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THE POWER 3/2 APPEARING IN THE ESTIMATE
OF ANALYTIC CAPACITY

TAKAFUMI MURAI

We show that the power 3/2 appearing in the estimate of analytic
capacity is best possible.

1. Introduction. For a compact set E in the complex plane C,
H*>(E€) denotes the Banach space of bounded analytic functions in
E¢ = CU{o0}—E with supremum norm ||-||z~ . The analytic capacity
of E is defined by

y(E) = sup{|/"(00)|; Ifllg= < 1, f € HX(E)},
where f'(00) = lim,_,o z(f(2)—f(00)),i.e., f'(00) isthe (1/z)-coefhi-
cient of the Taylor expansion of f(z) at infinity. It is easily seen that
y(E) < |E|, where |E| is the (generalized) length of E; if E isa
subset of the real line R, then |E| equals its 1-dimension Lebesgue
measure (cf. Garnett [4, Chap. III]). Vitushkin [12] constructed an
example QO such that y(Qx) = 0 and |Q| > 0 (cf. [4, p. 87]).
Denjoy [3] showed that y(E) > 0 if E is a subset of a rectifiable curve
such that |E| > 0. But his proof has a serious gap, and his theorem
was, for a while, called the Denjoy conjecture. As is easily seen, we
may assume that E is a subset of a rectifiable graph. Let pr E denote
the projection of E to R. Since pr is a contraction [6, p. 377], it is
natural to try the lower estimate of y(E) by y(prE). Pommerenke
[11] showed that y(prE) = |prE|/4. Hence this approach is equiv-
alent to comparing y(E) with |prE|. To do this, the study of the
Cauchy-Hilbert transform on C! graphs is necessary (Davie [2]). In
1977, Calderén [1] succeeded in proving its boundedness, and, using
his theorem, Marshall [8] finally settled the Denjoy conjecture in the
affirmative. After Marshall’s theorem, we are concerned with studying
further relations between y(E) and |pr E|. Using an estimate of the
Cauchy-Hilbert transform on Lipschitz graphs [10, p. 53], the author
[9] showed that
y(E) > Co| prE|*?

if E is a subset of a rectifiable graph I" satisfying |I'| = 1, where Cj
is an absolute constant. The main purpose of this paper is to show
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that the power 3/2 is best possible. Our method gives a new approach
to the computation of analytic capacity, and suggests that analytic
capacity is related to the theory of fractals (Mandelbrot [7]).

For an integer p > 2, we put

Bp(x):%{l—(—l)k} (gs)c —k; O<k<p—1>
For an n-tuple (p, ..., p,) of integers larger than or equal to 2, we
put

n
A(X5P1s s Pn) =) Bpp (X)

A set I' C C is called a crank of degree » if it is expressed in the
form

=T, ...,pn) ={x+iA(x;p1, ..., 0n); 0Sx <1}

for some n-tuple (p;, ..., p,) of integers larger than or equal to 2.
(The class of cranks in this paper is smaller than a class defined in [10,
Chap. III].) We shall show

THEOREM. For any n > 1, there exists a crank I',, of degree n such
that

C \/— i’l)<C1

where Cy is an absolute constant.

\/ﬁ

Once this theorem is established, we can deduce the exactness of the
power 3/2 as follows. Adding some segments (perpendicular to the x-
axis) to I',,, we obtain an arc connecting O and 1. Then the length of
this arc is less than or equal to n+ 1. Hence we can define a rectifiable
graph I, so that [I',| < 3n, |prE),| > 1/2, where E|, =T, nT",.
Then y(E;) < y(I'y) < Cy/v/n. Contracting E), I",, we define E;,’,
I'), so that [I')| = 1. Then

Y(Ep) = p(Ep)/|T| < V3C|T,| 732
< 22V/3C {|prE,| /|, |}/ = 23/2V/3Cy | pr EL P2,

which shows that the power 3/2 cannot be replaced by any number
less than 3/2.

To prove our theorem, it is necessary to investigate cranks care-
fully. In §2, we shall give a formula ((1) in Proposition 1) to compute
analytic capacity. Proposition 2 is a generalization of Garnett’s ex-
ample [4, p. 87], and will be used to prove our theorem. Using the
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method in the proof of the formula, we shall, in §3, give the proof of
our theorem. In the last section, we shall give a new proof of Pom-
merenke’s theorem [11] as another application of Proposition 1; our
method shows how to construct the extremal functions.

2. A formula for the computation of y(-). Let L?(I') denote the L?
space of functions on a finite union I' of smooth arcs with respect
to the length element |dz|. The norm is denoted by || - || - The

Cauchy-Hilbert transform # from L2(I") to itself is defined by

#f(z) = pv/f( Lidu,

where p.v. is the principal value. This is a bounded operator and the
norm is denoted by ||#f|| A1), L¥r) - An operator Zr is defined by

Zrf=2%f,and % is the identity operator. We show

PrOPOSITION 1. Let T' be a finite union of smooth arcs. Then, for
any 0<e< I/H%HLZ(F),LZ(F) ,

(1) »0)= {|r|+2(1—e 3o g D) (’+"”d2,+z(%)},

—o = m.
where
doy () = /r HFD Nzl (120, (HFD = )

and (I+1)---(l+m)/m!' =1 if m=0. (First Y2, is taken, and
next yo,_o is taken.) If || + Z v 2y 2y < 2. then

2) {m " Z 2-m- IZ ( )d2,+2 fff)}
where (0) = 1. If lim;_ o dy(#) =0, then

3) §) = 23 dy (7).

