

Note that E* (D, g) is lower semicontinuous at points where it is finite,
and E^(D,g) < g on D. Using the above properties (1) through (4)
and (Al) through (A3) one can now prove a lemma, which is due to



4-PLURISUBHARMONIC FUNCTIONS 229

Walsh [W] in case si is the class of plurisubharmonic functions. We
also note that this is the only place where axiom (3) is explicitly used.

2.1. LEMMA. Assume D is a bounded open set in Cn and s/(D)
is admissible for D. Let q be a function on D which is either real
valued and continuous on D or real valued and continuous on dD and
identically +00 on D. IfE^(D, g), as a function on Dy is continuous at
points of the boundary dD ofD, then E^(D, g) is finite and continuous
on all ofD.

Proof. First we observe that the family sf(D,g) is directed under
the assumptions made on g. That is, if w, υ e ssf{D, g) then there is a
w esf(D,g) with

w > max(w,ι;).

Indeed, since max(w, υ) < g on D there is a c > 0 with max(w, v) -he <
g, and an application of property (A2) yields the desired w. Now let
ε > 0 be given. We can choose finitely many wι E si (D, g) such that

E^(D, g) - max{w/} < ε on dD.

By the above remark, there is then aw esi(D,g) with

Es'(D9g)-w <ε ondD.

Since E^(Dy g) is assumed to be continuous at points of dD, we can
find a δ such that

Es/(D,g)(z)-w{z)<ε ford{z,dD)<2δ,

\w(z) - w{z')\ < ε for \z - zr\ < δ,

g(z') < g(z) + ε for \z - z'\<δ and z, z' e D,

where d(z9 dD) is the distance of z e D from dD. If uesi(D9 g) and
u >w, then the first two inequalities imply

\u(z)-u(z')\ < 2ε

if \z - z'\ < δ and z and zf are within 2δ of dD. For given x,y e D
with \x -y\ <δ let

Dx = {zeD:d(z,dD)>δ},

U\ = Ty-Xu - 2ε on D\.

Then the function v defined as in property (A3) satisfies υ < g on
D. Note that u\ G &(D\) and therefore by property (A3) there is
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a i G sf(D9g) with ϋ > v and thus ϋ(x) > u(y) - 2ε. Taking the
supremum over all u e sf(D, g), u>w, gives

) > £ ^ (A #)(}>) - 2β for x,y e A |x - y\ < δ,

whence the finiteness and continuity of E^(D, g) on D.

Recall that a function u e C(D) is called a peak function for x e dD
if _

u(x) = 0 and u(z) < 0 for z e D \ {x}.

2.2. LEMMA. Assume D c Cn is a bounded open set such that sf(D)
is admissible for D and the closure of si (IX) in C(D) contains a peak
function for every point of 3D. If g is lower semicontinuous at points
ofdD then E^(D, g) = g on 3D.

Proof (sec proof of Theorem 4.1 in [B]). Let x e dD and e > 0 be
fixed, and choose δ > 0 so that

g(y) > g(x)-e ify e A \y-x\ <δ.

Let u e sf(D) be a peak function for x. Then there is c G R, c > 0 so
that _

cu{y) < g(y) - g(x) + e for y e D, \y-x\> δ,

and therefore υ = cu + g(x) — ε < g on D. Since υ e sf(D) and
v(χ) = g(x) - e, we conclude E^(D, g)(x) = g(x).

2.3. COROLLARY. Assume D is a bounded open set in Cn such that
s/(D) is admissible for D ands/(D) contains a peak function for every
point ofdD. Assume further that one of the following conditions holds:

(a) g is continuous on D or
(b) g is continuous on dD and g = +oo on D, and there is an upper

semicontinuous extension g of g\dD to Z) so that stfr(D, g) = s/(D, g).
Then E^ (D, g) is a continuous real valued function on T) and E^ (D, g)
= g on dD.