=0

This is a version of Garabedian’s theorem [4, p. 22] to /. Equality
(3) is applicable to give a new proof of Pommerenke’s theorem. (See
§4.) Notice that % + #Zr#% = 0, where # is the Hilbert transform
on R. Hence (2) is applicable to compact sets I" on a Lipschitz graph
which is a small perturbation of R. For any M > 0, there exists a
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crank I" such that d»(#~) > M [10, p. 84]. Then Cauchy-Schwarz’
inequality yields that

dy(#) > do()? 2 M2 (121,
Hence (1) is necessary in this case.

Proof of Proposition 1. Let

(@) ) = inf{[[1+ A+ Al h € LD}
We begin by showing that

1,
(5) y(T) = —7* (7).

For a compact set £ bounded by a finite number of smooth Jordan
curves, we have
(6) y(E) = —ZI;inf{/ lg(2)|?|dz|; g(o0) = 1, g is analytic in EC}

OE
[4, p. 22]. Hence a standard argument yields that (6) holds with E
replaced by I'; in this case, the boundary OI' has two sides. We
define a smooth curve ¥ tending to infinity so that I € % and that
Z = R outside a large disk. Then . divides C into two domains
Q. . For an analytic function g(z) in I'“ such that g(oco) =1 and
[sr1&(2)|?|dz| < 0o, we can write

1 h(w)
=1+ -

g(z) +7z/1—w—zdw’
where the orientation of dw is chosen so that Q. lies to the left. Let
g+(z) be the nontangential limits of g at z € I' with respect to Q. ,
respectively. Then

gi(z)=1+ ;lt—p.v./r%dw +ih(z)
=1+2(hy)(z) +ih(z) (z€D),
where y(z) =dz/|dz|. Analogously,
g-(z) = 1+ 7 (hy)(z) - ih(z)  (z€T).

Thus
2 _ 2 2
| 18 1az = g s + e B
= 11+ A hy) + 2 g + L+ 7 Ghy) = b
2
= 211+ ) g + ] )
— 2
= 2|11 + #(hy) anm i)

I
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because |y (z)| = 1 (z € I'). This shows that the quantity in the
right-hand side of (6) (E =T) equals 1y*(#), ie., (5) holds.

We next compute y*(7#-). Fatou’s lemma shows that there exists
hr € L*(I') which attains the infimum in (4). A variational method
yields that (1 + #hr, #h) + (hp, h) = 0 for all A € L*T), where
(-, ) is the (complex) inner product with respect to |dz|. Since the
adjoint operator of /4 is —Zr, this shows that

(7) (S — Zr#4)hr = Zrl.

Suppose that hp € L*(T") also attains the infimum in (4). Then Af
satisfies (7), and hence

0= (% — Zr4)(hr — hr), hr — hr)
= ”hl“ - hi"”iz(r) + ”;?i“(hr - hi‘)”%}(r)

This shows that hp = Ar. Thus Ar is uniquely determined. By (7),
we have

(8) () = I+ FhrlZs gy + Il
= (1 +&hr, 1) + (A — Zri#)hr — Zr1, hr)
- /1_{1 + Hhr}|dzl.
Let
Tr = (S - %)~
Then we can write

o0
Tr =Y e (Zra)
=0

because 0 < & < 1/||% (| 2y z2r) - We have, for any h € L*(T),
||Tl“h||iz(r) < ||Trh||iz(p) + 82”%7}}1“%2(”
= (A - &2Zr4) Trh, Trh) = (b, Trh) <Al 20 I Trhll 2 »

which shows that ||Tt||,>) ;2 < 1. Equality (7) can be rewritten
as

9) (S — E2Z 1A )hr = (1 - e%)hr + 2771,
Observing this equality, we inductively define (4n,)_, by hy =0,
m=Tr{(l —e)hp_ +*Zr1} (m>1).
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Then
NAmsr — hm”]}( (1- e MWTr(Am — hm— l)”L2
< (1= &%)l - Pm—1ll 2 -

Hence lim,,_. A, exists and satisfies (9), i.e., (7). Thus Ar =
lim,;, o0 Am . Since

hnst = = (1 = )T = hyny) = - = (1 = 2)" Ty
— 82(1 )me-H%Fl

we have

(o) o]
> sy — hm) =€) (1 = )" TP 1.

m=0 m=0

Consequently, (8) yields that

(o]
y ) =10+ 3 (1 =) [ T Zrlas
m=0

o0 o0 m+1
=T+ > (1 ~82)mL82%{Z 82’(7Fy/i~)1} Zrl|dz|
m=0

1=0

=M+ 2 (- Z grate ) e m) /(%% )+ dz]

m (l+1 [+
S+ Y (- e Z e Y e )
m=0 )

Using (5), we obtain (1).
We can write
- Zr = 2{A - 3 (S + )}

hr =) 27"(A + Zri)" (371
m=0
Thus (5) and (8) yield (2).
Equality (7) shows that #fhr = %211 + #Zr# hr, and hence,
by (8),
yO) = [0+ AT + AT A e,
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Repeating this argument, we have

L
V() = /r {Z(;’/i“;?r)ll +/7i“(7r;?i“)Lhr} |dz|
=0

L
= " d(#) = [{AF A () el
=0
If lim; o dor () =0, then

Jim | [T A (2 e
< Lh—l»lgo ”(%%F)L%l”LZ(r)”hF”LZ(r)

o 12 _
= lim dap+2(71) |l hrll 2y = 0.

Hence (5) gives (3). This completes the proof of our proposition.
We now give a remark. There exists an analytic function gr(z) in

I'¢ such that gr(co) =1 and y(I') = (1/27n) [, |gr(2)||dz| [4, p. 19].

This is called the Garabedian function of I'. Equality (5) shows that

2
gr(z) = {1 +% l_%ldwl} )

There exists fr € H*(I'“) such that || fr|[g=~ =1 and f{(c0) = y(I)
[4, p. 18]. This is called the Ahlfors function of I". We have

_1{ dul /%rhr o 1}
1) = \TETE
(g [ el

To see this, let f(z) denote the function in the right-hand side. Since
gr(z) does not take 0 in I'“, f(z) is analytic in I [4, p. 21]. We
have f'(c0) = +7*(#) = y(I') and

fulz) = L@ £ 19(2) + HZrhr(z) + iZrhr(2)¥(2)

* I+ #rhr(z) £ thr(2)§(2) ’
where W(z) = |dz|/dz and fi(z) are the nontangential limits of f
at z € I' with respect to Q. , respectively. Equality (7) shows that

A+ i + A Z rhr + i(Zrhr) v

=71 + 1y + (hr — #1) + i(Zrhr)y
= iy + {(Zrhr)¥ + hr = iy{1 + Zhr + ihry},
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which yields that |f,(z)|=1 on I'. Analogously, |f_(z)]=1 on I'.
Thus || f||g~ = 1. This shows that f = fr.
For the proof of our theorem, we note

PROPOSITION 2. Let 0 < dy < 1 and let (qn)2, be a sequence of
integers larger than or equal to 2 such that

o0
Y (gia)'<dh (G0
n=j
Then
lim supy(I'(p1, ..., pn)) = 0,
where the supremum is taken over all n-tuples (py, --- , pn) satisfying

pj2q; (1<j<n).

This is a generalization of Garnett’s example [4, p. 87], and used
later. Notice that ) 2, 27" = 1. Asequence (I'(2,))32, (2, isthe n-
tuple of 2) topologically converges to a segment {x+ix; 0 < x < 1},
and these cranks behave like cranks of degree 1 with respect to this
segment. Hence we have limsup,_,, 7(I'(2,)) > 0. This shows that
our proposition is sharp in a sense. Since a minor change of the
argument in [10, p. 81] yields the required equality, we omit the
proof (cf. Jones [S]).

3. Proof of Theorem. In this section, we give the proof of our theo-
rem. Let L? denote the L? space of functions on [0, 1) with respect
to the 1-dimension Lebesgue measure |-| (1 < g < oo0). For a kernel
K=K(x,y) on [0, 1)x[0, 1), we simply write by the same notation
K an operator defined by this kernel, and write by K an operator de-

fined by K(x, y); |K|| 101 denotes the norm of K as an operator

from L9 to L7 . The identity operator is denoted by Id. A kernel K
is anti-symmetric if K(x, y)=—-K(y, x) (x #y). A kernel K is of
type 0 if

13 0
sup K(x, +l—Kx, l+l—Kx, l}<oo.
s (Gl | K, )| + | K )
A kernel K isoftype 1 if |[K||;« ;+ < co and if there exists a sequence
(Kj)32, of kernels of type O such that

lim |K; - K =0, supl|K; .
j_m” j e 2=0, jzll’” llgs s <00
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Kernels used in this section are bounded as operators from L9 to
itself for all 1 < g < co. Let

y*(K) = inf{||1 + Kh||2, + ||Al|7.; h € L2},

dzl(K)z/:(KF)lldx (1>0, (KK)? =1d).

Recall the function A(x; py, ..., pn) In the introduction. Let
1 1
= % = -
H('x7y) R(X7y) T[y__x,

H[pla"- ,pn](X,y)
1

(Y =Xx)+i(AY;P1s-vvsPn) —AX5 D15 oo s Pn))’

A[pla---apﬂ]=H[p19"'5pn]_H[pls'”5pn—l] (”2 l)a
where H[p;,...,pn_1]=H if n=1. Then

_1
T

n
Hipi,....pal=H+) Alpi, ..., pjl.
j=1

Since all components/segments of I'(p,,---, p,) are parallel to
the x-axis, we can identify %, . ,), L*T(pi,...,ps)) with
Hipy, ..., psl, L?*, respectively. We have ||H[p;, ..., palll;2 ;2 <

Cy+/n for some absolute constant C, [10, p. 84]. Hence Proposition
1 shows that

(1) $(Cpr, .., o) = 27" (HIpr, -, o)

=%{1+§(1—s,€)m

m=0

Il

a2+ 1) (I +m)
n m!

NE

X €

d2/+2(H[pl LR pn])} B

)

Ii
(=

where ¢, = (2C,y/n)~!. We shall inductively estimate
hm hm }’*(H[pl 9 s p’l])’

pl—-)oo pn—voo
where limpn_.OO is taken first and limpl_,oo is taken last. For £ C R,
xE denotes its characteristic function, and, for x € R, 1(x) denotes
its integral part. Here are some lemmas necessary for the estimate.
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LEMMA 3. For two kernels K and K',
(K +K') <21+ |IK')I7: )7 (K).
Proof. We have, for any h € L?,
11+ (K + KAl7: + 1Al7: < 200+ K172 )01+ Khl7: + [1A]7:}

which yields the required inequality.