Proof We have E^(D,g) = g on dD by Lemma 2.2. Note that
in case (b), E^(D,g) < g with equality on dD, whence E^(D,g) is
continuous at points of dD. Since E^(D,g) < g, we conclude the
same in case (a). Lemma 2.1 implies thus the continuity of E^(D, g)
onZλ

For each open set W in Cn we define ^'(W) as the family of con-
tinuous function υ on W such that for each open D c c W and each
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u G &(D), u + v attains its maximum on D at a point of dD. For a
bounded open set D we set

Note that &>'(D) may be empty. However, axioms (1) through (5) are
satisfied for &"(D)9 and it follows easily from the next lemma that
SP*(D) is admissible relative to ̂ '(D), i.e. axiom (A3) is satisfied with
3?' in place of s/ and 3°. We note also that &"(D) is closed in C(D)
in the uniform norm.

2.4. LEMMA. Assume W is an open set in Cn and v a continuous
function on W such that each point in W has a neighborhood U ccW
so that υ\U e &>'(U). Then v e &>'{W).

Proof. This is essentially the proof of Lemma 2.7 in [HW]. Assume
υ φ &"(W). Then there is an open D ccW and a function ue^(D)
so that v + u does not attain its maximum M on D at any point of
dD. Choose ε > 0 so that the function w defined on D by

w(z) = v(z) + u(z) + e\z\2

also satisfies w < M on dD. Then w assumes its maximum on D at
a point x e D. Let U CC W be a neighborhood of x so that υ|C/ G
&>'(U). Since axiom (2) is satisfied by &>', we may assume that U is a
small ball around x with closure contained in D. Since e ( | z | 2 - | z - x | 2 )
is an affine function, we have u + ε( |z | 2 - \z - x\2) G &>(D). Thus

w - ε\z - x\2 = v + u + ε(\z\2 - \z - x\2)

assumes it maximum on U at a point y edU,

w(y) - ε\y - x\2 > w(z) - ε\z - x\2, z eU.

Evaluating at z = x gives the contradiction w(y) > w(x).

The above proof also yields the following lemma (see Proposition
1.1 of [SI]).

2.5. LEMMA. Let W be an open subset ofCn and v a continuous
function on W such that v £&>'(W). Then there exists x eW, a ball
B{x,r) of radius r > 0 with closure contained in W, an ε > 0 and an
f G &>(B(x,r)) such that

f(z) + v(z) < -ε\z - x\2 on B(x, r).
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Proof. Using the construction of the last proof with B(x,r) = U
and

f(z) = u(z) + ε(\z\2 -\z- x\2) - w(x),

we have f(x) + υ(x) = 0. Since w assumes its maximum on B(x, r)
at x, we have w(z) < w(x) which can be re-written as f{z) + v(z) <
-ε\z-x\2.

We define now !P = &" (this is the construction made in [K]), i.e.
for an open set W in Cn, 3?{W) is the family of continuous functions
u on W such that for each open D c c W and each v e 3?[f(D), u + v
attains its maximum on 5 at a point of dD. Further,

We obviously have
&>(p) C

In particular, the function E^(D, g) of Corollary 2.3 belongs to &(D).
In Section 4, we will investigate conditions under which 3°{D) is dense

2.6. LEMMA. With the notation and assumptions of Corollary 2.3,
let A be the set of points zeDfor which E^φ, g)(z) < g(z). Then,

Proof. (The proof given here is an adaptation of the proof of The-
orem 6.8 in [SI].) Assume -E^(D,g) does not belong to &'{p\). By
Lemma 2.5 there are x eD\ and a ball B(x, r) with closure contained
in Du an ε > 0 and / e &(B(x9r)) such that for z e B(x,r)

f{x) = E"(P9g)(x)9

f(z)<E*(D,g)(z)-ε\z-x\2.

Choose^ > 0 so that E^iD, g) + δ < g on B(x, r) and 2δ < εr2. Let
ues/(D) be such that on D

u<E*(D9g)<u + δ/2

and define
u ^ zeD\B(x,r)9

max(M(z),/(z) + ί), zeB(x9r).

For \z - x\ = r we have

/(z) + ί < E^(D, g)(z) + δ-εr2< u(z) + \δ - εr2 < u(z)9
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whence U\ belongs to the closure of s/(D) in C(D) by axiom (A3).
Let U\ € sf(D) approximate U\ to within δ/2 on Zλ By axioms (Al)
we can achieve ύ\ <u\. By the choice of δ, we have on B(x, r)

f(z) + δ<EJ'(D9g) + δ- ε\z - zo\
2 < g(z).

Thus Mi, and hence ύ\9 is dominated by g on D. Therefore ιi\ is one
of the functions used to form the envelope E^(D, g). But

u(x) < E*(p9 g)(x) = f(x) < f(x) + δ

whence U\(x) = f(x) + δ and

ux{x) > m(x) - δ/2 = f(x) + δ-δ/2

= E^φ, g)(x) + δ/2 > E"(D9 g)(x)9

a contradiction.

3. The Dirichlet problem. The Dirichlet problem has essentially
been solved by Corollary 2.3. We need only find a condition on D
which will imply the assumptions made in (b) of that corollary.

3.1. THEOREM. Let Dbea bounded open set in Cn. Assume sf (D) c

is admissible for D and $f(D) contains a peak function for every
point ofdD. Assume further that &>'(D) also contains a peak function
for every point ofdD. Then for every continuous function g on dD there
is a unique function w e β(D) such that w\dD = g and -w e

Proof. We set g(z) = oo for z e D. As before, we let s/(D, g) be
the collection of functions in sf(D) whose boundary values are every-
where less than g. We will show that the upper envelope E^(D, g) of
$/(D, g) is the desired solution w. Let go be any continuous extension
of g\ΘD to D. Define g for z e D by

-g(z) = sup{i;(z): υ e&'(D)9v\dD < -g0}

Since &>'(D) is admissible (relative to &'{U)) and contains a peak
function for every point of dD, Corollary 2.3 implies that -g is con-
tinuous, dinά_g\dD = g\dD. Since &>'(D) is closed in C(D)9 -g be-
longs to &"(D) and hence u - g will attain its maximum on D at a
point of dD for every u e 3D(D). In particular, we obtain

w - ^ < 0 o n f l , ues/(D9g).
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Therefore g is a continuous extension of g to I) with sf(D9g) =
$/(D,g). Corollary 2.3 implies now that w = E^(D,g) is a continu-

ous extension of g\dD to Z>. By construction, w e stf{D) c 3*(D) and
by Lemma 2.6, —w G &'(D). To prove uniqueness, let u? e ^ ( D ) be
any extension of g\dD to D so that —1& G 3d'(D). By the definition of
&(D)9 w — w and ι/) — w must attain their maximum at points of dD.
Since both functions vanish on ΘD, this implies w = w.

The question naturally arises whether the hypotheses in Theorem
3.1 are satisfied when D = B(x,r), a ball. If &>(p) Φ 0 then axiom
(1) implies 0 e &''(D). By axiom (5), &>(D) will then contain all
real linear functions, which provides peak functions for B(x,r). To
conclude the same for 3P*(D) we need 0 e 3*f(D), which is equivalent
to the following:

(6) IfD is a bounded open subset ofCn then the functions in &(D)
assume their maximum at points of 3D.

3.2. PROPOSITION. If axiom (6) above holds and if the real linear
functions belong to $f{(B{x,r)) then Theorem 3.1 is valid for D =
B(x,r).

We will next discuss what these results mean in terms of #-plurisub-
harmonic functions. As mentioned in the introduction, we will use
the Hunt and Murray [HM] definition of an upper semicontinuous
<7-ρlurisubharmonic function (see also [SI]). Unless otherwise stated,
we will assume 0 < q < n - 1. For each bounded open set D in Cn let
CPSH^(S) be the family of continuous functions on 5 which are q-
plurisubharmonic on D. Then CPSHq(D) satisfies axioms (1) through
(5) of Section 2, (see [HM] or Proposition 1.2 in [SI]).