LEMMA 4. Let K be an anti-symmetric kernel such that
llim dy(K) = 0.
Then

(12) y*(K) =Y dy(K).
=0

Since this is a version of (3) to K, we omit the proof.

LEMMA 5. For an anti-symmetric kernel K, 0 < g9 < (3”K”L2,Lz)—l
and weU={{eC;|{|<2,|arg{| <n/4},

= & I+ 1) (I +m
(13) 1+ Z(l —8(2)) Zw2/+2£(2)1+2( ) m'( )d21+2(K)
m=0 =0 )

(=r"(w; K), say)

exists and y*(w; K) is analyticin U.

Proof. Let
T(w; K) = (Id —w?eKK)~!.

Then

1
wzsé/ KT(w; K)""'K1dx

0
= I+1)--(I+m

— Zw21+28(2)1+2( ) m'( )d21+2(K)
1=0 )

because 2¢o||K||,;2 ;» < 1. Evidently, this is analytic in U. Since K

is anti-symmetric and Rew? >0 (w € U, Rew? is the real part of
w?), we have, in the same manner as in the proof of (1),

(14) 1T (w; K)ll2 2 <1 (weU,).
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Thus the convergence of Y~ , in (13) is uniform in U, which shows
that y*(w; K) exists and is analyticin U .

LEMMA 6. Forany [ >0,
lim dy(Alp)) (= dy(Also]). say)
exists and

(15) do(Afoo]) < — o

25m2°
Proof. We put

1 1 1
Ris, )= {t—s+1+l t—s+1}
_gi t—s+1+i B t—s+1
e dm? —(t—s+1+i0)2 4m?>—(t—s+1)?

and show that

(16) lim dy(Alp]) = / (R¥1 + R 1} .

Let

m+1 m m+1
= U [7.757) m= U [5.757),

m,even

X, =p—l(lfjp)—l [ﬂ’ m+ 1) ,
m=i(logp) p p
sy=px—1(px) (0<x<1, p=>2)
Notice that |[0, 1)~ X,| <2 i(logp)/p and ||A[p]||;+ ;« < 10. Since
Alpl(x,y)=0 (x,y € W,;x,y € W,), we have

l —_— —_— —_—
(819D = [ (MpIBTY) " Alp Kot BlpTa; + 2 Bl Liw, ) i
l —_— _— ——
— | (@WIABY Al ot e STVt + g, BT

o{(2))

We now study A[plxu-(x) (x € W,nX,). Without loss of generality,
we may assume that p is even. Since x € W,NX,, i1(px) is even and
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1(logp) < i1(px) < p —1i(logp) — 1. We may assume that i(logp) <
1(px) < p/2. We have

Alplw; (x) = %/W {y—xl— ilp yix} @

=_71?/W {J’—X+:/P—i/l7_y—x1+l/p}dy

14

(p/2)-1

B 1/p 1
n /0 {(2m/p +y) = (lpx)/p+ x —1(px)/p) + 1/p —i/p

m—O
}

1(px) 1 (p/2)-1

=7—1-Z+;[- Z =L+ L,,

m=0 m=i(px)+1

1 ! 1 1 1
L‘_E/O {t—sx+1—i_t—sx+1}dt+5

== - — dt

_3"%’/2/' f—sy+1—i
- o \@m2—(t—s +1-10)2

m=1

0<m<i(px),m#i(px)/2

t—sx+1
4m2—(t—sx+1)2} at

—= 1
—Rl(Sx)'f'O(@) .
i (p/2)-1 1 1
L2=—E Z /0 Cm—1(px))+ (t—sx+1-1)

m=1(px)+1

dt 1
Cm x4 =5+ 1) 0(@) ’

which shows that A[p]x,(x) = R1(sx) + O(1/logp) (x € W,NX,).
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In the same manner, A[p]pr(x) = Rl(sx) + O(1/logp) (x € W, N
Xp). Thus

dyy(Alp)) = / (AP TATP) " Alp) 1w, R1(s) + 2oy, R1(s)) dx
1
*0(@)
/ (AlPJATPD' " Alp}w, R1(s) + s R1(5)} dx
1
+0<@)
1 [R—
= | (AW IBE) om, Alp Yt R1(5))
+ Xwnx AlP)(xw, R1(s)} dx
1
+0(@5)'

Since R1(sx) is a periodic function with period 1/p, we have, in the
same manner as above,

APy RIS = R1(s:) + 0 (o) (e WonXy),

logp
AP RIS =Bl + 0 (o) (xeWn ).
Repeating this argument, we have
1 ! 1
8D = [ O IR )+ 2 IR 15} s +0 (1)
2/ (R¥U1+ R’ 1}ds+0<l ;p)

which gives (16).
We have

1 & 1 1
Ris,)=2 Z {2m+1+t—s+z 2m+1+t—s}

—00
Ll 1
T oo ; Cm+1+t—5){2m+1+1t—-5)2+1}
R 1
—Emzoo Cm+1+t-5)2+1
= —R'(s,t)—iR"(s, t), say.
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Then R’ is anti-symmetric and R” is symmetric, i.e., R'(s,t) =
R"(¢t, s). Thus

1
dy(A[oo]) = Re / R21ds
0
= Re/l(—R’l +iR"1)(R'] + iR"1) ds
0
1
= - [{® D)+ ®R D as
0
1

2
Lot dt 1
< —— < -
= 7t2/0 {/0 (l+t—s)2+1} d < 2572

Thus (15) holds.