Let &>q(p) = CPSHtf(Z>) and define as in [K] (except that we restrict
ourselves here to continuous functions)

Then Theorem 3.1 yields unique solutions to the Dirichlet problem in
^q(D)n—^>

n-.q^i(D) under appropriate conditions on D (see Theorem
3.7 below). We believe that this is what Kalka established in [K] even
though some of his formulations are flawed as noted in [SI].

For our further discussion we will need to refer to the following
property of ^-plurisubharmonic functions.
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3.3. PROPERTY {Theorem 5.1 of [SI].). If u is q-plurisubharmonic
andv is r-plurisubharmonic on D then u+v is {q+r)-plurisubharmonic
onD.

3.4. COROLLARY. If&q(D) = CPSHq(D) then

Proof. It follows readily from the definition of #-plurisubharmonic
functions that &%(D) c &>n-q-ι(D) (e.g., see Proposition 1.1 in [SI]).
By Property 3.3, the sum of a g-plurisubharmonic function and a
(n — q — l)-plurisubharmonic function is (n — l)-plurisubharmonic
and thus satisfies the Maximum Principle (see Lemma 2.7 of [HW]).
The definition of &%(D) implies now &>n_q_ι(D) c

3.5. DEFINITION. A bounded domain D in Cn is said to have an
r-pseudoconvex barrier at a boundary point x e dD if there are a
neighborhood U of x and a peak function for x in CPSHr(Z> n U).

Recall that dD is strictly r-pseudoconvex at x e dD if there are a
neighborhood V of x and a C 2 strictly r-plurisubharmonic function p
in F so that

Vί)D = {zeV: p(z)<0}.

Then, for any neighborhood U of x with compact closure in F,
p - ε\z - x\2 will be a peak function for x in CPSHr(Z> Γ\U) if ε
is small.

3.6. LEMMA. 7/1/) w α bounded domain in Cn then there is a peak
function in CPSHr(D) for every point x E dD for which there is an r-
pseudoconvex barrier. In particular this is true for every x e dD where
dD is strictly r-pseudoconvex.

Proof. If u e CPSHr(Z> n U) is a_peak function for x e dD then
ύ = max(w, -ε) belongs to CPSHr(Z)) for small ε and clearly ύ is a
peak function for x.

If we specialize Theorem 3.1 now to #-plurisubharmonic functions,
we recover a proof of the existence and uniqueness of the solution
to the Dirichlet problem for ^-plurisubharmonic functions on certain
strictly r-pseudoconvex domains. But first we consider an example.

Let D c C2 be defined by

D = {z = (z1 ? z 2 ) : p(z) = - R e z ! + Iz^ 2 - | z 2 | 2 < 0, \z\ < 1}.
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Then D is a bounded domain with a 1-pseudoconvex barrier at every
point ofdD. Let g be a continuous function ondD with a strict max-
imum value of 0 at 0. We claim there is no function u e CPSH0(5)
with u\dD = g. If there were such a function u, then u is not
constant and therefore does not assume its maximum value of 0 on
D. Therefore u is bounded away from 0 on the compact subset
{z: Imzi = 0,0 < Rezj < \, \z2\ = \) of D. Since u is subharmonic
on the disks

Δε = {z: zx = ε, |z 2 | < \) c c A 0 < ε < ±,

it must be bounded away from 0 by the same constant on each of these
disks. But

0 E Δ 0 C U Δε

0<ε<l/2

and u(0) = 0, a contradiction. However, for any continuous function
h on dD, there are functions υ e CPSHi(Z)) with υ\dD = h. To
see this, let h be any continuous extension of h to Z) and set 3d (D) =
CPSH! (5). Then v = E^(D, h) provides such a function by Corollary
2.3. If h = —#, then this solution does not belong to - CPSHQ(Z)) for
any extension h as we have argued above.