LEMMA 7. Let K be an anti-symmetric kernel of type 1, and
let (8p)52,, (hp)32, be two sequences in L* such that |gp+ < 1,
apll« < 1. Then, for any [ >0,

1 er—— —
a7 lim { /0 K g, - (Alp1ApY) Khy dx

1
—dyy(Aloo]) /0 Ke, -k’h,,dx} _o,

1

(18) lim [ K, BIALIAPY Khy dx = 0.
— 00 O

Equalities (17) and (18) hold with K g, replaced by 1.

Proof . First we assume that K is of type 0. Let

A'lp)(x, y) = ApI(x, Vxpo, vy —x1) (0 22),

where N = i(logp). Then ||A[p] — A'[p]|l;z ;2 = O(1/logp) (cf.
Lemma 6), and hence

1
| Keo- A1) K, dx
= / IK (A'IPIATP)'K h dx+0(L>
- 0 gp 14 logp .

Notice that
A'PINP) (x, ) =0 (v —x| > 2IN/p),
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and that (A'[p]A’[p])'1 is a periodic function on [2/N/p, 1—(2IN/p))
with period 2/p. Let

p 2(m+1)/p
™ =% (A'[pIATP]) 1 dx — dyy(Aloo])
2 Jamyp

(0<m<i(p/2) - 1).
Then nl(,'") = nl(,lN) (IN<m<i(p/2)—IN-1). Lemma 6 shows that

limsup [7)™] = lim sup |d,(A'[p)) — dxy(A[oo))|

p—o0

= llﬁgp |d2i(Alp]) — dy(Aloo])| =0
Since K is of type 0, we have

su

IKh — Kh(x)| < sup |—K(s, t)‘ < 00
ly x| s,t€[0,1)|OS

where the supremum in the left-hand side is taken over all x, y €
[0, 1) and all & € L* satisfying ||A||,;+ < 1. Thus

1 —— —
| Kep - (Alp1BT]) Ky d

1-(2I/N/p)
= / Kgy(x)
2IN/p

x / (N IPINTPY (x, ) Ehp(v) dy dx + 0(1)
ly=x|<2IN/p
1-(2IN/p)

- / Kg, - Khy - (N[pI&Tp]) 1 dx + o(1)
2IN/p

p/2)—

2, (B%) Ky (22) 0 + datsiooh + o)

p m=IN
1(Aloo]) / Kgy - Ehy dx + 0™ + (1)

= dy(A[oo]) /0 Kg, - Khydx +o(1),

which shows that (17) holds. Let K be of type 1. Then there exists a
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sequence (K;)72, of kernels of type 0 such that
1 .
||K—Kjl|L4,L2S7 (]21), S,lill)llKjllL4,L4<oo‘
j2

Then

1 1 -
' /0 Kgy - (ApIADY) Ky dx — /0 K;g - (ApIAD)'K jhy dx| < C3/,

1 _ 1 —

for some constant C; independent of p and j. Since (17) holds for
all K; (j > 1), this shows that (17) holds.
Since A[p](Alp]A[p])! is anti-symmetric, we have

1 e —
/O A1(AlPIA]) 1 dx = 0.

Hence, in the same manner as above, we obtain (18). Analogously,
we can replace Kg, by 1.

LeEMMA 8. Let K be an anti-symmetric kernel of type 1. Then, for
any [ >0,

lim dy(Alp] + K) (= dy(Alo] + K), say)

exists, and we can write

I
(19) dy(Aloo] + K) = Y ¢ dy 51 (K)
k=0

so that ¢} (0 <k <1(m/2), m>0) satisfy

(200 V=1, G =duAlocl) (m>0,k>0),

k
1) ) =3 T Vdy(Aloo])
j=0
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Proof. We say that a 2/-tuple (7, ..., Ty;), T; = %1 is negligible if
there exist two integers jo, ji (1 < jo < jj < 2/) such that jj—jo—1
isodd, 7, = -1 (jo < Jj < Jjp) and Tjp-1 = T4y = 1. (We put
To = Ty41 = 1. Hence 7; ; =1 if jo =1, and Tyl = 1 if
Jo = 2l.) Let t(Alp]) = -1 (p > 2), ©(K)=1. Lemmas 6 and 7
show that dy;(A[oo] + K) exists and

1
dy@lcl+K)=lim ¥ [ KKKy Kyl
(K, ... Ky) K, =Alp], K
=1)l}»r£loZ/ K\K,-- Ky 1K211dx
(»)
where 3, is the summation over all 2/-tuples (K1, ..., Ky), K; =

Alp], K suchthat (1(K;), ..., 1(Kj;)) is not negligible. If (7(X;),...,
7(K5;)) 1s not negligible, then K appears even timesin (K, ..., Ky;).
We can choose j; < j» < --- < jp, so that K~ =K (1<u<),

=Alp] (j ¢ {ju};Z1)- Then ji—1, ]u+l—]ﬂ—1 (I<p<2w-1),
21 — Jpu, are even. Notlce that

1
dy(K) = [ (RKY1ds (j20)

Thus we can write

/
dy(Aloo] + K) = Y 5P dy 51 (K).
k=0

Let x( be an operator defined by 4 € L? — ( fol hdx)xp,1).- We put
Yp,—l(t) =1 )

f K'"/21 dx (m is even),

Y, m(t) =
pmll) {fo xo+zA[p1)K<'" D21 dx  (m is odd),

where K, ; = (ko+tA[p])(ko+tA[p]) . Then Yoo m(?) = limpoo ¥y, m(?)
exists, and céil) equals the t**-coefficient of Yo 2(t). Evidently, (20)
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holds. Since fol Alp1(Alp]A[p])/1dx =0 (j > 0), we have inductively

Y, 2(t) = Yy 211 (1) +1 / Alp](xo + (AIPDK!~!1 dx

-1 (1) + z2/0 Alp]A[PIK) -} 1dx
=Y, 2-1(t) + Pda(AP]))Y, 2-3(2)
+1 /0 1 A[p]A[p]A[p) (Ko + tAIP) K 71 dx
=Y, 2-1(t) + 2dr(AlPD Y, 2-3(t)
+ 1 / (AT d

/

= o=y (AIP))Y, 2-2j-1 (D).

Jj=0

Letting p tend to infinity, we have

!
Yoo, 2(t) = Y 1% ds,(A[00]) Yoo 221 (1).
=0

In the same manner,

Yoo ,2141(2) = Zfz]dzj(A[OO]) L2125 (1)
j=0

Thus
1(m/2)

Yoom(t) = D 17 dyj(A[00]) Yoo, m—2,-1(2).
=0

Comparing the t*-coefficients of both sides, we obtain (21).

LEMMA 9. Let K be an anti-symmetric kernel of type 1. Then, for
any 0<d <1,

I}Lrggo y*(0A[p] +0K) (= y*(dAloc] +0K), say)
exists; we write y*(dA[oo]) if K = 0. Moreover,
(22) P (6A[oo] + 6K) = y*(dA[o0]) 7" (7" (6A[c0])0K).

Proof. First we show that p»*(dA[oco] + 0K) and y*(dA[o0])
exist. Define y*(w; A[p]+ K), T(w; Alp]+ K) (w € U) for ¢ =
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(12 + 3[|K”L2,Lz)_l in the same manner as in Lemma 5; we have
g0 < (3||A[p] + K| ;> ;)" because [[A[p]fl;: ;2 < 4. Lemma 8 shows
that

lim w?e3 /0 l(A[p] + K)T(w; Alp] + K)" Y (A[p] + K)1 dx

p—00

= I+1)---(I+
=S wreg D My oK) (m 2 0).
1=0 ’

Since (14) holds with K replaced by any A[p]+ K (p > 2), (13)
exists with K replaced by A[oo] + K, i.e.,

(23) Jm y*(w; Alp] + K) (= y*(w; Alo] + K), say)

exists. Since
?*(d; Alp]l + K) = y*(6Alp] +6K)  (p 2 2),

y*(0A[oo] +0K) (= y*(d; Aloo] + K)) exists. Putting K = 0, we see
that p*(dA[oo]) exists.

Next we show that y*(w; A[oo] + K) and y*(y*(w; Aloo])w ; K)
are analytic in a domain containing (0, 1]. The convergence of (23)
is uniform in U. By Lemma 5, y*(w; A[p] + K) is analytic in U,
and hence p*(w; A[oo]+ K) is analytic in U . The definition of y*(-)
immediately shows that

7(Rew; Alp]) = y*(RewAlp)) <1 (wel).
Letting p tend to infinity, we have y*(Rew; A[oo]) <1 (w € U).
Since y*(w; A[oo]) is analytic in U, there exists 0 < # < n/8 such
that 4

7" (w; Aloo])| < 5, |argy*(w; Aloo])| <
in Uy ={w €C; |w| <4/3, |argw| < n}. Then y*(w; Alcc])w € U
(w € Uy). Thus, by Lemma 5, y*(y*(w; Alco])w ; K) is analytic in
Uy .

By the theorem of identity, it is sufficient to show that (22) holds
for 0 <6 < (8+2||K||,2 ;2)7". Since

lim dy(SA[p)) = lim d(3A[p] + 5K) =0,

ool

(12) holds for 6A[p], 6A[p]+JdK (p > 2). Letting p tend to infinity,
we have

y*(6A[o]) = Y dy(A[oo]) = 3 6% dy (Aloo]).
/=0 =0



332 TAKAFUMI MURAI

o0

7*(6A[co] + 6K) =Y _ 6% dy(A[oo] + K).
=0
Let

o0
= Z e (m >0,
where c(m) (0<k <i(m/2), m >0) are numbers in Lemma §. Then
k
Z 0% ) = y*(3A[00))
by (20). Equality (21) yields that

m=262k2c§’:+§," 2D d, (Aloo])

k=0 j=0
14+2(k—-
-205210121 A[Oo])kZ52(k Ne (Z” ';'( =)
= =J

= fm-1lo (M 21),
which gives
m = ugtt = y*(0A[e])™ (m > 1).
Thus, by (21),

y*(6A[c0] + 6K) =Y~ 5% dy(Alc0] + K)
=0

/
l
0%y ey oy (K) =
k=0

s T
s
M s

o 216’2k dy—ok(K)

j 2j+2k
521+2kc§k1+ )dzj(K) =

12;6% dy;(K)

Il
vl

»
Il
o
Il
=]

J J

y*(BA[oo])/ 0¥ dyj(K) = y*(dA[00])y* (7" (3A[0])OK).

[\”18

~.
Il
o

LemMMA 10. We inductively define a sequence (y;)%, of positive
numbers by

1 =77Ael),  vp = o7 (aAlee])  (n22).
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Then
lim lim - lim y*(Hlpr, ..., pal=H) =75 (n21),

p,—00 p,—00
where lim, _,, is taken first and limy, _, is taken last.