We are now ready to state a general Dirichlet problem for #-ρlurisub-
harmonic functions. For q = r, the existence part of the following the-
orem is due to Hunt and Murray [HM]. The uniqueness was shown
by Slodkowski in [SI], where one also finds a general formulation of
the theorem (Theorem 5.6 in [SI], which contains what appears to be
a misprint as the above example shows).

3.7. THEOREM. Let D be a bounded domain in Cn with the property
that each point on the boundary ofD admits an r-pseudoconvex barrier,
where 0 < r < n — 1. Then for every continuous real valued function
g on dD and every q with r < q < n - r - \ there exists a unique
u G CPSHq(D) so that -u e CPSHn_q-ι(D) and u\dD = g.

Proof. Let &>q(D) = CPSHq(D). Corollary 3.4 yields &

CPSHn-q-ι(D). The conditions on r and q imply r < q as well as

r < n - q - 1 and thus

Since Lemma 3.6 guarantees now peak functions for every x e dD in
and in ^(D), Theorem 3.1 can be applied.
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4. Piecewise smooth approximations on strictly #-pseudoconvex do-
mains. We start out with the axiomatic setting of Section 2.

4.1. THEOREM 4.1. Assume D is a bounded open set in Cn and
stf(D) c 3s(D) is admissible for D. If the closure ofs/jp) in C(D)
contains a peak function for every point ofdD, then sf{D) is dense in

Proof._Recall that &(D) = &>"(D). Let g e &{D). By Corollary
2.3, E sf(D9 g) is continuous and agrees with g on dD. Assume that

is not empty. Then g and E^(D,g) agree on dD\. By Lemma 2.6,
-E^(D, g) e 0"{Dι). Thus, by the definition of&(Dx)9 g-E*{D, g)
assumes its maximum on D\ at points of dD\, i.e.,

g-E*(p9g)<0 on A-

This is a contradiction to the definition of D\. Thus D\ = 0 and

In trying to approximate #-plurisubharmonic functions by functions
from a subclass exhibiting some smoothness properties, the only oper-
ation one can work with for q > 0 is that of taking suprema. A subclass
of relatively smooth functions that is closed under taking maxima, is
the class of piecewise smooth functions.

4.2. DEFINITION. A function defined on an open set in Cn is called
piecewise smooth (strictly) #-plurisubharmonic if in some neighbor-
hood of every point in its domain it is the maximum of a finite number
of C2 (strictly) #-plurisubharmonic functions.

For a bounded open set D in C2, let ̂ (D) be the collection of
functions on D which are the restrictions to D of functions that are
piecewise smooth #-plurisubharmonic in some neighborhood of D. It
is clear that axioms (1) through (5) of §2, and also properties (Al)-
(A3), are satisfied with & = s/ = &q.

4.3. DEFINITION. A domain D in Cn is said to have piecewise
smooth strictly #-pseudoconvex boundary if every point x e dD has a
neighborhood V with a piecewise smooth strictly #-plurisubharmonic
function p defined on V such that

DnV = {zeV,p(z)<0}.
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4.4. PROPOSITION. If the domain D in Cn has piecewise smooth
strictly q-pseudoconvex boundary then &*q(D) contains a peak function
for every boundary point ofD.

Proof. Let x e dD and let V and p be as in the above definition.
Let U be a neighborhood of x which is relatively compact in V. Then

p0 = p-ε\z -x\2

is strictly #-plurisubharmonic on U and bounded away from 0 on
dU ΠD for small e > 0. Thus, if δ > 0 and

-δ >

then max(/?o, —<ϊ) is in ^q{D) and peaks at x.

We can therefore apply Theorem 4.1 to a domain D with piecewise
smooth strictly #-pseudoconvex boundary and obtain:

4.5. THEOREM. Assume D is a bounded domain in Cn andsf(D) c
^q(D) is admissible for D. If the closure ofsf(D) in C(D) contains a
peak function for every point ofdD, then s/(p) is dense in CPSH^Z))
in the uniform norm.

As an immediate consequence we have

4.6. THEOREM. Let D be a bounded domain in Cn with piece-
wise smooth strictly q-pseudoconvex boundary. Then every function in
CPSHq(D) is the uniform limit on D of a sequence of functions each of
which is piecewise smooth q-plurisubharmonic on some neighborhood
ofD.

Another immediate consequence is a Runge type theorem. For an
open set U let us denote by CPSH^(C7) the family of continuous q-
plurisubharmonic functions on U, and by ^q(U) the piecewise smooth
functions in CPSH^(C/). For a compact set K, APSH^(^) will denote
the subset of C(K) of functions obtained by restrictions of functions
in CPSH^t/) where U runs through a neighborhood basis of K. For
a bounded domain D,

CPSHq(D) = C(D) n CPSH^(Z)).
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4.7. THEOREM. Let W be an open subset ofCn and φ e
Assume K = {z e W\ φ(z) < 0} is compact in W. Then ^q{W) is
dense in APSH^(^Γ). If in addition, φ is strictly q-plurisubharmonic on
W, then &>q{W) is dense in CPSH^(D), where D = {z eW: φ{z) < 0}.

Proof. We establish first the second part of the theorem under mod-
ified assumptions. Assume φ - ε\z\2 e ^q{W) for small ε > 0 and let
D be a union of connected components of {z e W\ φ(z) < 0} such
that D is compact in W. Let

Then sf(p) is admissible for D (satisfies axioms (A1)-(A3)). Also,
for x E 92), we have

\2
φx = φ - e\z - x\

Since φx is a peak function for x, Theorem 4.5 applies, showing that
&>q(W) is dense in CPSH^(5).

We shall now prove the first part of the theorem. Let U be a neigh-
borhood of K which has compact closure in W. Choose e > 0 such
that

D£ = {ze W: φ{z) < e} n U CC U,

and then select c> 0 so that c(\z\2 + 1) < ε on Z7. Define

Then φ0 e ^q{W), and also φo-εf\z\2 e &q{W) for small ε'. Therefore
&>q{W) is dense in CPSH^(D0)5 where

D0 = {ze W: φo(z) <0}nUccU

by what we have already proven. Note that K c Do c U. Since U
was arbitrary, this shows 3?q{W) is dense in APSH^(AΓ).

Now back to the second part of the theorem. Let W be a neigh-
borhood of K with compact closure in W and set

K' = {zeW: φ{z)<ε'}nW

where ε' > 0 is chosen so small that K1 is compact in W. On W\
φ - ε\z\2 will be #-plurisubharmonic for small ε > 0, whence ^q{W)
is dense in CPSH^(Z)) by what we have shown already. In particular,
APSH^Λ:') is dense in CPSH^Z)) and, repeating the proof of the first
part of the theorem with U c W\ &>q(W) is dense in APSH^(A:/).

Note that the smoothness assumption on φ in Theorem 4.7 can
be dropped. If only φ e CPSH^W) then φx = φ - ε\z - x\2 can
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be approximated uniformly on a neighborhood of D by functions in

by Theorem 5.3 of the next section. Thus φx e s/(D) and the
above proof goes through with obvious modifications.

5. Piecewise smooth approximation on open sets. On an open set W
in Cn we will approximate arbitrary #-ρlurisubharmonic functions by
functions of the class ^q{W) of piecewise smooth #-plurisubharmonic
functions. We shall start by extending the definition of strict g-pluri-
subharmonicity to upper semicontinuous functions.

5.1. DEFINITION. An upper semicontinuous function u (with values
in [-oo, oo)) on an open set W in Cn is called strictly #-plurisubhar-
monic if for every x e W there is a neighborhood of x in W where
u - ε\z\2 is #-plurisubharmonic for small ε > 0.

If u is piecewise smooth, then this definition agrees with the one
previously given. For suppose

u = max{w/: 1 < / < s}

on a neighborhood U of a point x where t/, are C 2 plurisubharmonic.
Without loss of generality, we may assume that x belongs to the closure
of

Ui = {zeU: Ui(z) > Uj(z), ί<j< sj φ ϊ)

for each /, 1 < / < s. (Shrink U and omit the u\ for which this is not
true.) If now u - e\z\2 is #-plurisubharmonic on U then the Hessian
of Ui = u has n - q eigenvalues > ε at every point of £// and hence at
x e Vi.