Proof. We define a sequence (4,)52, of positive numbers by 4; =

7*(A[o0]), An = P*(A1...44—1A[00]) (n > 2). Then y; = A;-- Ay

(n > 1). Fixing an (n — 1)-tuple (py, ..., Ppn—1) (n>2) of integers
larger than or equal to 3, we study

Jim y*(Hlpy, ..., pnl - H)
=p1§nwy*(A[P1,---,,Dn]+(H[P1,---,pn—ll—H))-
Put Iy = [0, 1/(p1---pn-1)), Ij = (o + j/(P1- - Pn-1)) (0 < j <
(p1...Pn—1)—1). Then
(Hlp1, ..., Pn11-H)(x,y)=0 (x,y€el)),

I(H[pla 9pn—l]_H)(x’ y)l
1

2 —x| (xelj,yel,j#k),

2
< —
> ﬂpl ‘Dn-1+
which shows that H[p,, ..., p,—1]— H 1is of type 1. Let
A'[ply---,Pn](X,y)=A[Pl,---,pn( ('y xl)

A [Hp,} X, ¥) [Hp,} X5 9) %o, ey (7 = 1)

j=1 j=1
(N" = 1(log(p; ...pn)) . Then
lim A1, .., Pal = Alprs o Palll e g0 = 0,

i) it

(cf. Lemmas 6 and 7). Since

=0
L, Lt

lim

pn—voo

A’[pl,...,pn](X,y)=A' I:Hp_]jl (x’y)

j=1
(x,vyel;,0<j<(py- pPn-1)— 1),
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we have

lim
p,—0

A[pI’ see ’pn]_A |:Hpj:|
j=1

= lim
p,—00

-n
Nlpy,...,pn] - A Hpj}

L*,1?
and hence, in the same manner as in the proof of the existence of
(23),

pli_lgoy*(A[pl, ,pn]+(H[p1, ,Pn—l]_H))

n
=pli_1)1‘1)oy* (A Hp,] + (H[py, ... ,Pn—ll—H)) .
n j=1

Using (22) with 6 =1, K = H[py, ..., pn—1] — H, we have
Jim y*(Hpy, ..., pal = H) =y (Aloo] + (HIpy, .., Pui] = H))

=4y (M (H[pys ... s Pn1] — H)).
In the same manner, using (22) with d = 4;, K = H[p,, ..., Dn_2] —
H , we have

lim lim y*(H[py,...,pn]—H)
—00 p,—00

= 417" (A1A[oo])Y* (¥* (M1A[oo)) A1 (H[py s - .. 5 Pn—2] — H))
= AA2y*(A1d2(H[py s ... 5 Pn-2] — H)).
Repeating this argument,
lim --‘pli_r}:l)oy*(H[pl, ee.sDnl—H)

= A1+ damy Hm (- A A1) = A = 7

This completes the proof of our lemma.

We now give the proof of our theorem. By Proposition 2, there
exists a positive integer ngy such that

(24) supy(T'(py, ..., pn)) <1070 (n > np),

where the supremum is taken over all n-tuples (p;, ..., pn,) of in-
tegers larger than or equal to 3. By Lemma 10, we can inductively

choose a sequence (p,?);,"; , of integers larger than or equal to 3 so that

1, . \
iynSy(H[p?,-..,p,?]—H)SZYn (n>1)),



THE POWER 3/2 335

where (y;)2, is the sequence in Lemma 10. We show that I', =
I'(p?, ..., pY) (n > 1) are required cranks. We may assume that
n > ng. Lemma 3 shows that

LV (HIY, .. o1~ H) < 7 (HIBY, .., B

<4y*(HIpY, ..., pAl - H),

and hence {

g/n SYHIDY, ..., pR)) < 875
Thus, by (11),
(25) %y,’; <y < %y:;-

Using (24) and (25), we have y} < 87 -107°. Recall (15), and notice
that dy(A[oo]) < 4 (I > 1). Since lim;_ o dy(y;Alp]) = 0, (12)
holds for y;A[p]. Letting p tend to infinity, we have

Tl = Pn¥ (¥nAloo]) = v, ) dy(ypAloo])
=0
x 2/ 2/+I
=75y 7 dy(Aleo)) < 7y 25 e +Z4’
=0 =2

- 10‘3)/,’;3 ,

(o 0]
20+1 3 .
Vel = vn— > 4y Zn =10y, e,
=1

3 3
Tn =107 <y Svp— 107,

Since this holds for all #n > ng, a simple induction yields that

>
C4\/——n—C4\/;l- (n_l'l())
for some absolute constant C4. Using (25) again,
8
< — > .
87tC \/—' — (rn) C4\/;l- (n = nO)

This completes the proof of our theorem.

REMARK 11. It is not known whether y(:) is semi-additive [4, p
11]. For 0 < 5 < 1, we define B}(x) replacing 1/2p by n/2p in the
definition of B,(x). Then cranks I"(p;, ..., ps) of degree n are
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analogously defined. We see that there exists a crank I'} of degree
n such that y(I'}) < C,/y/n, where C, is a constant depending only
on 7. Adding some segments (perpendicular to the x-axis) to I'},
we obtain an arc I} connecting 0 and 1. Then the diameter of I7 s
larger than or equal to 1. Since l" 1s connected, (1"'7 y>1/4 [4,p
9]. Hence, from the point of view of the above semi-additive problem,
it seems interesting to compute y(I'l —I'}).