5.2. LEMMA. Assume u is a continuous strictly q-plurisubharmonic
function on the open set W in Cn and let x e W. Then for a given ball
B(x,r) with closure in W and given ε > 0 there is an open neigh-
borhood Nx of x contained in B(x,r) and a continuous strictly q-
plurisubharmonic function ux on W such that ux e ^q(Nx) and

u < ux <u + ε on NX9 u — ux onW\ Nx.

Proof. Choose a c > 0 with cr2 < ε and so that the function v
defined by

v(z) = u(z) - c\z - x\2 + cr2

is ^-plurisubharmonic on B(x,r). By Theorem 4.6, we can approxi-
mate v on B(x,r) to within cr2/2 by a function v which is piecewise
smooth ^-plurisubharmonic in a neighborhood of B(x, r), and we can
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arrange ϋ < υ on B(x9r). By adding a small multiple of \z\2 to ϋ we
obtain a piecewise smooth strictly #-plurisubharmonic ϋ with

ϋ(z) < υ(z) = u(z), \z-x\ = r,

ϋ(z) < υ(z) < u(z) + cr2 < u{z) + ε, \z - x\ < r,

ϋ(x) > υ{x) - cr2/2 = u{x) + cr2/2.

Thus

JΦ), zeW\B(x,r),
Uχ[Z) I max(u(z),«(z)), zeB(x,r),

defines a #-plurisubharmonic function on W with the desired proper-
ties, where Nx = {z eW: ux(z) > u(z)}.

5.3. THEOREM. Assume u is a continuous strictly q-plurisubharmonic
function on the open set W in Cn and g a continuous function such
that u < g onW. Then there is a strictly q-plurisubharmonic function
u G ̂ q{W) with u < u < g. In particular, there is a monotone decreas-
ing sequence of strictly q-plurisubharmonic un e^g(W) that converges
to u uniformly on W.

Proof. For each x e W choose a ball B(x,r) of radius r < 1 with
closure in W. Let 2εx > 0 be a lower bound for g - u on B(x, r) and
construct ux and Nx as in the lemma (with ε = ex). Since the Nx have
small diameter as x approaches the boundary of JV, we can select a
locally finite subcover {NXι: / = 1,2...} of W. Define

w = sup{wXz: / > 1}.

In a neighborhood of any point x e W only the finitely many uXι

with x e NXι need to be used in the sup. Thus u e ^q{W), and
by construction u < u < g. To obtain the sequence un, pick w0 Ξ
3?q{W) with u <Uo < u+ I and then un inductively so that u <un <
min(ww_i,w+ \/ή).

A closer look at the proof shows that one can insure that the lower
bound for the positive eigenvalues of the Hessians of the approxi-
mating functions does not deviate much from the amount of strict
<7-pseudoconvexity (as measured by the e in Definition 5.1) of the
approximated functions. A more delicate problem is that of approx-
imating continuous, but not necessarily strictly, #-plurisubharmonic
functions, and the extension of these results to complex manifolds.
Let us mention here only that on a bounded domain Z>, every contin-
uous #-plurisubharmonic function u can be approximated uniformly
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by functions in 3Pq{p) by applying Theorem 5.3 to u + ε\z\2. On an
arbitrary open set we have the following:

5.4. COROLLARY. Let W be an open set in Cn and u a continuous
q-plurisubharmonic function on W then there is a monotone decreasing
sequence un E ^q{W) that converges to u uniformly on compacta.

Proof Choose u0 e &q{W) with u + \z\2 < u0 < u + \z\2 + 1 and

then un e^qiW) inductively so that

u + \z\2/n <un < min(wΛ_i,u + (\z\2 + l)/n).

Theorem 5.3 and Corollary 5.4 can also be established in the ax-
iomatic setting of §2 if 3d(D) satisfies axioms (1) through (5) and
(A3) with sf = 3P. If strict functions in 3?(W) are defined analo-
gously to strictly g-plurisubharmonic functions, then approximation
of functions m3P(W) by functions in^(W) is obtained by the same
methods.

6. A characterization of A:-maximum sets. Recall that an open set
W in Cn is #-pseudoconvex if the function v defined by

v(z) = -log(dist(z,dW))

is #-plurisubharmonic outside some compact subset K of W. If M >
v(z) for z e K then

u{z) = max(v(z),M) + \z\2

defines a strictly #-plurisubharmonic exhaustion function u on W,
i.e. the sets {z e W: u(z) < c} are compact in W for c e R. An
application of Theorem 5.3 yields now:

6.1. COROLLARY. If W is a q-pseudoconvex open subset ofCn then
there is a piecewise smooth strictly q-plurisubharmonic exhaustion func-
tion on W.

More generally, if U c W are open in Cn then U is said to be
#-pseudoconvex in W if

u(z) = -log(dist(z,<9t/n W))

is #-plurisubharmonic for z e U near dU Γ)W. Let UQ C U be an
open set with dUoΠW D dU Γ\W so that u is (?-plurisubharmonic
on UQ. By Theorem 5.3 applied to u + \z\2, there is thus a piecewise
smooth strictly #-plurisubharmonic function υ on UQ with v(z) —κx>
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as z -> d UΠ W. In the following we say that a relatively closed subset
Y of W is the union of complex manifolds if each point x eY has a
neighborhood Vx with a complex submanifold of Vx passing through
x and entirely contained in Y.

6.2. LEMMA. IfUcW are open subsets ofCn and U is q-pseudo-
convex in W then X = W\U is the intersection of a decreasing sequence
of relatively closed subsets Xm of W each of which is the union of
complex manifolds of dimension n- q - 1.

Proof. Let UQ and v be as described before the lemma. By Sard's
theorem, there is a strictly increasing sequence of real numbers cm —>
oo, such that in a neighborhood of each point of

Ym = {ze U0:v(z) = cm}

v is the maximum of a finite number of C 2 strictly g-plurisubharmonic
functions with non-varnishing gradient. By a theorem of Basener
(Proposition 6 in [Ba]), there is then for each z 0 G Ym a complex
manifold of dimension n-q-l passing through z 0 and lying entirely
in {z G UQ: V(Z) > cm} U {z0}. Therefore

Xm = W\Uu{zeU0:v(z)>cm}

have the desired property.

A locally closed subset E of Cn is a /:-maximum set if the polyno-
mials have the local maximum modulus property on LnE for every
affine subspace L of codimension k in Cn (see [S2]). It is not difficult
to show that an example is any locally closed set which is the union
of a family of analytic sets of pure dimension k + 1. Thus the sets
Xm of the above lemma are (n - q - 2)-maximum sets. Since any
(n-q-2)-maximum set X can be obtained as W\ U as in the lemma
(Theorem 4.2 of [S2]), we have the following:

6.3. COROLLARY. X is a k-maximum set in Cn if and only if it can be
written as an intersection of a decreasing sequence Xm of k-maximum
sets each of which is a union of complex manifolds of dimensions k+\.

Let D be an open subset of C^ and assume K is an upper semicon-
tinuous set function whose values K{z) are compact subsets of C m .
Set

X = {(z,w):zeD,weK(z)},

W = DxCm, U = (D x Cm) \ X.
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K is an analytic multifunction if X is a (k - l)-maximum set or equiv-
alently, by what we mentioned above, if U is (m - l)-pseudoconvex
in D x Cm (see [S2]). The construction for Corollary 6.3 then gives:

6.4. COROLLARY. An analytic multifunction K on D c Ck as de-
scribed above can be written as the intersection of a decreasing sequence
of analytic multifunctions Kn whose graphs Xn are unions of complex
manifolds of dimension k.
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