4. Another application of Proposition 1. In this section, we show

another application of our method. Let E be a compact set on R.
Pommerenke [11] showed that

(26) V(E) = |E|/4,

o o= (-on (1 2]}/ - s )}

We deduce (26), (27) from (3), (10); our method explains a quarter
and (27). Let L2(R) denote the L? space of functions on R, and let
Mp denote the multiplier: 4 € L?(R) — yh € L?(R), where x = xg.

We 1nduct1ve1y deﬁne a sequence (Hj (m )) _o of operators from L?(R)

to itself by HY = My, HY" = HMg H('" Y (m >1). Notice that

1
HE) = 7 (MeHMp),
doy (Mg HM;) = / HYydx (120, 1 =71z).
E

We also remark that
(28) H(g-Hh)+H(Hg-h)=Hg-Hh—gh (g, heL’*R)).
We first show that, for any m > 1,
(29)  xHx -Hx=(m+ OxHI g+ myH Vg
Equality (28) shows that 2H (xHy) = (Hy)>— xx , which gives yHy -
H](;)x = 2)(H1(52)x + xH}EO)x. Suppose that (29) holds for m. Using
(28) with g =y, h = ng")x, we have
xHy H Dy = xHy H(xH" )

= xH{xH(xHY x)+ Hy - xHY 2y + x{x - xHY 0

= xHY Py + xH{(m + Dy HS g+ myHI Vgt + xHI y
= (m+2)xHI" Py + (m + DxHMx, ie.,
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(29) holds for m + 1. Thus (29) holds forall m > 1.
We next show that

(30) / Hyax = SV g (> 0).
E

2l+1

We put ay; = [, Hgl)xdx (Il > 0). Evidently, ag = |E|. Suppose
that ay_, = {(=1)!"'/(2] - 1)}|E|. Equality (29) (m = 2/—1) shows
that

/Hx-ng"”xdx=21/H§1>xdx+(21—1)/ HZ2y gx
E E E
= 21612[+(21— Day_,.

Since the adjoint operator of H equals —H , we have
/EHX HE Vydx = —/EH{XH,‘E”’”x}dx = —ay.

Thus —ay; = 2lay; + (21 — 1)ay_, , which yields that
_2- la (="

A S 21+1

Now the deduction of (26) is immediate. By (30),

IEI

lim dy(MgHME) = lim / HP ydx =o0.
[—00 -0 JE
Hence we can apply (3). Leibniz’s formula and (30) yield that
1

V(E) = v (MpHME) = %dZI(MEHME)
| &
;z o2iE1 = i
Last, we deduce (27) from (10). Equality (10) gives that

HWVh
fE(Z)=_1{ £+/ _E_E@dg}/{ul Be) ),
n|Jgs—z Jg s-—z n)gs—z
where hg(s) is the function which attains y*(MgHMEg). We show

that this equals the function in the right-hand side of (27). Let

1 H V(s
w(z) =1, un(z)=1 [ L,

L Hy()HE"21(5)
T JE §—2Z

'Um(z): (mZ 1))
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where H,(s_l)x = x. Let
(o0
=Y Mum(z) (tecC, <)

We begin by showing that
9
ot
Let m > 1. We have, on R,

(31) (1+3)=P(z) =u(2)P(z) (0<t<1).

l,;fg{umﬂ(- + 1) + Upp1 (- + in)}
= H(xH™y) +ixH %
+H{xHyx -HI Yy} +ixHy - H' Yy
= H{yHHY Vx)+ Hy - xH Yy}
+i{yHH V) + Hy - xH Vg3,
limu (- + in)um(- +in)
nl0
= {Hy +ix HHH V) + ixHY Yy
= Hy - HQHE" V0) = 2 2 HY" x
+ i) HOH V0 + Hy - xH™ Vg3
Hence (28) (g =x, h=xH""""x) shows that
13?01{um+1(' +in) + V1 (- + i) —ur (- + in)um(- + in)} =0
on R. In particular, this holds on R — E. Hence, by the theorem of

identity, U4 1(2) + Vme1(2) — u1(2)um(z) = 0. Equality (29) shows
that v,,,1(z) = muy,1(z) + (m - Du,,_1(z). Thus

(M + Dumy1(2) + (M = D1 (2) —u1(2)um(z2) =0 (m=1),

which yields that

Z mt"um(2) + 12 Z mt"um(2z) = tu,(z Z MU (2 ie.,

m=0

zgp,< )41 —a")—tPt<z> = tuy(2)P,(2).

This is the required equality (31).
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We can choose xo e R—E, n >0 so that P(x) >0, u;(x) >0
forall x € (xo—n,xo+1n), 0<t<1. Equality (31) shows that

1 0
mul(x)=5—t-P,(x)/Pt(x) (x€xo—n,x+n), 0<t<1),

which gives that

L ds
0 1+s2u1(x)} (x€(xo—n,x0+n), 0<t<1)

because Py = 1. By the theorem of identity,

t
P,(z) =exp {/0 T%ul(z)} O<t< ).

Pi(x) = exp {

Since P;(z) and exp{(fé(ds/(l +52))u (z)} are analytic in the unit
disk as functions of 7, this equality holds for —1 < ¢ < 0 also. Thus

1+1/ hE(S)ais:l+%/ 1 ST HFVx(s)ds
E I=1

nJgs—z s—z

ad 1
IRT 21 _ i
= lim ZE_OI uy(z) = 3 imiP,(2) + Pi(2)}

/4

= oo (i) +xn ()
_l/ ds _lﬁ:mds%l}g{ﬂtw)—ﬂ(m

nlgs—z = s—z

= 3 {orn (fu(2) —exp (Fui) }
which gives (27).
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